File size: 6,474 Bytes
ff5b345 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import os
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
# import onnxruntime as ort
import cv2
from utils.EdgeTAM_image_predictor import ImagePredictor
import argparse
np.random.seed(3)
def show_mask(mask, ax, random_color=False, borders = True):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask = mask.astype(np.uint8)
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
if borders:
import cv2
contours, _ = cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# print(contours)
# Try to smooth contours
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
# cv2.imwrite('./mask_image.jpg', mask_image)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
def show_masks(
image,
masks,
scores,
point_coords=None,
box_coords=None,
input_labels=None,
borders=True,
save_dir="./results", # 新增:保存目录
base_name="mask" # 新增:基础文件名
):
"""
保存分割结果图像到文件,不再显示。
Args:
save_dir: 保存目录(会自动创建)
base_name: 文件名前缀,如 "mask" → "mask_1.png"
"""
os.makedirs(save_dir, exist_ok=True)
for i, (mask, score) in enumerate(zip(masks, scores)):
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(mask, plt.gca(), borders=borders)
if point_coords is not None:
assert input_labels is not None
show_points(point_coords, input_labels, plt.gca())
if box_coords is not None:
show_box(box_coords, plt.gca())
if len(scores) > 1:
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
plt.axis('off')
# 保存图像(不再 plt.show())
save_path = os.path.join(save_dir, f"{base_name}_{i+1}.png")
plt.savefig(save_path, bbox_inches='tight', pad_inches=0, dpi=150)
plt.close() # 释放内存
print(f"✅ Saved: {save_path}")
if __name__ == "__main__":
argparser = argparse.ArgumentParser()
argparser.add_argument("--image_path", type=str, default="./examples/images/truck.jpg", help="Path to the input image.")
argparser.add_argument("--model_path", type=str, default="./axmodel", help="Path to the ImagePredictor model.")
argparser.add_argument("--save_dir", type=str, default="./results", help="Directory to save the output images.")
argparser.add_argument("--input_box", type=str, default=None, help="Input box coordinates as x1,y1,x2,y2")
argparser.add_argument("--input_mask", type=str, default=None, help="Path to the input mask numpy file.")
argparser.add_argument("--input_point_coords", type=str, default=None, help="Input point coordinates as x1,y1 or x1,y1:x2,y2")
argparser.add_argument("--input_point_labels", type=str, default=None, help="Input point labels as 1 or 0 or 1:0")
args = argparser.parse_args()
# load image
image = np.array(Image.open(args.image_path).convert("RGB"))
predictor = ImagePredictor(args.model_path)
predictor.set_image(image)
# define input prompts
if args.input_mask is not None:
input_mask = np.load(args.input_mask)
else:
input_mask = np.zeros((1, 256, 256), dtype=np.float32)
if args.input_box is not None:
input_box = np.array([int(x) for x in args.input_box.split(",")])
else:
input_box = None
if args.input_point_coords is not None:
input_point_coords = np.array([[int(coord) for coord in point.split(",")] for point in args.input_point_coords.split(":")])
else:
input_point_coords = None
if args.input_point_labels is not None:
input_point_labels = np.array([int(label) for label in args.input_point_labels.split(":")])
else:
input_point_labels = None
if input_box is None and input_point_coords is None:
raise ValueError("At least one of input_box or input_point_coords must be provided.")
print("Get prompts: ")
print(f" input_box: {input_box}")
print(f" input_point_coords: {input_point_coords}")
print(f" input_point_labels: {input_point_labels}")
#only box
# input_box = np.array([75, 275, 1725, 850])
# input_point_coords = None
# input_point_labels = None
# input_box = np.array([1375, 550, 1650, 800])
# input_point_coords = None
# input_point_labels = None
#only point
# input_box = None
# input_point_coords = np.array([[500, 375], [1125, 625]])
# input_point_labels = np.array([1, 1])
# input_box = None
# input_point_coords = np.array([[500, 375], [1125, 625]])
# input_point_labels = np.array([1, 0])
#point + box
# input_box = np.array([425, 600, 700, 875])
# input_point_coords = np.array([[575, 750]])
# input_point_labels = np.array([0])
# input_mask = np.load("./axmodel/logits.npy")
# predict masks
masks, scores, logits = predictor.predict(
point_coords=input_point_coords,
point_labels=input_point_labels,
box=input_box,
mask_input=input_mask,
multimask_output=False,
)
sorted_ind = np.argsort(scores)[::-1]
masks = masks[sorted_ind]
scores = scores[sorted_ind]
logits = logits[sorted_ind]
print(scores)
# visualize results
show_masks(
image,
masks,
scores,
point_coords=input_point_coords,
box_coords=input_box,
input_labels=input_point_labels,
borders=True,
)
|