File size: 6,474 Bytes
ff5b345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
# import onnxruntime as ort
import cv2
from utils.EdgeTAM_image_predictor import ImagePredictor
import argparse

np.random.seed(3)

def show_mask(mask, ax, random_color=False, borders = True):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask = mask.astype(np.uint8)
    mask_image =  mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    if borders:
        import cv2
        contours, _ = cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        # print(contours)
        # Try to smooth contours
        contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
        mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
        # cv2.imwrite('./mask_image.jpg', mask_image)
    ax.imshow(mask_image)

def show_points(coords, labels, ax, marker_size=375):
    pos_points = coords[labels==1]
    neg_points = coords[labels==0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)

def show_box(box, ax):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))

def show_masks(
    image, 
    masks, 
    scores, 
    point_coords=None, 
    box_coords=None, 
    input_labels=None, 
    borders=True,
    save_dir="./results",        # 新增:保存目录
    base_name="mask"             # 新增:基础文件名
):
    """
    保存分割结果图像到文件,不再显示。
    
    Args:
        save_dir: 保存目录(会自动创建)
        base_name: 文件名前缀,如 "mask" → "mask_1.png"
    """
    os.makedirs(save_dir, exist_ok=True)
    
    for i, (mask, score) in enumerate(zip(masks, scores)):
        plt.figure(figsize=(10, 10))
        plt.imshow(image)
        show_mask(mask, plt.gca(), borders=borders)
        
        if point_coords is not None:
            assert input_labels is not None
            show_points(point_coords, input_labels, plt.gca())
            
        if box_coords is not None:
            show_box(box_coords, plt.gca())
            
        if len(scores) > 1:
            plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
            
        plt.axis('off')
        
        # 保存图像(不再 plt.show())
        save_path = os.path.join(save_dir, f"{base_name}_{i+1}.png")
        plt.savefig(save_path, bbox_inches='tight', pad_inches=0, dpi=150)
        plt.close()  # 释放内存
        print(f"✅ Saved: {save_path}")


if __name__ == "__main__":
    argparser = argparse.ArgumentParser()
    argparser.add_argument("--image_path", type=str, default="./examples/images/truck.jpg", help="Path to the input image.")
    argparser.add_argument("--model_path", type=str, default="./axmodel", help="Path to the ImagePredictor model.")
    argparser.add_argument("--save_dir", type=str, default="./results", help="Directory to save the output images.")
    argparser.add_argument("--input_box", type=str, default=None, help="Input box coordinates as x1,y1,x2,y2")
    argparser.add_argument("--input_mask", type=str, default=None, help="Path to the input mask numpy file.")
    argparser.add_argument("--input_point_coords", type=str, default=None, help="Input point coordinates as x1,y1 or x1,y1:x2,y2")
    argparser.add_argument("--input_point_labels", type=str, default=None, help="Input point labels as 1 or 0 or 1:0")

    args = argparser.parse_args()

    # load image
    image = np.array(Image.open(args.image_path).convert("RGB"))

    predictor = ImagePredictor(args.model_path)

    predictor.set_image(image)

    # define input prompts
    if args.input_mask is not None:
        input_mask = np.load(args.input_mask)
    else:
        input_mask = np.zeros((1, 256, 256), dtype=np.float32)

    if args.input_box is not None:
        input_box = np.array([int(x) for x in args.input_box.split(",")])
    else:
        input_box = None

    if args.input_point_coords is not None:
        input_point_coords = np.array([[int(coord) for coord in point.split(",")] for point in args.input_point_coords.split(":")])
    else:
        input_point_coords = None

    if args.input_point_labels is not None:
        input_point_labels = np.array([int(label) for label in args.input_point_labels.split(":")])
    else:
        input_point_labels = None

    if input_box is None and input_point_coords is None:
        raise ValueError("At least one of input_box or input_point_coords must be provided.")

    print("Get prompts: ")
    print(f"  input_box: {input_box}")
    print(f"  input_point_coords: {input_point_coords}")
    print(f"  input_point_labels: {input_point_labels}")

    #only box
    # input_box = np.array([75, 275, 1725, 850])
    # input_point_coords = None
    # input_point_labels = None

    # input_box = np.array([1375, 550, 1650, 800])
    # input_point_coords = None
    # input_point_labels = None

    #only point
    # input_box = None
    # input_point_coords = np.array([[500, 375], [1125, 625]])
    # input_point_labels = np.array([1, 1])

    # input_box = None
    # input_point_coords = np.array([[500, 375], [1125, 625]])
    # input_point_labels = np.array([1, 0])

    #point + box
    # input_box = np.array([425, 600, 700, 875])
    # input_point_coords = np.array([[575, 750]])
    # input_point_labels = np.array([0])

    # input_mask = np.load("./axmodel/logits.npy")

    # predict masks
    masks, scores, logits = predictor.predict(
        point_coords=input_point_coords,
        point_labels=input_point_labels,
        box=input_box,
        mask_input=input_mask,
        multimask_output=False,
    )

    sorted_ind = np.argsort(scores)[::-1]
    masks = masks[sorted_ind]
    scores = scores[sorted_ind]
    logits = logits[sorted_ind]
    print(scores)

    # visualize results
    show_masks(
        image,
        masks,
        scores,
        point_coords=input_point_coords,
        box_coords=input_box,
        input_labels=input_point_labels,
        borders=True,
    )