|
|
from fireredasr.data.asr_feat import ASRFeatExtractor |
|
|
from fireredasr.tokenizer.aed_tokenizer import ChineseCharEnglishSpmTokenizer |
|
|
|
|
|
import onnxruntime as ort |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
import numpy as np |
|
|
from torch import Tensor |
|
|
from typing import Tuple, List, Dict |
|
|
import argparse |
|
|
import os |
|
|
import time |
|
|
import logging |
|
|
|
|
|
logger = logging.getLogger() |
|
|
logger.setLevel(logging.INFO) |
|
|
logger_stream_hander = logging.StreamHandler() |
|
|
logger_stream_hander.setLevel("INFO") |
|
|
logger.addHandler(logger_stream_hander) |
|
|
|
|
|
|
|
|
INF = 1e10 |
|
|
|
|
|
|
|
|
def to_numpy(tensor): |
|
|
if isinstance(tensor, np.ndarray): |
|
|
return tensor |
|
|
if tensor.requires_grad: |
|
|
return tensor.detach().cpu().numpy() |
|
|
else: |
|
|
return tensor.cpu().numpy() |
|
|
|
|
|
|
|
|
def set_finished_beam_score_to_zero(scores, is_finished): |
|
|
NB, B = scores.size() |
|
|
is_finished = is_finished.float() |
|
|
mask_score = torch.tensor([0.0] + [-INF] * (B - 1)).float() |
|
|
mask_score = mask_score.view(1, B).repeat(NB, 1) |
|
|
return scores * (1 - is_finished) + mask_score * is_finished |
|
|
|
|
|
|
|
|
def set_finished_beam_y_to_eos(ys, is_finished, eos_id): |
|
|
is_finished = is_finished.long() |
|
|
return ys * (1 - is_finished) + eos_id * is_finished |
|
|
|
|
|
|
|
|
class FireRedASROnnxModel: |
|
|
def __init__( |
|
|
self, |
|
|
encoder_path: str, |
|
|
decoder_path: str, |
|
|
cmvn_file: str, |
|
|
dict_file: str, |
|
|
spm_model_path: str, |
|
|
providers=["CUDAExecutionProvider"], |
|
|
decode_max_len=128, |
|
|
audio_dur=10, |
|
|
): |
|
|
session_opts = ort.SessionOptions() |
|
|
session_opts.inter_op_num_threads = 1 |
|
|
session_opts.intra_op_num_threads = 1 |
|
|
|
|
|
self.session_opts = session_opts |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.decode_max_len = decode_max_len |
|
|
|
|
|
self.decoder_hidden_dim = 1280 |
|
|
self.num_decoder_blocks = 16 |
|
|
self.blank_id = 0 |
|
|
self.sos_id = 3 |
|
|
self.eos_id = 4 |
|
|
self.pad_id = 2 |
|
|
|
|
|
self.feature_extractor = ASRFeatExtractor(cmvn_file) |
|
|
self.tokenizer = ChineseCharEnglishSpmTokenizer(dict_file, spm_model_path) |
|
|
self.encoder = None |
|
|
self.decoder = None |
|
|
self.audio_dur = audio_dur |
|
|
|
|
|
self.init_encoder(encoder_path, providers) |
|
|
self.init_decoder_main(decoder_path, providers) |
|
|
self.init_decoder_loop(decoder_path, providers) |
|
|
self.pe = self.init_pe(decoder_path) |
|
|
|
|
|
def init_encoder(self, encoder_path, providers=None): |
|
|
start_time = time.time() |
|
|
self.encoder = ort.InferenceSession( |
|
|
encoder_path, sess_options=self.session_opts, providers=providers |
|
|
) |
|
|
end_time = time.time() |
|
|
logger.info(f"load encoder cost {end_time - start_time} seconds") |
|
|
|
|
|
def init_decoder(self, decoder_path, providers=None): |
|
|
start_time = time.time() |
|
|
self.decoder = ort.InferenceSession( |
|
|
decoder_path, sess_options=self.session_opts, providers=providers |
|
|
) |
|
|
end_time = time.time() |
|
|
logger.info(f"load decoder cost {end_time - start_time} seconds") |
|
|
|
|
|
def init_decoder_main(self, decoder_path, providers=None): |
|
|
decoder_path = os.path.dirname(decoder_path) |
|
|
decoder_path = os.path.join(decoder_path, "decoder_main.onnx") |
|
|
start_time = time.time() |
|
|
self.decoder_main = ort.InferenceSession( |
|
|
decoder_path, sess_options=self.session_opts, providers=providers |
|
|
) |
|
|
end_time = time.time() |
|
|
logger.info(f"load decoder_main cost {end_time - start_time} seconds") |
|
|
|
|
|
input_names = [i.name for i in self.decoder_main.get_inputs()] |
|
|
print(f"decoder_main.input_names: {input_names}") |
|
|
|
|
|
def init_decoder_loop(self, decoder_path, providers=None): |
|
|
decoder_path = os.path.dirname(decoder_path) |
|
|
decoder_path = os.path.join(decoder_path, "decoder_loop.onnx") |
|
|
|
|
|
start_time = time.time() |
|
|
self.decoder_loop = ort.InferenceSession( |
|
|
decoder_path, sess_options=self.session_opts, providers=providers |
|
|
) |
|
|
end_time = time.time() |
|
|
logger.info(f"load decoder_loop cost {end_time - start_time} seconds") |
|
|
|
|
|
input_names = [i.name for i in self.decoder_loop.get_inputs()] |
|
|
print(f"decoder_loop.input_names: {input_names}") |
|
|
|
|
|
def init_pe(self, decoder_path): |
|
|
decoder_path = os.path.dirname(decoder_path) |
|
|
decoder_path = os.path.join(decoder_path, "pe.npy") |
|
|
|
|
|
return np.load(decoder_path) |
|
|
|
|
|
def run_encoder( |
|
|
self, input: np.ndarray, input_length: np.ndarray |
|
|
) -> Tuple[Tensor, Tensor, Tensor]: |
|
|
n_layer_cross_k, n_layer_cross_v, cross_attn_mask = self.encoder.run( |
|
|
None, |
|
|
{ |
|
|
self.encoder.get_inputs()[0].name: input, |
|
|
self.encoder.get_inputs()[1].name: input_length, |
|
|
}, |
|
|
) |
|
|
return (n_layer_cross_k, n_layer_cross_v, cross_attn_mask) |
|
|
|
|
|
def decode_one_token( |
|
|
self, |
|
|
tokens: np.ndarray, |
|
|
n_layer_self_k_cache: np.ndarray, |
|
|
n_layer_self_v_cache: np.ndarray, |
|
|
n_layer_cross_k_cache: np.ndarray, |
|
|
n_layer_cross_v_cache: np.ndarray, |
|
|
offset: np.ndarray, |
|
|
self_attn_mask: np.ndarray, |
|
|
cross_attn_mask: np.ndarray, |
|
|
) -> Tuple[Tensor, Tensor, Tensor]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logits, out_n_layer_self_k_cache, out_n_layer_self_v_cache = self.decoder.run( |
|
|
None, |
|
|
{ |
|
|
self.decoder.get_inputs()[0].name: tokens, |
|
|
self.decoder.get_inputs()[1].name: n_layer_self_k_cache, |
|
|
self.decoder.get_inputs()[2].name: n_layer_self_v_cache, |
|
|
self.decoder.get_inputs()[3].name: n_layer_cross_k_cache, |
|
|
self.decoder.get_inputs()[4].name: n_layer_cross_v_cache, |
|
|
self.decoder.get_inputs()[5].name: offset, |
|
|
self.decoder.get_inputs()[6].name: self_attn_mask, |
|
|
self.decoder.get_inputs()[7].name: cross_attn_mask, |
|
|
}, |
|
|
) |
|
|
return (logits, out_n_layer_self_k_cache, out_n_layer_self_v_cache) |
|
|
|
|
|
def decode_main_one_token( |
|
|
self, |
|
|
tokens: np.ndarray, |
|
|
n_layer_self_k_cache: np.ndarray, |
|
|
n_layer_self_v_cache: np.ndarray, |
|
|
n_layer_cross_k_cache: np.ndarray, |
|
|
n_layer_cross_v_cache: np.ndarray, |
|
|
pe: np.ndarray, |
|
|
self_attn_mask: np.ndarray, |
|
|
cross_attn_mask: np.ndarray, |
|
|
) -> Tuple[Tensor, Tensor, Tensor]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
( |
|
|
logits, |
|
|
out_n_layer_self_k_cache, |
|
|
out_n_layer_self_v_cache, |
|
|
) = self.decoder_main.run( |
|
|
None, |
|
|
{ |
|
|
self.decoder_main.get_inputs()[0].name: tokens, |
|
|
|
|
|
self.decoder_main.get_inputs()[1].name: n_layer_cross_k_cache, |
|
|
self.decoder_main.get_inputs()[2].name: n_layer_cross_v_cache, |
|
|
|
|
|
|
|
|
self.decoder_main.get_inputs()[3].name: cross_attn_mask, |
|
|
|
|
|
}, |
|
|
) |
|
|
return (logits, out_n_layer_self_k_cache, out_n_layer_self_v_cache) |
|
|
|
|
|
def decode_loop_one_token( |
|
|
self, |
|
|
tokens: np.ndarray, |
|
|
n_layer_self_k_cache: np.ndarray, |
|
|
n_layer_self_v_cache: np.ndarray, |
|
|
n_layer_cross_k_cache: np.ndarray, |
|
|
n_layer_cross_v_cache: np.ndarray, |
|
|
pe: np.ndarray, |
|
|
self_attn_mask: np.ndarray, |
|
|
cross_attn_mask: np.ndarray, |
|
|
) -> Tuple[Tensor, Tensor, Tensor]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
( |
|
|
logits, |
|
|
out_n_layer_self_k_cache, |
|
|
out_n_layer_self_v_cache, |
|
|
) = self.decoder_loop.run( |
|
|
None, |
|
|
{ |
|
|
self.decoder_loop.get_inputs()[0].name: tokens, |
|
|
self.decoder_loop.get_inputs()[1].name: n_layer_self_k_cache, |
|
|
self.decoder_loop.get_inputs()[2].name: n_layer_self_v_cache, |
|
|
self.decoder_loop.get_inputs()[3].name: n_layer_cross_k_cache, |
|
|
self.decoder_loop.get_inputs()[4].name: n_layer_cross_v_cache, |
|
|
self.decoder_loop.get_inputs()[5].name: pe, |
|
|
self.decoder_loop.get_inputs()[6].name: self_attn_mask, |
|
|
self.decoder_loop.get_inputs()[7].name: cross_attn_mask, |
|
|
}, |
|
|
) |
|
|
return (logits, out_n_layer_self_k_cache, out_n_layer_self_v_cache) |
|
|
|
|
|
def run_decoder( |
|
|
self, n_layer_cross_k, n_layer_cross_v, cross_attn_mask, beam_size, nbest |
|
|
): |
|
|
|
|
|
num_layer, batch_size, Ti, encoder_out_dim = n_layer_cross_k.shape |
|
|
encoder_out_length = cross_attn_mask.shape[-1] |
|
|
|
|
|
cross_attn_mask = torch.from_numpy(cross_attn_mask).to(torch.float32) |
|
|
cross_attn_mask = ( |
|
|
cross_attn_mask.unsqueeze(1) |
|
|
.repeat(1, beam_size, 1, 1) |
|
|
.view(beam_size * batch_size, -1, encoder_out_length) |
|
|
) |
|
|
|
|
|
n_layer_cross_k = torch.from_numpy(n_layer_cross_k) |
|
|
n_layer_cross_v = torch.from_numpy(n_layer_cross_v) |
|
|
n_layer_cross_k = ( |
|
|
n_layer_cross_k.unsqueeze(2) |
|
|
.repeat(1, 1, beam_size, 1, 1) |
|
|
.view(num_layer, beam_size * batch_size, Ti, encoder_out_dim) |
|
|
) |
|
|
n_layer_cross_v = ( |
|
|
n_layer_cross_v.unsqueeze(2) |
|
|
.repeat(1, 1, beam_size, 1, 1) |
|
|
.view(num_layer, beam_size * batch_size, Ti, encoder_out_dim) |
|
|
) |
|
|
|
|
|
prediction_tokens = ( |
|
|
torch.ones(beam_size * batch_size, 1).fill_(self.sos_id).long() |
|
|
) |
|
|
tokens = prediction_tokens |
|
|
offset = torch.zeros(1, dtype=torch.int64) |
|
|
n_layer_self_k_cache, n_layer_self_v_cache = self.get_initialized_self_cache( |
|
|
batch_size, beam_size |
|
|
) |
|
|
|
|
|
scores = torch.tensor([0.0] + [-INF] * (beam_size - 1)).float() |
|
|
scores = scores.repeat(batch_size).view(batch_size * beam_size, 1) |
|
|
is_finished = torch.zeros_like(scores) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
results = [self.sos_id] |
|
|
for i in range(self.decode_max_len): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokens = to_numpy(tokens) |
|
|
n_layer_self_k_cache = to_numpy(n_layer_self_k_cache) |
|
|
n_layer_self_v_cache = to_numpy(n_layer_self_v_cache) |
|
|
n_layer_cross_k = to_numpy(n_layer_cross_k) |
|
|
n_layer_cross_v = to_numpy(n_layer_cross_v) |
|
|
cross_attn_mask = to_numpy(cross_attn_mask) |
|
|
|
|
|
self_attn_mask = np.zeros( |
|
|
(batch_size * beam_size, 1, self.decode_max_len), dtype=np.float32 |
|
|
) |
|
|
self_attn_mask[:, :, : self.decode_max_len - offset[0] - 1] = -np.inf |
|
|
|
|
|
if i == 0: |
|
|
( |
|
|
logits, |
|
|
n_layer_self_k_cache, |
|
|
n_layer_self_v_cache, |
|
|
) = self.decode_main_one_token( |
|
|
to_numpy(tokens), |
|
|
to_numpy(n_layer_self_k_cache), |
|
|
to_numpy(n_layer_self_v_cache), |
|
|
to_numpy(n_layer_cross_k), |
|
|
to_numpy(n_layer_cross_v), |
|
|
self.pe[0], |
|
|
self_attn_mask, |
|
|
to_numpy(cross_attn_mask), |
|
|
) |
|
|
else: |
|
|
( |
|
|
logits, |
|
|
n_layer_self_k_cache, |
|
|
n_layer_self_v_cache, |
|
|
) = self.decode_loop_one_token( |
|
|
to_numpy(tokens), |
|
|
to_numpy(n_layer_self_k_cache), |
|
|
to_numpy(n_layer_self_v_cache), |
|
|
to_numpy(n_layer_cross_k), |
|
|
to_numpy(n_layer_cross_v), |
|
|
self.pe[offset], |
|
|
self_attn_mask, |
|
|
to_numpy(cross_attn_mask), |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
offset += 1 |
|
|
logits = torch.from_numpy(logits) |
|
|
|
|
|
logits = logits.squeeze(1) |
|
|
t_scores = F.log_softmax(logits, dim=-1) |
|
|
t_topB_scores, t_topB_ys = torch.topk(t_scores, k=beam_size, dim=1) |
|
|
t_topB_scores = set_finished_beam_score_to_zero(t_topB_scores, is_finished) |
|
|
t_topB_ys = set_finished_beam_y_to_eos(t_topB_ys, is_finished, self.eos_id) |
|
|
|
|
|
scores = scores + t_topB_scores |
|
|
|
|
|
scores = scores.view(batch_size, beam_size * beam_size) |
|
|
scores, topB_score_ids = torch.topk(scores, k=beam_size, dim=1) |
|
|
scores = scores.view(-1, 1) |
|
|
|
|
|
topB_row_number_in_each_B_rows_of_ys = torch.div( |
|
|
topB_score_ids, beam_size |
|
|
).view(batch_size * beam_size) |
|
|
stride = beam_size * torch.arange(batch_size).view(batch_size, 1).repeat( |
|
|
1, beam_size |
|
|
).view(batch_size * beam_size) |
|
|
topB_row_number_in_ys = ( |
|
|
topB_row_number_in_each_B_rows_of_ys.long() + stride.long() |
|
|
) |
|
|
|
|
|
prediction_tokens = prediction_tokens[topB_row_number_in_ys] |
|
|
t_ys = torch.gather( |
|
|
t_topB_ys.view(batch_size, beam_size * beam_size), |
|
|
dim=1, |
|
|
index=topB_score_ids, |
|
|
).view(beam_size * batch_size, 1) |
|
|
|
|
|
tokens = t_ys |
|
|
|
|
|
prediction_tokens = torch.cat((prediction_tokens, t_ys), dim=1) |
|
|
|
|
|
n_layer_self_k_cache = torch.from_numpy(n_layer_self_k_cache) |
|
|
n_layer_self_v_cache = torch.from_numpy(n_layer_self_v_cache) |
|
|
|
|
|
for i, self_k_cache in enumerate(n_layer_self_k_cache): |
|
|
n_layer_self_k_cache[i] = n_layer_self_k_cache[i][topB_row_number_in_ys] |
|
|
|
|
|
for i, self_v_cache in enumerate(n_layer_self_v_cache): |
|
|
n_layer_self_v_cache[i] = n_layer_self_v_cache[i][topB_row_number_in_ys] |
|
|
|
|
|
is_finished = t_ys.eq(self.eos_id) |
|
|
if is_finished.sum().item() == beam_size * batch_size: |
|
|
break |
|
|
|
|
|
scores = scores.view(batch_size, beam_size) |
|
|
prediction_valid_token_lengths = torch.sum( |
|
|
torch.ne(prediction_tokens.view(batch_size, beam_size, -1), self.eos_id), |
|
|
dim=-1, |
|
|
).int() |
|
|
|
|
|
nbest_scores, nbest_ids = torch.topk(scores, k=nbest, dim=1) |
|
|
index = ( |
|
|
nbest_ids + beam_size * torch.arange(batch_size).view(batch_size, 1).long() |
|
|
) |
|
|
nbest_prediction_tokens = prediction_tokens.view(batch_size * beam_size, -1)[ |
|
|
index.view(-1) |
|
|
] |
|
|
nbest_prediction_tokens = nbest_prediction_tokens.view( |
|
|
batch_size, nbest_ids.size(1), -1 |
|
|
) |
|
|
nbest_prediction_valid_token_lengths = prediction_valid_token_lengths.view( |
|
|
batch_size * beam_size |
|
|
)[index.view(-1)].view(batch_size, -1) |
|
|
nbest_hyps: List[List[Dict[str, torch.Tensor]]] = [] |
|
|
for i in range(batch_size): |
|
|
i_best_hyps: List[Dict[str, torch.Tensor]] = [] |
|
|
for j, score in enumerate(nbest_scores[i]): |
|
|
hyp = { |
|
|
"token_ids": nbest_prediction_tokens[ |
|
|
i, j, 1 : nbest_prediction_valid_token_lengths[i, j] |
|
|
], |
|
|
"score": score, |
|
|
} |
|
|
i_best_hyps.append(hyp) |
|
|
nbest_hyps.append(i_best_hyps) |
|
|
|
|
|
return nbest_hyps |
|
|
|
|
|
def get_initialized_self_cache( |
|
|
self, batch_size, beam_size |
|
|
) -> Tuple[Tensor, Tensor]: |
|
|
n_layer_self_k_cache = torch.zeros( |
|
|
self.num_decoder_blocks, |
|
|
batch_size * beam_size, |
|
|
self.decode_max_len, |
|
|
self.decoder_hidden_dim, |
|
|
) |
|
|
n_layer_self_v_cache = torch.zeros( |
|
|
self.num_decoder_blocks, |
|
|
batch_size * beam_size, |
|
|
self.decode_max_len, |
|
|
self.decoder_hidden_dim, |
|
|
) |
|
|
return n_layer_self_k_cache, n_layer_self_v_cache |
|
|
|
|
|
def calc_feat_len(self, audio_dur): |
|
|
import math |
|
|
|
|
|
sample_rate = 16000 |
|
|
frame_length = 25 * sample_rate / 1000 |
|
|
frame_shift = 10 * sample_rate / 1000 |
|
|
length = math.floor((audio_dur * sample_rate - frame_length) / frame_shift) + 1 |
|
|
return length |
|
|
|
|
|
def transcribe( |
|
|
self, batch_wav_path: List[str], beam_size: int = 1, nbest: int = 1 |
|
|
) -> List[Dict]: |
|
|
feats, lengths, wav_durations = self.feature_extractor(batch_wav_path) |
|
|
maxlen = self.calc_feat_len(self.audio_dur) |
|
|
if feats.shape[1] < maxlen: |
|
|
feats = np.concatenate( |
|
|
[feats, np.zeros((1, maxlen - feats.shape[1], 80), dtype=np.float32)], |
|
|
axis=1, |
|
|
) |
|
|
feats = feats[:, :maxlen, :] |
|
|
lengths = torch.minimum(lengths, torch.tensor(maxlen)) |
|
|
|
|
|
feats = to_numpy(feats) |
|
|
lengths = to_numpy(lengths) |
|
|
|
|
|
start_time = time.time() |
|
|
n_layer_cross_k, n_layer_cross_v, cross_attn_mask = self.run_encoder( |
|
|
to_numpy(feats), to_numpy(lengths) |
|
|
) |
|
|
nbest_hyps = self.run_decoder( |
|
|
n_layer_cross_k, n_layer_cross_v, cross_attn_mask, beam_size, nbest |
|
|
) |
|
|
transcribe_durations = time.time() - start_time |
|
|
results: List[Dict] = [] |
|
|
for wav, hyp in zip(batch_wav_path, nbest_hyps): |
|
|
hyp = hyp[0] |
|
|
hyp_ids = [int(id) for id in hyp["token_ids"].cpu()] |
|
|
score = hyp["score"].item() |
|
|
text = self.tokenizer.detokenize(hyp_ids) |
|
|
results.append({"wav": wav, "text": text, "score": score}) |
|
|
|
|
|
return results, wav_durations, transcribe_durations |
|
|
|