File size: 24,281 Bytes
ac2243f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 |
"""
# Cosmos 2 Predict
Download checkpoint
```bash
hf download nvidia/Cosmos-Predict2-2B-Text2Image
```
convert checkpoint
```bash
transformer_ckpt_path=~/.cache/huggingface/hub/models--nvidia--Cosmos-Predict2-2B-Text2Image/snapshots/acdb5fde992a73ef0355f287977d002cbfd127e0/model.pt
python scripts/convert_cosmos_to_diffusers.py \
--transformer_ckpt_path $transformer_ckpt_path \
--transformer_type Cosmos-2.0-Diffusion-2B-Text2Image \
--text_encoder_path google-t5/t5-11b \
--tokenizer_path google-t5/t5-11b \
--vae_type wan2.1 \
--output_path converted/cosmos-p2-t2i-2b \
--save_pipeline
```
# Cosmos 2.5 Predict
Download checkpoint
```bash
hf download nvidia/Cosmos-Predict2.5-2B
```
Convert checkpoint
```bash
# pre-trained
transformer_ckpt_path=~/.cache/huggingface/hub/models--nvidia--Cosmos-Predict2.5-2B/snapshots/865baf084d4c9e850eac59a021277d5a9b9e8b63/base/pre-trained/d20b7120-df3e-4911-919d-db6e08bad31c_ema_bf16.pt
python scripts/convert_cosmos_to_diffusers.py \
--transformer_type Cosmos-2.5-Predict-Base-2B \
--transformer_ckpt_path $transformer_ckpt_path \
--vae_type wan2.1 \
--output_path converted/2b/d20b7120-df3e-4911-919d-db6e08bad31c \
--save_pipeline
# post-trained
transformer_ckpt_path=~/.cache/huggingface/hub/models--nvidia--Cosmos-Predict2.5-2B/snapshots/865baf084d4c9e850eac59a021277d5a9b9e8b63/base/post-trained/81edfebe-bd6a-4039-8c1d-737df1a790bf_ema_bf16.pt
python scripts/convert_cosmos_to_diffusers.py \
--transformer_type Cosmos-2.5-Predict-Base-2B \
--transformer_ckpt_path $transformer_ckpt_path \
--vae_type wan2.1 \
--output_path converted/2b/81edfebe-bd6a-4039-8c1d-737df1a790bf \
--save_pipeline
```
## 14B
```bash
hf download nvidia/Cosmos-Predict2.5-14B
```
```bash
# pre-trained
transformer_ckpt_path=~/.cache/huggingface/hub/models--nvidia--Cosmos-Predict2.5-14B/snapshots/71ebf3e8af30ecfe440bf0481115975fcc052b46/base/pre-trained/54937b8c-29de-4f04-862c-e67b04ec41e8_ema_bf16.pt
python scripts/convert_cosmos_to_diffusers.py \
--transformer_type Cosmos-2.5-Predict-Base-14B \
--transformer_ckpt_path $transformer_ckpt_path \
--vae_type wan2.1 \
--output_path converted/14b/54937b8c-29de-4f04-862c-e67b04ec41e8/ \
--save_pipeline
# post-trained
transformer_ckpt_path=~/.cache/huggingface/hub/models--nvidia--Cosmos-Predict2.5-14B/snapshots/71ebf3e8af30ecfe440bf0481115975fcc052b46/base/post-trained/e21d2a49-4747-44c8-ba44-9f6f9243715f_ema_bf16.pt
python scripts/convert_cosmos_to_diffusers.py \
--transformer_type Cosmos-2.5-Predict-Base-14B \
--transformer_ckpt_path $transformer_ckpt_path \
--vae_type wan2.1 \
--output_path converted/14b/e21d2a49-4747-44c8-ba44-9f6f9243715f/ \
--save_pipeline
```
"""
import argparse
import pathlib
import sys
from typing import Any, Dict
import torch
from accelerate import init_empty_weights
from huggingface_hub import snapshot_download
from transformers import AutoTokenizer, Qwen2_5_VLForConditionalGeneration, T5EncoderModel, T5TokenizerFast
from diffusers import (
AutoencoderKLCosmos,
AutoencoderKLWan,
Cosmos2TextToImagePipeline,
Cosmos2VideoToWorldPipeline,
CosmosTextToWorldPipeline,
CosmosTransformer3DModel,
CosmosVideoToWorldPipeline,
EDMEulerScheduler,
FlowMatchEulerDiscreteScheduler,
UniPCMultistepScheduler,
)
from diffusers.pipelines.cosmos.pipeline_cosmos2_5_predict import Cosmos2_5_PredictBasePipeline
def remove_keys_(key: str, state_dict: Dict[str, Any]):
state_dict.pop(key)
def update_state_dict_(state_dict: Dict[str, Any], old_key: str, new_key: str) -> Dict[str, Any]:
state_dict[new_key] = state_dict.pop(old_key)
def rename_transformer_blocks_(key: str, state_dict: Dict[str, Any]):
block_index = int(key.split(".")[1].removeprefix("block"))
new_key = key
old_prefix = f"blocks.block{block_index}"
new_prefix = f"transformer_blocks.{block_index}"
new_key = new_prefix + new_key.removeprefix(old_prefix)
state_dict[new_key] = state_dict.pop(key)
TRANSFORMER_KEYS_RENAME_DICT_COSMOS_1_0 = {
"t_embedder.1": "time_embed.t_embedder",
"affline_norm": "time_embed.norm",
".blocks.0.block.attn": ".attn1",
".blocks.1.block.attn": ".attn2",
".blocks.2.block": ".ff",
".blocks.0.adaLN_modulation.1": ".norm1.linear_1",
".blocks.0.adaLN_modulation.2": ".norm1.linear_2",
".blocks.1.adaLN_modulation.1": ".norm2.linear_1",
".blocks.1.adaLN_modulation.2": ".norm2.linear_2",
".blocks.2.adaLN_modulation.1": ".norm3.linear_1",
".blocks.2.adaLN_modulation.2": ".norm3.linear_2",
"to_q.0": "to_q",
"to_q.1": "norm_q",
"to_k.0": "to_k",
"to_k.1": "norm_k",
"to_v.0": "to_v",
"layer1": "net.0.proj",
"layer2": "net.2",
"proj.1": "proj",
"x_embedder": "patch_embed",
"extra_pos_embedder": "learnable_pos_embed",
"final_layer.adaLN_modulation.1": "norm_out.linear_1",
"final_layer.adaLN_modulation.2": "norm_out.linear_2",
"final_layer.linear": "proj_out",
}
TRANSFORMER_SPECIAL_KEYS_REMAP_COSMOS_1_0 = {
"blocks.block": rename_transformer_blocks_,
"logvar.0.freqs": remove_keys_,
"logvar.0.phases": remove_keys_,
"logvar.1.weight": remove_keys_,
"pos_embedder.seq": remove_keys_,
}
TRANSFORMER_KEYS_RENAME_DICT_COSMOS_2_0 = {
"t_embedder.1": "time_embed.t_embedder",
"t_embedding_norm": "time_embed.norm",
"blocks": "transformer_blocks",
"adaln_modulation_self_attn.1": "norm1.linear_1",
"adaln_modulation_self_attn.2": "norm1.linear_2",
"adaln_modulation_cross_attn.1": "norm2.linear_1",
"adaln_modulation_cross_attn.2": "norm2.linear_2",
"adaln_modulation_mlp.1": "norm3.linear_1",
"adaln_modulation_mlp.2": "norm3.linear_2",
"self_attn": "attn1",
"cross_attn": "attn2",
"q_proj": "to_q",
"k_proj": "to_k",
"v_proj": "to_v",
"output_proj": "to_out.0",
"q_norm": "norm_q",
"k_norm": "norm_k",
"mlp.layer1": "ff.net.0.proj",
"mlp.layer2": "ff.net.2",
"x_embedder.proj.1": "patch_embed.proj",
"final_layer.adaln_modulation.1": "norm_out.linear_1",
"final_layer.adaln_modulation.2": "norm_out.linear_2",
"final_layer.linear": "proj_out",
}
TRANSFORMER_SPECIAL_KEYS_REMAP_COSMOS_2_0 = {
"accum_video_sample_counter": remove_keys_,
"accum_image_sample_counter": remove_keys_,
"accum_iteration": remove_keys_,
"accum_train_in_hours": remove_keys_,
"pos_embedder.seq": remove_keys_,
"pos_embedder.dim_spatial_range": remove_keys_,
"pos_embedder.dim_temporal_range": remove_keys_,
"_extra_state": remove_keys_,
}
TRANSFORMER_CONFIGS = {
"Cosmos-1.0-Diffusion-7B-Text2World": {
"in_channels": 16,
"out_channels": 16,
"num_attention_heads": 32,
"attention_head_dim": 128,
"num_layers": 28,
"mlp_ratio": 4.0,
"text_embed_dim": 1024,
"adaln_lora_dim": 256,
"max_size": (128, 240, 240),
"patch_size": (1, 2, 2),
"rope_scale": (2.0, 1.0, 1.0),
"concat_padding_mask": True,
"extra_pos_embed_type": "learnable",
},
"Cosmos-1.0-Diffusion-7B-Video2World": {
"in_channels": 16 + 1,
"out_channels": 16,
"num_attention_heads": 32,
"attention_head_dim": 128,
"num_layers": 28,
"mlp_ratio": 4.0,
"text_embed_dim": 1024,
"adaln_lora_dim": 256,
"max_size": (128, 240, 240),
"patch_size": (1, 2, 2),
"rope_scale": (2.0, 1.0, 1.0),
"concat_padding_mask": True,
"extra_pos_embed_type": "learnable",
},
"Cosmos-1.0-Diffusion-14B-Text2World": {
"in_channels": 16,
"out_channels": 16,
"num_attention_heads": 40,
"attention_head_dim": 128,
"num_layers": 36,
"mlp_ratio": 4.0,
"text_embed_dim": 1024,
"adaln_lora_dim": 256,
"max_size": (128, 240, 240),
"patch_size": (1, 2, 2),
"rope_scale": (2.0, 2.0, 2.0),
"concat_padding_mask": True,
"extra_pos_embed_type": "learnable",
},
"Cosmos-1.0-Diffusion-14B-Video2World": {
"in_channels": 16 + 1,
"out_channels": 16,
"num_attention_heads": 40,
"attention_head_dim": 128,
"num_layers": 36,
"mlp_ratio": 4.0,
"text_embed_dim": 1024,
"adaln_lora_dim": 256,
"max_size": (128, 240, 240),
"patch_size": (1, 2, 2),
"rope_scale": (2.0, 2.0, 2.0),
"concat_padding_mask": True,
"extra_pos_embed_type": "learnable",
},
"Cosmos-2.0-Diffusion-2B-Text2Image": {
"in_channels": 16,
"out_channels": 16,
"num_attention_heads": 16,
"attention_head_dim": 128,
"num_layers": 28,
"mlp_ratio": 4.0,
"text_embed_dim": 1024,
"adaln_lora_dim": 256,
"max_size": (128, 240, 240),
"patch_size": (1, 2, 2),
"rope_scale": (1.0, 4.0, 4.0),
"concat_padding_mask": True,
"extra_pos_embed_type": None,
},
"Cosmos-2.0-Diffusion-14B-Text2Image": {
"in_channels": 16,
"out_channels": 16,
"num_attention_heads": 40,
"attention_head_dim": 128,
"num_layers": 36,
"mlp_ratio": 4.0,
"text_embed_dim": 1024,
"adaln_lora_dim": 256,
"max_size": (128, 240, 240),
"patch_size": (1, 2, 2),
"rope_scale": (1.0, 4.0, 4.0),
"concat_padding_mask": True,
"extra_pos_embed_type": None,
},
"Cosmos-2.0-Diffusion-2B-Video2World": {
"in_channels": 16 + 1,
"out_channels": 16,
"num_attention_heads": 16,
"attention_head_dim": 128,
"num_layers": 28,
"mlp_ratio": 4.0,
"text_embed_dim": 1024,
"adaln_lora_dim": 256,
"max_size": (128, 240, 240),
"patch_size": (1, 2, 2),
"rope_scale": (1.0, 3.0, 3.0),
"concat_padding_mask": True,
"extra_pos_embed_type": None,
},
"Cosmos-2.0-Diffusion-14B-Video2World": {
"in_channels": 16 + 1,
"out_channels": 16,
"num_attention_heads": 40,
"attention_head_dim": 128,
"num_layers": 36,
"mlp_ratio": 4.0,
"text_embed_dim": 1024,
"adaln_lora_dim": 256,
"max_size": (128, 240, 240),
"patch_size": (1, 2, 2),
"rope_scale": (20 / 24, 2.0, 2.0),
"concat_padding_mask": True,
"extra_pos_embed_type": None,
},
"Cosmos-2.5-Predict-Base-2B": {
"in_channels": 16 + 1,
"out_channels": 16,
"num_attention_heads": 16,
"attention_head_dim": 128,
"num_layers": 28,
"mlp_ratio": 4.0,
"text_embed_dim": 1024,
"adaln_lora_dim": 256,
"max_size": (128, 240, 240),
"patch_size": (1, 2, 2),
"rope_scale": (1.0, 3.0, 3.0),
"concat_padding_mask": True,
# NOTE: source config has pos_emb_learnable: 'True' - but params are missing
"extra_pos_embed_type": None,
"use_crossattn_projection": True,
"crossattn_proj_in_channels": 100352,
"encoder_hidden_states_channels": 1024,
},
"Cosmos-2.5-Predict-Base-14B": {
"in_channels": 16 + 1,
"out_channels": 16,
"num_attention_heads": 40,
"attention_head_dim": 128,
"num_layers": 36,
"mlp_ratio": 4.0,
"text_embed_dim": 1024,
"adaln_lora_dim": 256,
"max_size": (128, 240, 240),
"patch_size": (1, 2, 2),
"rope_scale": (1.0, 3.0, 3.0),
"concat_padding_mask": True,
# NOTE: source config has pos_emb_learnable: 'True' - but params are missing
"extra_pos_embed_type": None,
"use_crossattn_projection": True,
"crossattn_proj_in_channels": 100352,
"encoder_hidden_states_channels": 1024,
},
}
VAE_KEYS_RENAME_DICT = {
"down.0": "down_blocks.0",
"down.1": "down_blocks.1",
"down.2": "down_blocks.2",
"up.0": "up_blocks.2",
"up.1": "up_blocks.1",
"up.2": "up_blocks.0",
".block.": ".resnets.",
"downsample": "downsamplers.0",
"upsample": "upsamplers.0",
"mid.block_1": "mid_block.resnets.0",
"mid.attn_1.0": "mid_block.attentions.0",
"mid.attn_1.1": "mid_block.temp_attentions.0",
"mid.block_2": "mid_block.resnets.1",
".q.conv3d": ".to_q",
".k.conv3d": ".to_k",
".v.conv3d": ".to_v",
".proj_out.conv3d": ".to_out.0",
".0.conv3d": ".conv_s",
".1.conv3d": ".conv_t",
"conv1.conv3d": "conv1",
"conv2.conv3d": "conv2",
"conv3.conv3d": "conv3",
"nin_shortcut.conv3d": "conv_shortcut",
"quant_conv.conv3d": "quant_conv",
"post_quant_conv.conv3d": "post_quant_conv",
}
VAE_SPECIAL_KEYS_REMAP = {
"wavelets": remove_keys_,
"_arange": remove_keys_,
"patch_size_buffer": remove_keys_,
}
VAE_CONFIGS = {
"CV8x8x8-0.1": {
"name": "nvidia/Cosmos-0.1-Tokenizer-CV8x8x8",
"diffusers_config": {
"in_channels": 3,
"out_channels": 3,
"latent_channels": 16,
"encoder_block_out_channels": (128, 256, 512, 512),
"decode_block_out_channels": (256, 512, 512, 512),
"attention_resolutions": (32,),
"resolution": 1024,
"num_layers": 2,
"patch_size": 4,
"patch_type": "haar",
"scaling_factor": 1.0,
"spatial_compression_ratio": 8,
"temporal_compression_ratio": 8,
"latents_mean": None,
"latents_std": None,
},
},
"CV8x8x8-1.0": {
"name": "nvidia/Cosmos-1.0-Tokenizer-CV8x8x8",
"diffusers_config": {
"in_channels": 3,
"out_channels": 3,
"latent_channels": 16,
"encoder_block_out_channels": (128, 256, 512, 512),
"decode_block_out_channels": (256, 512, 512, 512),
"attention_resolutions": (32,),
"resolution": 1024,
"num_layers": 2,
"patch_size": 4,
"patch_type": "haar",
"scaling_factor": 1.0,
"spatial_compression_ratio": 8,
"temporal_compression_ratio": 8,
"latents_mean": None,
"latents_std": None,
},
},
}
def get_state_dict(saved_dict: Dict[str, Any]) -> Dict[str, Any]:
state_dict = saved_dict
if "model" in saved_dict.keys():
state_dict = state_dict["model"]
if "module" in saved_dict.keys():
state_dict = state_dict["module"]
if "state_dict" in saved_dict.keys():
state_dict = state_dict["state_dict"]
return state_dict
def convert_transformer(transformer_type: str, ckpt_path: str, weights_only: bool = True):
PREFIX_KEY = "net."
original_state_dict = get_state_dict(torch.load(ckpt_path, map_location="cpu", weights_only=weights_only))
if "Cosmos-1.0" in transformer_type:
TRANSFORMER_KEYS_RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT_COSMOS_1_0
TRANSFORMER_SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP_COSMOS_1_0
elif "Cosmos-2.0" in transformer_type:
TRANSFORMER_KEYS_RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT_COSMOS_2_0
TRANSFORMER_SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP_COSMOS_2_0
elif "Cosmos-2.5" in transformer_type:
TRANSFORMER_KEYS_RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT_COSMOS_2_0
TRANSFORMER_SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP_COSMOS_2_0
else:
assert False
with init_empty_weights():
config = TRANSFORMER_CONFIGS[transformer_type]
transformer = CosmosTransformer3DModel(**config)
for key in list(original_state_dict.keys()):
new_key = key[:]
if new_key.startswith(PREFIX_KEY):
new_key = new_key.removeprefix(PREFIX_KEY)
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
new_key = new_key.replace(replace_key, rename_key)
print(key, "->", new_key, flush=True)
update_state_dict_(original_state_dict, key, new_key)
for key in list(original_state_dict.keys()):
for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items():
if special_key not in key:
continue
handler_fn_inplace(key, original_state_dict)
expected_keys = set(transformer.state_dict().keys())
mapped_keys = set(original_state_dict.keys())
missing_keys = expected_keys - mapped_keys
unexpected_keys = mapped_keys - expected_keys
if missing_keys:
print(f"ERROR: missing keys ({len(missing_keys)} from state_dict:", flush=True, file=sys.stderr)
for k in missing_keys:
print(k)
sys.exit(1)
if unexpected_keys:
print(f"ERROR: unexpected keys ({len(unexpected_keys)}) from state_dict:", flush=True, file=sys.stderr)
for k in unexpected_keys:
print(k)
sys.exit(2)
transformer.load_state_dict(original_state_dict, strict=True, assign=True)
return transformer
def convert_vae(vae_type: str):
model_name = VAE_CONFIGS[vae_type]["name"]
snapshot_directory = snapshot_download(model_name, repo_type="model")
directory = pathlib.Path(snapshot_directory)
autoencoder_file = directory / "autoencoder.jit"
mean_std_file = directory / "mean_std.pt"
original_state_dict = torch.jit.load(autoencoder_file.as_posix()).state_dict()
if mean_std_file.exists():
mean_std = torch.load(mean_std_file, map_location="cpu", weights_only=True)
else:
mean_std = (None, None)
config = VAE_CONFIGS[vae_type]["diffusers_config"]
config.update(
{
"latents_mean": mean_std[0].detach().cpu().numpy().tolist(),
"latents_std": mean_std[1].detach().cpu().numpy().tolist(),
}
)
vae = AutoencoderKLCosmos(**config)
for key in list(original_state_dict.keys()):
new_key = key[:]
for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items():
new_key = new_key.replace(replace_key, rename_key)
update_state_dict_(original_state_dict, key, new_key)
for key in list(original_state_dict.keys()):
for special_key, handler_fn_inplace in VAE_SPECIAL_KEYS_REMAP.items():
if special_key not in key:
continue
handler_fn_inplace(key, original_state_dict)
vae.load_state_dict(original_state_dict, strict=True, assign=True)
return vae
def save_pipeline_cosmos_1_0(args, transformer, vae):
text_encoder = T5EncoderModel.from_pretrained(args.text_encoder_path, torch_dtype=torch.bfloat16)
tokenizer = T5TokenizerFast.from_pretrained(args.tokenizer_path)
# The original code initializes EDM config with sigma_min=0.0002, but does not make use of it anywhere directly.
# So, the sigma_min values that is used is the default value of 0.002.
scheduler = EDMEulerScheduler(
sigma_min=0.002,
sigma_max=80,
sigma_data=0.5,
sigma_schedule="karras",
num_train_timesteps=1000,
prediction_type="epsilon",
rho=7.0,
final_sigmas_type="sigma_min",
)
pipe_cls = CosmosTextToWorldPipeline if "Text2World" in args.transformer_type else CosmosVideoToWorldPipeline
pipe = pipe_cls(
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
vae=vae,
scheduler=scheduler,
safety_checker=lambda *args, **kwargs: None,
)
pipe.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB")
def save_pipeline_cosmos_2_0(args, transformer, vae):
text_encoder = T5EncoderModel.from_pretrained(args.text_encoder_path, torch_dtype=torch.bfloat16)
tokenizer = T5TokenizerFast.from_pretrained(args.tokenizer_path)
scheduler = FlowMatchEulerDiscreteScheduler(use_karras_sigmas=True)
pipe_cls = Cosmos2TextToImagePipeline if "Text2Image" in args.transformer_type else Cosmos2VideoToWorldPipeline
pipe = pipe_cls(
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
vae=vae,
scheduler=scheduler,
safety_checker=lambda *args, **kwargs: None,
)
pipe.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB")
def save_pipeline_cosmos2_5(args, transformer, vae):
text_encoder_path = args.text_encoder_path or "nvidia/Cosmos-Reason1-7B"
tokenizer_path = args.tokenizer_path or "Qwen/Qwen2.5-VL-7B-Instruct"
text_encoder = Qwen2_5_VLForConditionalGeneration.from_pretrained(
text_encoder_path, torch_dtype="auto", device_map="cpu"
)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
scheduler = UniPCMultistepScheduler(
use_karras_sigmas=True,
use_flow_sigmas=True,
prediction_type="flow_prediction",
sigma_max=200.0,
sigma_min=0.01,
)
pipe = Cosmos2_5_PredictBasePipeline(
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
vae=vae,
scheduler=scheduler,
safety_checker=lambda *args, **kwargs: None,
)
pipe.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--transformer_type", type=str, default=None, choices=list(TRANSFORMER_CONFIGS.keys()))
parser.add_argument(
"--transformer_ckpt_path", type=str, default=None, help="Path to original transformer checkpoint"
)
parser.add_argument(
"--vae_type", type=str, default="wan2.1", choices=["wan2.1", *list(VAE_CONFIGS.keys())], help="Type of VAE"
)
parser.add_argument("--text_encoder_path", type=str, default=None)
parser.add_argument("--tokenizer_path", type=str, default=None)
parser.add_argument("--save_pipeline", action="store_true")
parser.add_argument("--output_path", type=str, required=True, help="Path where converted model should be saved")
parser.add_argument("--dtype", default="bf16", help="Torch dtype to save the transformer in.")
return parser.parse_args()
DTYPE_MAPPING = {
"fp32": torch.float32,
"fp16": torch.float16,
"bf16": torch.bfloat16,
}
if __name__ == "__main__":
args = get_args()
transformer = None
dtype = DTYPE_MAPPING[args.dtype]
if args.save_pipeline:
assert args.transformer_ckpt_path is not None
assert args.vae_type is not None
if args.transformer_ckpt_path is not None:
weights_only = "Cosmos-1.0" in args.transformer_type
transformer = convert_transformer(args.transformer_type, args.transformer_ckpt_path, weights_only)
transformer = transformer.to(dtype=dtype)
if not args.save_pipeline:
transformer.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB")
if args.vae_type is not None:
if "Cosmos-1.0" in args.transformer_type:
vae = convert_vae(args.vae_type)
elif "Cosmos-2.0" in args.transformer_type or "Cosmos-2.5" in args.transformer_type:
vae = AutoencoderKLWan.from_pretrained(
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers", subfolder="vae", torch_dtype=torch.float32
)
else:
raise AssertionError(f"{args.transformer_type} not supported")
if not args.save_pipeline:
vae.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB")
if args.save_pipeline:
if "Cosmos-1.0" in args.transformer_type:
assert args.text_encoder_path is not None
assert args.tokenizer_path is not None
save_pipeline_cosmos_1_0(args, transformer, vae)
elif "Cosmos-2.0" in args.transformer_type:
assert args.text_encoder_path is not None
assert args.tokenizer_path is not None
save_pipeline_cosmos_2_0(args, transformer, vae)
elif "Cosmos-2.5" in args.transformer_type:
save_pipeline_cosmos2_5(args, transformer, vae)
else:
raise AssertionError(f"{args.transformer_type} not supported")
|