Aluode commited on
Commit
0ace417
·
verified ·
1 Parent(s): dccd91c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -3
README.md CHANGED
@@ -1,3 +1,34 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ metadata:
3
+ license: mit
4
+ ---
5
+
6
+ # Multi-Window EEG Models
7
+
8
+ This repository hosts pre-trained PyTorch models (.pth files) for temporal analysis of EEG signals in object category decoding. The models are trained on the [Alljoined/05_125](https://huggingface.co/datasets/Alljoined/05_125) dataset, using COCO 2017 images as stimuli. Each model processes a specific time window post-stimulus onset to capture different stages of visual processing:
9
+
10
+ - **EarlyVisual (50-150ms)**: Early visual features (e.g., edges, basic shapes). AUROC: ~0.59
11
+ - **MidFeature (150-250ms)**: Mid-level object parts (e.g., N170-like responses). AUROC: ~0.97
12
+ - **LateSemantic (250-350ms)**: Late semantic integration (e.g., N400/P300). AUROC: ~0.67
13
+ - **EarlyCombined (50-250ms)**: Combined early + mid processing. AUROC: ~0.97
14
+ - **FullWindow (50-350ms)**: Full baseline window. AUROC: ~0.97
15
+
16
+ These models use a hybrid CNN-Transformer architecture for multi-label classification over 38 COCO categories (animals, vehicles, food, outdoor objects). They detect weak category-specific signals in noisy EEG data.
17
+
18
+ ## Usage
19
+
20
+ Load a model with PyTorch:
21
+
22
+ ```python
23
+ import torch
24
+
25
+ # Example: Load MidFeature model
26
+ checkpoint = torch.load("model_150_250ms_MidFeature.pth", map_location="cpu")
27
+ model = HybridCNNTransformer(n_timepoints=52) # Exact points from window
28
+ model.load_state_dict(checkpoint["model_state_dict"])
29
+ model.eval()
30
+
31
+ # Inference on EEG window (shape: [1, 64, n_timepoints])
32
+ logits = model(eeg_tensor)
33
+ probs = torch.sigmoid(logits)
34
+ top_categories = torch.topk(probs, k=20).indices