--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: BERT-Router-v1 results: [] --- # BERT-Router-v1 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1199 - Accuracy: 0.955 - Auc: 0.992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 512 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Auc | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----:| | 0.134 | 2.1778 | 50 | 0.1322 | 0.949 | 0.991 | | 0.1212 | 4.3556 | 100 | 0.1267 | 0.951 | 0.991 | | 0.1199 | 6.5333 | 150 | 0.1223 | 0.953 | 0.992 | | 0.1193 | 8.7111 | 200 | 0.1199 | 0.955 | 0.992 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu121 - Datasets 3.3.0 - Tokenizers 0.21.0