[package] name = "arms-hat" version = "0.1.0" edition = "2021" authors = ["Automate Capture LLC "] description = "Hierarchical Attention Tree: 100% recall at 70x faster build times than HNSW. A new database paradigm for AI memory and hierarchical semantic search." license = "MIT" repository = "https://github.com/automate-capture/hat" homepage = "https://research.automate-capture.com/hat" documentation = "https://docs.rs/arms-hat" readme = "README.md" keywords = ["vector-database", "semantic-search", "llm", "embeddings", "hnsw"] categories = ["database", "science", "algorithms"] exclude = [ "target/", "src/target/", ".venv/", ".git/", ".claude/", "paper/", "images/", "python/", "benchmarks/", ".env", ] [lib] name = "arms_hat" path = "src/lib.rs" crate-type = ["cdylib", "rlib"] # cdylib for Python, rlib for Rust [dependencies] # Core - minimal dependencies for pure logic thiserror = "1.0" # Error handling # Python bindings pyo3 = { version = "0.22", features = ["extension-module"], optional = true } # Future adapters: # parking_lot = "0.12" # Fast locks for concurrent access # memmap2 = "0.9" # Memory-mapped files for NVMe [dev-dependencies] criterion = "0.5" # Benchmarking rusqlite = { version = "0.31", features = ["bundled"] } # Benchmark DB (bundled = no system sqlite needed) serde = { version = "1.0", features = ["derive"] } serde_json = "1.0" hnsw = "0.11" # HNSW implementation for comparison benchmarks rand = "0.8" # Random data generation for benchmarks rand_distr = "0.4" # Statistical distributions for realistic embeddings space = "0.17" # Distance metrics for hnsw [features] default = [] python = ["pyo3"] # Enable Python bindings # [[bench]] # name = "proximity" # harness = false [profile.release] lto = true codegen-units = 1 panic = "abort"