BryceAMcDaniel commited on
Commit
0422286
·
1 Parent(s): ae2ebab

Remove folder

Browse files
deid_bert_i2b2/README.md DELETED
@@ -1,87 +0,0 @@
1
- ---
2
- language:
3
- - en
4
- thumbnail: "https://www.onebraveidea.org/wp-content/uploads/2019/07/OBI-Logo-Website.png"
5
- tags:
6
- - deidentification
7
- - medical notes
8
- - ehr
9
- - phi
10
- datasets:
11
- - I2B2
12
- metrics:
13
- - F1
14
- - Recall
15
- - AUC
16
- widget:
17
- - text: "Physician Discharge Summary Admit date: 10/12/1982 Discharge date: 10/22/1982 Patient Information Jack Reacher, 54 y.o. male (DOB = 1/21/1928)."
18
- - text: "Home Address: 123 Park Drive, San Diego, CA, 03245. Home Phone: 202-555-0199 (home)."
19
- - text: "Hospital Care Team Service: Orthopedics Inpatient Attending: Roger C Kelly, MD Attending phys phone: (634)743-5135 Discharge Unit: HCS843 Primary Care Physician: Hassan V Kim, MD 512-832-5025."
20
- license: mit
21
- ---
22
-
23
-
24
- # Model Description
25
-
26
- * A ClinicalBERT [[Alsentzer et al., 2019]](https://arxiv.org/pdf/1904.03323.pdf) model fine-tuned for de-identification of medical notes.
27
- * Sequence Labeling (token classification): The model was trained to predict protected health information (PHI/PII) entities (spans). A list of protected health information categories is given by [HIPAA](https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html).
28
- * A token can either be classified as non-PHI or as one of the 11 PHI types. Token predictions are aggregated to spans by making use of BILOU tagging.
29
- * The PHI labels that were used for training and other details can be found here: [Annotation Guidelines](https://github.com/obi-ml-public/ehr_deidentification/blob/master/AnnotationGuidelines.md)
30
- * More details on how to use this model, the format of data and other useful information is present in the GitHub repo: [Robust DeID](https://github.com/obi-ml-public/ehr_deidentification).
31
-
32
-
33
- # How to use
34
-
35
- * A demo on how the model works (using model predictions to de-identify a medical note) is on this space: [Medical-Note-Deidentification](https://huggingface.co/spaces/obi/Medical-Note-Deidentification).
36
- * Steps on how this model can be used to run a forward pass can be found here: [Forward Pass](https://github.com/obi-ml-public/ehr_deidentification/tree/master/steps/forward_pass)
37
- * In brief, the steps are:
38
- * Sentencize (the model aggregates the sentences back to the note level) and tokenize the dataset.
39
- * Use the predict function of this model to gather the predictions (i.e., predictions for each token).
40
- * Additionally, the model predictions can be used to remove PHI from the original note/text.
41
-
42
-
43
- # Dataset
44
-
45
- * The I2B2 2014 [[Stubbs and Uzuner, 2015]](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978170/) dataset was used to train this model.
46
-
47
- | | I2B2 | | I2B2 | |
48
- | --------- | --------------------- | ---------- | -------------------- | ---------- |
49
- | | TRAIN SET - 790 NOTES | | TEST SET - 514 NOTES | |
50
- | PHI LABEL | COUNT | PERCENTAGE | COUNT | PERCENTAGE |
51
- | DATE | 7502 | 43.69 | 4980 | 44.14 |
52
- | STAFF | 3149 | 18.34 | 2004 | 17.76 |
53
- | HOSP | 1437 | 8.37 | 875 | 7.76 |
54
- | AGE | 1233 | 7.18 | 764 | 6.77 |
55
- | LOC | 1206 | 7.02 | 856 | 7.59 |
56
- | PATIENT | 1316 | 7.66 | 879 | 7.79 |
57
- | PHONE | 317 | 1.85 | 217 | 1.92 |
58
- | ID | 881 | 5.13 | 625 | 5.54 |
59
- | PATORG | 124 | 0.72 | 82 | 0.73 |
60
- | EMAIL | 4 | 0.02 | 1 | 0.01 |
61
- | OTHERPHI | 2 | 0.01 | 0 | 0 |
62
- | TOTAL | 17171 | 100 | 11283 | 100 |
63
-
64
-
65
- # Training procedure
66
-
67
- * Steps on how this model was trained can be found here: [Training](https://github.com/obi-ml-public/ehr_deidentification/tree/master/steps/train). The "model_name_or_path" was set to: "emilyalsentzer/Bio_ClinicalBERT".
68
- * The dataset was sentencized with the en_core_sci_sm sentencizer from spacy.
69
- * The dataset was then tokenized with a custom tokenizer built on top of the en_core_sci_sm tokenizer from spacy.
70
- * For each sentence we added 32 tokens on the left (from previous sentences) and 32 tokens on the right (from the next sentences).
71
- * The added tokens are not used for learning - i.e, the loss is not computed on these tokens - they are used as additional context.
72
- * Each sequence contained a maximum of 128 tokens (including the 32 tokens added on). Longer sequences were split.
73
- * The sentencized and tokenized dataset with the token level labels based on the BILOU notation was used to train the model.
74
- * The model is fine-tuned from a pre-trained RoBERTa model.
75
-
76
- * Training details:
77
- * Input sequence length: 128
78
- * Batch size: 32
79
- * Optimizer: AdamW
80
- * Learning rate: 4e-5
81
- * Dropout: 0.1
82
-
83
- # Results
84
-
85
- # Questions?
86
-
87
- Post a Github issue on the repo: [Robust DeID](https://github.com/obi-ml-public/ehr_deidentification).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deid_bert_i2b2/config.json DELETED
@@ -1,118 +0,0 @@
1
- {
2
- "architectures": [
3
- "BertForTokenClassification"
4
- ],
5
- "attention_probs_dropout_prob": 0.1,
6
- "finetuning_task": "ner",
7
- "gradient_checkpointing": false,
8
- "hidden_act": "gelu",
9
- "hidden_dropout_prob": 0.1,
10
- "hidden_size": 768,
11
- "id2label": {
12
- "0": "B-AGE",
13
- "1": "B-DATE",
14
- "2": "B-EMAIL",
15
- "3": "B-HOSP",
16
- "4": "B-ID",
17
- "5": "B-LOC",
18
- "6": "B-OTHERPHI",
19
- "7": "B-PATIENT",
20
- "8": "B-PATORG",
21
- "9": "B-PHONE",
22
- "10": "B-STAFF",
23
- "11": "I-AGE",
24
- "12": "I-DATE",
25
- "13": "I-EMAIL",
26
- "14": "I-HOSP",
27
- "15": "I-ID",
28
- "16": "I-LOC",
29
- "17": "I-OTHERPHI",
30
- "18": "I-PATIENT",
31
- "19": "I-PATORG",
32
- "20": "I-PHONE",
33
- "21": "I-STAFF",
34
- "22": "L-AGE",
35
- "23": "L-DATE",
36
- "24": "L-EMAIL",
37
- "25": "L-HOSP",
38
- "26": "L-ID",
39
- "27": "L-LOC",
40
- "28": "L-OTHERPHI",
41
- "29": "L-PATIENT",
42
- "30": "L-PATORG",
43
- "31": "L-PHONE",
44
- "32": "L-STAFF",
45
- "33": "O",
46
- "34": "U-AGE",
47
- "35": "U-DATE",
48
- "36": "U-EMAIL",
49
- "37": "U-HOSP",
50
- "38": "U-ID",
51
- "39": "U-LOC",
52
- "40": "U-OTHERPHI",
53
- "41": "U-PATIENT",
54
- "42": "U-PATORG",
55
- "43": "U-PHONE",
56
- "44": "U-STAFF"
57
- },
58
- "initializer_range": 0.02,
59
- "intermediate_size": 3072,
60
- "label2id": {
61
- "B-AGE": 0,
62
- "B-DATE": 1,
63
- "B-EMAIL": 2,
64
- "B-HOSP": 3,
65
- "B-ID": 4,
66
- "B-LOC": 5,
67
- "B-OTHERPHI": 6,
68
- "B-PATIENT": 7,
69
- "B-PATORG": 8,
70
- "B-PHONE": 9,
71
- "B-STAFF": 10,
72
- "I-AGE": 11,
73
- "I-DATE": 12,
74
- "I-EMAIL": 13,
75
- "I-HOSP": 14,
76
- "I-ID": 15,
77
- "I-LOC": 16,
78
- "I-OTHERPHI": 17,
79
- "I-PATIENT": 18,
80
- "I-PATORG": 19,
81
- "I-PHONE": 20,
82
- "I-STAFF": 21,
83
- "L-AGE": 22,
84
- "L-DATE": 23,
85
- "L-EMAIL": 24,
86
- "L-HOSP": 25,
87
- "L-ID": 26,
88
- "L-LOC": 27,
89
- "L-OTHERPHI": 28,
90
- "L-PATIENT": 29,
91
- "L-PATORG": 30,
92
- "L-PHONE": 31,
93
- "L-STAFF": 32,
94
- "O": 33,
95
- "U-AGE": 34,
96
- "U-DATE": 35,
97
- "U-EMAIL": 36,
98
- "U-HOSP": 37,
99
- "U-ID": 38,
100
- "U-LOC": 39,
101
- "U-OTHERPHI": 40,
102
- "U-PATIENT": 41,
103
- "U-PATORG": 42,
104
- "U-PHONE": 43,
105
- "U-STAFF": 44
106
- },
107
- "layer_norm_eps": 1e-12,
108
- "max_position_embeddings": 512,
109
- "model_type": "bert",
110
- "num_attention_heads": 12,
111
- "num_hidden_layers": 12,
112
- "pad_token_id": 0,
113
- "position_embedding_type": "absolute",
114
- "transformers_version": "4.6.1",
115
- "type_vocab_size": 2,
116
- "use_cache": true,
117
- "vocab_size": 28996
118
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deid_bert_i2b2/onnx/model.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:43b7a2d5f26e5f7adbc6d438398302c38c4686e710bbd93473a1e5c61eafcafa
3
- size 431325444
 
 
 
 
deid_bert_i2b2/onnx/model_bnb4.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1fcdae29c075ca986684a5d544cf46ba01ceed5d2773d0213f842a48059cd5dc
3
- size 101
 
 
 
 
deid_bert_i2b2/onnx/model_int8.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:90bbde06e370439cd0b9cf6759bd334131ab42aff249b97f0d869a7636df57a1
3
- size 108643070
 
 
 
 
deid_bert_i2b2/onnx/model_q4.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:db94e29d75410d7b5330b67a8a2e9129bf7176ba66f235d6a89974fd0391012f
3
- size 99
 
 
 
 
deid_bert_i2b2/onnx/model_q4f16.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b58a01284892fc12bfba83178a850b2064bec74ef2fbe03faac8de8a4ad5efa0
3
- size 102
 
 
 
 
deid_bert_i2b2/onnx/model_quantized.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:90bbde06e370439cd0b9cf6759bd334131ab42aff249b97f0d869a7636df57a1
3
- size 108643070
 
 
 
 
deid_bert_i2b2/onnx/model_uint8.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5d082c15d1e71120baa00e28023fe09e9e37484b4e8acf0770599cadd1af0c71
3
- size 108643102
 
 
 
 
deid_bert_i2b2/pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:842d9f0d394c71528bb73f87748c580a9a3ea82973a18e0871fd579e3eb21c6b
3
- size 431100529
 
 
 
 
deid_bert_i2b2/special_tokens_map.json DELETED
@@ -1 +0,0 @@
1
- {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
 
 
deid_bert_i2b2/tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
deid_bert_i2b2/tokenizer_config.json DELETED
@@ -1 +0,0 @@
1
- {"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": null, "do_basic_tokenize": true, "never_split": null}
 
 
deid_bert_i2b2/vocab.txt DELETED
The diff for this file is too large to render. See raw diff