--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 - bnb_4bit_quant_storage: uint8 - load_in_4bit: True - load_in_8bit: False ### Framework versions - PEFT 0.5.0 ## Loading and using the model from peft import PeftModel from transformers import AutoModelForCausalLM base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf") model = PeftModel.from_pretrained(base_model, "CarDSLab/HeartDX-LM") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code = True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = 'right' instruction = "Convert the report given below to structured format for the columns \'GLS%\',\'IVSd\',\'LVDiastolicFunction\',\'AVStructure\',\'AVStenosis\',\'AVRegurg\',\'AIPHT\',\'LVOTPkVel\',\'LVOTPkGrad\',\'MVStructure\',\'MVStenosis\',\'MVRegurgitation\',\'EF\',\'LVWallThickness\', \'AVPkVel(m/s)\', \'AVMnGrad(mmHg)\', \'AVAContVTI\', \'AVAIndex\'. Give the result in json format with key-value pairs. If any value for a key is not found in the data, use \'nan\' to fill it up. Donot fill up data that is not present in the given report." prompt = instruction + tte_report instruction = f"###Instruction:\n{prompt}\n\n###Response:\n" pipe = pipeline('text-generation', model = model, tokenizer = tokenizer, max_length = 2048) result = pipe(instruction) result = result[0]['generated_text'].split('###Response:')[1].split('}')[0] + '}' structured_data = json.loads(result) print(structured_data)