Update README.md
Browse files
README.md
CHANGED
|
@@ -9,63 +9,7 @@ tags:
|
|
| 9 |
- retrieval
|
| 10 |
- colbert
|
| 11 |
- late-interaction
|
| 12 |
-
pipeline_tag:
|
| 13 |
---
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
This model is a merged version of multiple ColGemma3 models using the **linear** merging technique.
|
| 18 |
-
|
| 19 |
-
## Source Models
|
| 20 |
-
|
| 21 |
-
1. [Nayana-cognitivelab/NayanaEmbed-ColGemma3-Modal-1848-colbert](https://huggingface.co/Nayana-cognitivelab/NayanaEmbed-ColGemma3-Modal-1848-colbert)
|
| 22 |
-
2. [Nayana-cognitivelab/NayanaEmbed-ColGemma3-MultiGPU-merged-1610-22-colbert](https://huggingface.co/Nayana-cognitivelab/NayanaEmbed-ColGemma3-MultiGPU-merged-1610-22-colbert)
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
## Merge Method: LINEAR
|
| 26 |
-
|
| 27 |
-
Linear interpolation: Weighted average of model parameters.
|
| 28 |
-
|
| 29 |
-
## Model Architecture
|
| 30 |
-
|
| 31 |
-
ColGemma3 is a vision-language model for late interaction retrieval:
|
| 32 |
-
- **Base**: Gemma3 vision-language model
|
| 33 |
-
- **Vision Encoder**: Processes images into patch embeddings
|
| 34 |
-
- **Custom Projection**: Projects embeddings to 128 dimensions
|
| 35 |
-
- **Retrieval**: Uses MaxSim scoring for multi-vector retrieval
|
| 36 |
-
|
| 37 |
-
## Usage
|
| 38 |
-
|
| 39 |
-
```python
|
| 40 |
-
from colpali_engine.models.gemma3.colgemma3 import ColGemma3, ColGemmaProcessor3
|
| 41 |
-
from PIL import Image
|
| 42 |
-
import torch
|
| 43 |
-
|
| 44 |
-
# Load model and processor
|
| 45 |
-
model = ColGemma3.from_pretrained("Nayana-cognitivelab/NayanaEmbed-ColGemma3-Merge-Colbert-base-nayana-linear-v1", torch_dtype=torch.bfloat16, device_map="auto")
|
| 46 |
-
processor = ColGemmaProcessor3.from_pretrained("Nayana-cognitivelab/NayanaEmbed-ColGemma3-Merge-Colbert-base-nayana-linear-v1")
|
| 47 |
-
|
| 48 |
-
# Process images
|
| 49 |
-
images = [Image.open("document.png")]
|
| 50 |
-
batch_images = processor.process_images(images).to(model.device)
|
| 51 |
-
|
| 52 |
-
# Process queries
|
| 53 |
-
queries = ["What is this document about?"]
|
| 54 |
-
batch_queries = processor.process_queries(queries).to(model.device)
|
| 55 |
-
|
| 56 |
-
# Generate embeddings
|
| 57 |
-
with torch.no_grad():
|
| 58 |
-
img_embeddings = model(**batch_images)
|
| 59 |
-
query_embeddings = model(**batch_queries)
|
| 60 |
-
|
| 61 |
-
# Compute similarity scores
|
| 62 |
-
scores = processor.score([query_embeddings[0]], [img_embeddings[0]])
|
| 63 |
-
```
|
| 64 |
-
|
| 65 |
-
## Citation
|
| 66 |
-
|
| 67 |
-
If you use this model, please cite the original ColGemma3 work and the source models.
|
| 68 |
-
|
| 69 |
-
---
|
| 70 |
-
|
| 71 |
-
*This model was automatically merged using [Modal](https://modal.com) infrastructure.*
|
|
|
|
| 9 |
- retrieval
|
| 10 |
- colbert
|
| 11 |
- late-interaction
|
| 12 |
+
pipeline_tag: visual-document-retrieval
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# ColNetraEmbed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|