Update README.md
Browse files
README.md
CHANGED
|
@@ -1,6 +1,27 @@
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
license: gemma
|
| 5 |
library_name: transformers
|
| 6 |
tags:
|
|
@@ -8,9 +29,79 @@ tags:
|
|
| 8 |
- retrieval
|
| 9 |
- colbert
|
| 10 |
- late-interaction
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
pipeline_tag: visual-document-retrieval
|
| 12 |
base_model:
|
| 13 |
- google/gemma-3-4b-it
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
---
|
| 15 |
# ColNetraEmbed
|
| 16 |
|
|
@@ -31,7 +122,7 @@ base_model:
|
|
| 31 |
ColNetraEmbed is a multilingual multimodal embedding model that encodes documents as multi-vector representations using the ColPali architecture. Each image patch is mapped to a contextualized embedding, enabling fine-grained matching between visual content and text queries through late interaction (MaxSim).
|
| 32 |
|
| 33 |
- **Model Type:** Multilingual Multimodal Embedding Model with ColPali-style Multi-vector representations
|
| 34 |
-
- **Architecture:** ColPali with Gemma3-
|
| 35 |
- **Embedding Dimension:** 128 per token
|
| 36 |
- **Capabilities:** Multilingual, Multimodal (Vision + Text), Multi-vector late interaction
|
| 37 |
- **Use Case:** Visual document retrieval, multilingual document understanding, fine-grained visual search
|
|
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
- en
|
| 4 |
+
- es
|
| 5 |
+
- fr
|
| 6 |
+
- de
|
| 7 |
+
- it
|
| 8 |
+
- hi
|
| 9 |
+
- mr
|
| 10 |
+
- sa
|
| 11 |
+
- kn
|
| 12 |
+
- te
|
| 13 |
+
- ta
|
| 14 |
+
- ml
|
| 15 |
+
- zh
|
| 16 |
+
- ja
|
| 17 |
+
- ko
|
| 18 |
+
- ar
|
| 19 |
+
- bn
|
| 20 |
+
- gu
|
| 21 |
+
- or
|
| 22 |
+
- pa
|
| 23 |
+
- ru
|
| 24 |
+
- th
|
| 25 |
license: gemma
|
| 26 |
library_name: transformers
|
| 27 |
tags:
|
|
|
|
| 29 |
- retrieval
|
| 30 |
- colbert
|
| 31 |
- late-interaction
|
| 32 |
+
- multimodal
|
| 33 |
+
- multilingual
|
| 34 |
+
- document-retrieval
|
| 35 |
+
- 22-languages
|
| 36 |
pipeline_tag: visual-document-retrieval
|
| 37 |
base_model:
|
| 38 |
- google/gemma-3-4b-it
|
| 39 |
+
|
| 40 |
+
datasets:
|
| 41 |
+
- Cognitive-Lab/nayanair-bench
|
| 42 |
+
model-index:
|
| 43 |
+
- name: ColNetraEmbed
|
| 44 |
+
results:
|
| 45 |
+
- task:
|
| 46 |
+
type: image-text-retrieval
|
| 47 |
+
name: Cross-Lingual Document Retrieval
|
| 48 |
+
dataset:
|
| 49 |
+
type: Cognitive-Lab/nayanair-bench
|
| 50 |
+
name: Nayana-IR Cross-Lingual
|
| 51 |
+
split: test
|
| 52 |
+
metrics:
|
| 53 |
+
- type: ndcg_at_5
|
| 54 |
+
value: 0.637
|
| 55 |
+
name: NDCG@5
|
| 56 |
+
- type: recall_at_10
|
| 57 |
+
value: 0.700
|
| 58 |
+
name: Recall@10
|
| 59 |
+
- type: map_at_10
|
| 60 |
+
value: 0.610
|
| 61 |
+
name: MAP@10
|
| 62 |
+
- type: mrr_at_10
|
| 63 |
+
value: 0.610
|
| 64 |
+
name: MRR@10
|
| 65 |
+
- task:
|
| 66 |
+
type: image-text-retrieval
|
| 67 |
+
name: Monolingual Document Retrieval
|
| 68 |
+
dataset:
|
| 69 |
+
type: Cognitive-Lab/nayanair-bench
|
| 70 |
+
name: Nayana-IR Monolingual
|
| 71 |
+
split: test
|
| 72 |
+
metrics:
|
| 73 |
+
- type: ndcg_at_5
|
| 74 |
+
value: 0.670
|
| 75 |
+
name: NDCG@5
|
| 76 |
+
- type: recall_at_10
|
| 77 |
+
value: 0.764
|
| 78 |
+
name: Recall@10
|
| 79 |
+
- type: map_at_10
|
| 80 |
+
value: 0.645
|
| 81 |
+
name: MAP@10
|
| 82 |
+
- type: mrr_at_10
|
| 83 |
+
value: 0.686
|
| 84 |
+
name: MRR@10
|
| 85 |
+
- task:
|
| 86 |
+
type: image-text-retrieval
|
| 87 |
+
name: English Document Retrieval
|
| 88 |
+
dataset:
|
| 89 |
+
type: vidore/vidore-benchmark
|
| 90 |
+
name: ViDoRe v2
|
| 91 |
+
split: test
|
| 92 |
+
metrics:
|
| 93 |
+
- type: ndcg_at_5
|
| 94 |
+
value: 0.551
|
| 95 |
+
name: NDCG@5
|
| 96 |
+
- type: recall_at_10
|
| 97 |
+
value: 0.664
|
| 98 |
+
name: Recall@10
|
| 99 |
+
- type: map_at_10
|
| 100 |
+
value: 0.445
|
| 101 |
+
name: MAP@10
|
| 102 |
+
- type: mrr_at_10
|
| 103 |
+
value: 0.445
|
| 104 |
+
name: MRR@10
|
| 105 |
---
|
| 106 |
# ColNetraEmbed
|
| 107 |
|
|
|
|
| 122 |
ColNetraEmbed is a multilingual multimodal embedding model that encodes documents as multi-vector representations using the ColPali architecture. Each image patch is mapped to a contextualized embedding, enabling fine-grained matching between visual content and text queries through late interaction (MaxSim).
|
| 123 |
|
| 124 |
- **Model Type:** Multilingual Multimodal Embedding Model with ColPali-style Multi-vector representations
|
| 125 |
+
- **Architecture:** ColPali with Gemma3-4B backbone
|
| 126 |
- **Embedding Dimension:** 128 per token
|
| 127 |
- **Capabilities:** Multilingual, Multimodal (Vision + Text), Multi-vector late interaction
|
| 128 |
- **Use Case:** Visual document retrieval, multilingual document understanding, fine-grained visual search
|