update handler
Browse files- handler.py +24 -116
handler.py
CHANGED
|
@@ -1,54 +1,15 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import json
|
| 3 |
import torch
|
| 4 |
-
import numpy as np
|
| 5 |
-
from transformers import BertTokenizer
|
| 6 |
from ts.torch_handler.base_handler import BaseHandler
|
| 7 |
-
from
|
| 8 |
-
|
| 9 |
-
import transformers
|
| 10 |
-
import torch
|
| 11 |
-
import torch.nn as nn
|
| 12 |
-
import torch.nn.functional as F
|
| 13 |
-
|
| 14 |
-
class AttentionPool(nn.Module):
|
| 15 |
-
def __init__(self, hidden_size):
|
| 16 |
-
super().__init__()
|
| 17 |
-
self.attention = nn.Linear(hidden_size, 1)
|
| 18 |
-
|
| 19 |
-
def forward(self, last_hidden_state):
|
| 20 |
-
attention_scores = self.attention(last_hidden_state).squeeze(-1)
|
| 21 |
-
attention_weights = F.softmax(attention_scores, dim=1)
|
| 22 |
-
pooled_output = torch.bmm(attention_weights.unsqueeze(1), last_hidden_state).squeeze(1)
|
| 23 |
-
return pooled_output
|
| 24 |
-
|
| 25 |
-
class MultiSampleDropout(nn.Module):
|
| 26 |
-
def __init__(self, dropout=0.5, num_samples=5):
|
| 27 |
-
super().__init__()
|
| 28 |
-
self.dropout = nn.Dropout(dropout)
|
| 29 |
-
self.num_samples = num_samples
|
| 30 |
-
|
| 31 |
-
def forward(self, x):
|
| 32 |
-
return torch.mean(torch.stack([self.dropout(x) for _ in range(self.num_samples)]), dim=0)
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
self.bert = transformers.BertModel.from_pretrained('bert-base-uncased')
|
| 39 |
-
self.attention_pool = AttentionPool(768)
|
| 40 |
-
self.dropout = MultiSampleDropout()
|
| 41 |
-
self.norm = nn.LayerNorm(768)
|
| 42 |
-
self.classifier = nn.Linear(768, num_classes)
|
| 43 |
-
|
| 44 |
-
def forward(self, input_ids, attention_mask, token_type_ids):
|
| 45 |
-
bert_output = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
| 46 |
-
pooled_output = self.attention_pool(bert_output.last_hidden_state)
|
| 47 |
-
pooled_output = self.dropout(pooled_output)
|
| 48 |
-
pooled_output = self.norm(pooled_output)
|
| 49 |
-
logits = self.classifier(pooled_output)
|
| 50 |
-
return logits
|
| 51 |
|
|
|
|
| 52 |
|
| 53 |
class UICardMappingHandler(BaseHandler):
|
| 54 |
def __init__(self):
|
|
@@ -59,96 +20,43 @@ class UICardMappingHandler(BaseHandler):
|
|
| 59 |
self.manifest = context.manifest
|
| 60 |
properties = context.system_properties
|
| 61 |
model_dir = properties.get("model_dir")
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
# Load config
|
| 66 |
-
with open(os.path.join(model_dir, 'config.json'), 'r') as f:
|
| 67 |
-
self.config = json.load(f)
|
| 68 |
-
|
| 69 |
-
# Initialize encoder and labels
|
| 70 |
-
self.labels = ['Videos', 'Unit Conversion', 'Translation', 'Shopping Product Comparison', 'Restaurants', 'Product', 'Information', 'Images', 'Gift', 'General Comparison', 'Flights', 'Answer', 'Aircraft Seat Map']
|
| 71 |
-
labels_np = np.array(self.labels).reshape(-1, 1)
|
| 72 |
-
self.encoder = OneHotEncoder(sparse_output=False)
|
| 73 |
-
self.encoder.fit(labels_np)
|
| 74 |
-
|
| 75 |
-
# Load model
|
| 76 |
self.model = ImprovedBERTClass()
|
| 77 |
self.model.load_state_dict(torch.load(os.path.join(model_dir, 'model.pth'), map_location=self.device))
|
| 78 |
self.model.to(self.device)
|
| 79 |
self.model.eval()
|
| 80 |
-
|
| 81 |
-
# Load tokenizer
|
| 82 |
-
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
| 83 |
-
|
| 84 |
self.initialized = True
|
| 85 |
|
| 86 |
def preprocess(self, data):
|
| 87 |
-
text = data[0].get("
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
inputs = self.tokenizer
|
| 91 |
-
|
| 92 |
-
add_special_tokens=True,
|
| 93 |
-
max_length=64,
|
| 94 |
-
padding='max_length',
|
| 95 |
-
return_tensors='pt',
|
| 96 |
-
truncation=True
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
return {
|
| 100 |
-
"ids": inputs['input_ids'].to(self.device, dtype=torch.long),
|
| 101 |
-
"mask": inputs['attention_mask'].to(self.device, dtype=torch.long),
|
| 102 |
-
"token_type_ids": inputs['token_type_ids'].to(self.device, dtype=torch.long),
|
| 103 |
-
"k": k
|
| 104 |
-
}
|
| 105 |
|
| 106 |
-
def inference(self,
|
| 107 |
with torch.no_grad():
|
| 108 |
-
outputs = self.model(
|
| 109 |
-
|
| 110 |
-
return probabilities.cpu().detach().numpy().flatten(), data["k"]
|
| 111 |
|
| 112 |
def postprocess(self, inference_output):
|
| 113 |
-
probabilities
|
|
|
|
| 114 |
|
| 115 |
-
#
|
| 116 |
-
top_k_indices =
|
| 117 |
top_k_probs = probabilities[top_k_indices]
|
| 118 |
|
| 119 |
-
|
| 120 |
-
top_k_one_hot = np.zeros((k, len(probabilities)))
|
| 121 |
-
for i, idx in enumerate(top_k_indices):
|
| 122 |
-
top_k_one_hot[i, idx] = 1
|
| 123 |
-
|
| 124 |
-
# Decode the top k predictions
|
| 125 |
-
top_k_cards = [self.decode_vector(one_hot.reshape(1, -1)) for one_hot in top_k_one_hot]
|
| 126 |
|
| 127 |
-
|
| 128 |
-
top_k_predictions = list(zip(top_k_cards, top_k_probs.tolist()))
|
| 129 |
|
| 130 |
-
# Determine the most likely card
|
| 131 |
-
predicted_labels = (probabilities > 0.5).astype(int)
|
| 132 |
-
if sum(predicted_labels) == 0:
|
| 133 |
-
most_likely_card = "Answer"
|
| 134 |
-
else:
|
| 135 |
-
most_likely_card = self.decode_vector(predicted_labels.reshape(1, -1))
|
| 136 |
-
|
| 137 |
-
# Prepare the response
|
| 138 |
result = {
|
| 139 |
"most_likely_card": most_likely_card,
|
| 140 |
"top_k_predictions": top_k_predictions
|
| 141 |
}
|
| 142 |
|
| 143 |
return [result]
|
| 144 |
-
|
| 145 |
-
def decode_vector(self, vector):
|
| 146 |
-
original_label = self.encoder.inverse_transform(vector)
|
| 147 |
-
return original_label[0][0] # Returns the label as a string
|
| 148 |
-
|
| 149 |
-
def handle(self, data, context):
|
| 150 |
-
self.context = context
|
| 151 |
-
data = self.preprocess(data)
|
| 152 |
-
data = self.inference(data)
|
| 153 |
-
data = self.postprocess(data)
|
| 154 |
-
return data
|
|
|
|
| 1 |
import os
|
| 2 |
+
import sys
|
| 3 |
import json
|
| 4 |
import torch
|
|
|
|
|
|
|
| 5 |
from ts.torch_handler.base_handler import BaseHandler
|
| 6 |
+
from transformers import BertTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Add the model directory to the Python path
|
| 9 |
+
model_dir = os.path.dirname(os.path.abspath(__file__))
|
| 10 |
+
sys.path.append(model_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
from model import ImprovedBERTClass # Ensure this import matches your model file name
|
| 13 |
|
| 14 |
class UICardMappingHandler(BaseHandler):
|
| 15 |
def __init__(self):
|
|
|
|
| 20 |
self.manifest = context.manifest
|
| 21 |
properties = context.system_properties
|
| 22 |
model_dir = properties.get("model_dir")
|
| 23 |
+
self.device = torch.device("cuda:" + str(properties.get("gpu_id")) if torch.cuda.is_available() else "cpu")
|
| 24 |
+
|
| 25 |
+
self.tokenizer = BertTokenizer.from_pretrained(model_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
self.model = ImprovedBERTClass()
|
| 27 |
self.model.load_state_dict(torch.load(os.path.join(model_dir, 'model.pth'), map_location=self.device))
|
| 28 |
self.model.to(self.device)
|
| 29 |
self.model.eval()
|
| 30 |
+
|
|
|
|
|
|
|
|
|
|
| 31 |
self.initialized = True
|
| 32 |
|
| 33 |
def preprocess(self, data):
|
| 34 |
+
text = data[0].get("data")
|
| 35 |
+
if text is None:
|
| 36 |
+
text = data[0].get("body")
|
| 37 |
+
inputs = self.tokenizer(text, return_tensors="pt", max_length=64, padding='max_length', truncation=True)
|
| 38 |
+
return inputs.to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
def inference(self, inputs):
|
| 41 |
with torch.no_grad():
|
| 42 |
+
outputs = self.model(**inputs)
|
| 43 |
+
return torch.sigmoid(outputs.logits)
|
|
|
|
| 44 |
|
| 45 |
def postprocess(self, inference_output):
|
| 46 |
+
probabilities = inference_output.cpu().numpy().flatten()
|
| 47 |
+
labels = ['Videos', 'Unit Conversion', 'Translation', 'Shopping Product Comparison', 'Restaurants', 'Product', 'Information', 'Images', 'Gift', 'General Comparison', 'Flights', 'Answer', 'Aircraft Seat Map']
|
| 48 |
|
| 49 |
+
top_k = 3 # You can adjust this value
|
| 50 |
+
top_k_indices = probabilities.argsort()[-top_k:][::-1]
|
| 51 |
top_k_probs = probabilities[top_k_indices]
|
| 52 |
|
| 53 |
+
top_k_predictions = [{"card": labels[i], "probability": float(p)} for i, p in zip(top_k_indices, top_k_probs)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
most_likely_card = "Answer" if sum(probabilities > 0.5) == 0 else labels[probabilities.argmax()]
|
|
|
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
result = {
|
| 58 |
"most_likely_card": most_likely_card,
|
| 59 |
"top_k_predictions": top_k_predictions
|
| 60 |
}
|
| 61 |
|
| 62 |
return [result]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|