Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +20 -20
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
|
@@ -16,7 +16,7 @@ model-index:
|
|
| 16 |
type: LunarLander-v2
|
| 17 |
metrics:
|
| 18 |
- type: mean_reward
|
| 19 |
-
value:
|
| 20 |
name: mean_reward
|
| 21 |
verified: false
|
| 22 |
---
|
|
|
|
| 16 |
type: LunarLander-v2
|
| 17 |
metrics:
|
| 18 |
- type: mean_reward
|
| 19 |
+
value: 253.32 +/- 14.58
|
| 20 |
name: mean_reward
|
| 21 |
verified: false
|
| 22 |
---
|
config.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e28b22170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e28b22200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e28b22290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e28b22320>", "_build": "<function ActorCriticPolicy._build at 0x7f7e28b223b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7e28b22440>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7e28b224d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e28b22560>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7e28b225f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e28b22680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e28b22710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e28b227a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7e28b1a980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2048, "_total_timesteps": 100, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689012592927205353, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM3eZzxgTbc/NmMJPrAnDT0zsm299uLCvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -19.48, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVvAIAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwF24omG/N7mMAWyUS0eMAXSUR0AlNkOqebuudX2UKGgGR8Byc11DBuXNaAdLWmgIR0Alc4Cp3os7dX2UKGgGR8BgVts7+1jRaAdLUGgIR0AlqeumrKeTdX2UKGgGR8BjQhVU+9rXaAdLYWgIR0Al8HXVbzK+dX2UKGgGR8BjFcpd8iOeaAdLSmgIR0AmIrPt2LYPdX2UKGgGR8By0BG3F1jiaAdLWWgIR0AmX69CeEqUdX2UKGgGR8BpVrWwu/UOaAdLWmgIR0AmnF6Rhc7hdX2UKGgGR8BlQxCD28IzaAdLWmgIR0Am2tPpIMBqdX2UKGgGR8Bg56S5iExqaAdLZGgIR0AnHm5Dqnm8dX2UKGgGR8BcwNEsrd30aAdLSWgIR0AnTuKoAGSqdX2UKGgGR8BTMoFRpDeCaAdLTWgIR0Ang7K7qY7adX2UKGgGR8BvFukgwGnoaAdLf2gIR0An2JAMUh3adX2UKGgGR8BkxLsfJV81aAdLbWgIR0AoJPIGQjlgdX2UKGgGR8BnT56By0a7aAdLS2gIR0AoWi0OVgQZdX2UKGgGR8B4Rtic5Ke1aAdLXWgIR0AomOwPiDNAdX2UKGgGR8BwnUNsnAqNaAdLX2gIR0Ao10tAcDKYdX2UKGgGR8BjW1JL/S6UaAdLgWgIR0ApLSNOuaF3dX2UKGgGR8BxrAHmig01aAdLc2gIR0ApevL5hz/7dX2UKGgGR8BlzWs7uDzzaAdLemgIR0ApzWzWwu/UdX2UKGgGR8Bhwf1g6U7kaAdLRGgIR0Ap/gpBomG/dX2UKGgGR8BZlpyp71IzaAdLTmgIR0AqNcpsoDxLdX2UKGgGR8BXlLoB7u2JaAdLXmgIR0AqdezlcQiBdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ea55cb6d900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ea55cb6d990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ea55cb6da20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ea55cb6dab0>", "_build": "<function ActorCriticPolicy._build at 0x7ea55cb6db40>", "forward": "<function ActorCriticPolicy.forward at 0x7ea55cb6dbd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ea55cb6dc60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ea55cb6dcf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ea55cb6dd80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ea55cb6de10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ea55cb6dea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ea55cb6df30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ea55cb74e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689256408646272345, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAABqPHj1ogXo/V0NMPbX4k74xMda7jsqpPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDJNESdvsJKMAWyUS/eMAXSUR0CnoAxtP558dX2UKGgGR0BrvBW1c+qzaAdNMAFoCEdAp6EgSamXPnV9lChoBkdAb5YqVhTfi2gHTTgBaAhHQKelEal1r7B1fZQoaAZHQHF8qAWi1zBoB01rAWgIR0CnppQAdXDFdX2UKGgGR0Bu75emelKsaAdNXwFoCEdAp6h0Z1mrbXV9lChoBkdAbFPQXQ+lj2gHTSYBaAhHQKep43DNyHV1fZQoaAZHQHBmlBIFvAJoB00+AWgIR0Cnq3D4pMHsdX2UKGgGR0BtT0gdOqNqaAdNOwFoCEdAp60WdNFjNXV9lChoBkdAbgQNNrTH82gHTSoBaAhHQKex8OOsDGN1fZQoaAZHQG62fDDTBqNoB009AWgIR0Cnsw3nhbW3dX2UKGgGR0BgLWE0zj3maAdN6ANoCEdAp7gQc/+sHXV9lChoBkdAcPq1vVEux2gHTYIBaAhHQKe5a9h7Vrh1fZQoaAZHQG9sjfNzKcNoB01XAWgIR0CnvWbpu/DcdX2UKGgGR0Bukfjhky1vaAdNIwFoCEdAp75xgZ0jknV9lChoBkdAYrsOYIBzWGgHTegDaAhHQKfCW7e2uxN1fZQoaAZHwDoxUBGQSzxoB0v6aAhHQKfDO1/lQuV1fZQoaAZHQGya5RTCLuRoB00uAWgIR0CnxGMqSX+mdX2UKGgGR0BwPBtIkJKKaAdNTAFoCEdAp8nGA3DNyHV9lChoBkdAcLRvysjmjmgHTTgBaAhHQKfLfTNMXad1fZQoaAZHQG4f0bkwN9ZoB00rAWgIR0CnzSQmNR3vdX2UKGgGR0Bvu75TIeYEaAdNNQFoCEdAp868B6rvLHV9lChoBkdAcXFtuk1uSGgHTWUBaAhHQKfP/NZeRgZ1fZQoaAZHQG5xhw++ueVoB01vAmgIR0Cn1UEjX4CZdX2UKGgGR0ByOftjTa0yaAdNSAFoCEdAp9Z60a6z3XV9lChoBkdAcOVsQNCqqGgHTV8BaAhHQKfXxbwBo251fZQoaAZHQG4N3eFcpspoB01ZAWgIR0Cn2Q+t0V8DdX2UKGgGR0BwxBeOXE61aAdNSQFoCEdAp9o/sC1Z1XV9lChoBkdAcG5Z9NN8E2gHTWEBaAhHQKfbkMuOCGx1fZQoaAZHQHBwbb5/LDBoB00xAWgIR0Cn34E9U0emdX2UKGgGR0Bu0FAPd2xIaAdNSAFoCEdAp+CqLIgeR3V9lChoBkdAbrYF2V3Ux2gHTUABaAhHQKfh4BBAv+R1fZQoaAZHQG8HgZTAFgVoB008AWgIR0Cn4zpyIYWMdX2UKGgGR0BvEyvA44p+aAdNLgFoCEdAp+Si3qiXY3V9lChoBkdAcSuD4gzP8mgHTXUBaAhHQKfmaUHIIWx1fZQoaAZHQG9e+HBUJfJoB01DAWgIR0Cn6DKfvnbJdX2UKGgGR0Bu9xJyyUs4aAdNJgFoCEdAp+20Gs3hoHV9lChoBkdAbqz6NVBD5WgHTSMBaAhHQKfuyx+rlvJ1fZQoaAZHQGxs2criEQJoB00xAWgIR0Cn7+v4ubqhdX2UKGgGR0BAuvt2LYPHaAdL+2gIR0Cn8Mk74i5edX2UKGgGR0BxH1R0lqrSaAdNVwFoCEdAp/IBQ79ycXV9lChoBkdAb+e2tMfzSWgHTSwBaAhHQKfzG/UONHZ1fZQoaAZHQDWH2tdRiw1oB0v8aAhHQKfz+Y4yXUp1fZQoaAZHQHHlCX+l0o1oB00ZAWgIR0Cn96FrVOKwdX2UKGgGR0BteaA+Y+jeaAdNLgFoCEdAp/i9ZvDP4XV9lChoBkdAcFBOCXhOxmgHTTQBaAhHQKf58xxDLKV1fZQoaAZHQG+8fIKc/dJoB02HAWgIR0Cn+32x6fJ4dX2UKGgGR0Bwyym65Gz9aAdNJwFoCEdAp/yQ8uBczXV9lChoBkdAYzMncclw+GgHTegDaAhHQKgERqGDcud1fZQoaAZHQG+Wo/RmbspoB01eAWgIR0CoBhfeUILPdX2UKGgGR0BwbYERraduaAdNGwFoCEdAqAe3OB19v3V9lChoBkdAcboJz1bqyGgHTWEBaAhHQKgJgCJXQt11fZQoaAZHQHCctNahYeVoB01VAWgIR0CoC0lqzqrzdX2UKGgGR0BuR0NQTEiuaAdNOAFoCEdAqA86mj0tiHV9lChoBkdAcQeY3eenRGgHTTEBaAhHQKgQZjNIK+l1fZQoaAZHQG/MxWDHwPRoB00lAWgIR0CoEYUwSJ0odX2UKGgGR0BhPuK4x1xLaAdN6ANoCEdAqBW4Ym9g4XV9lChoBkdAbvwv7m+0xGgHTTUBaAhHQKgW3Z00WM11fZQoaAZHQHDdJRTCLuRoB01eAWgIR0CoGs0rsjVydX2UKGgGR0Bw9w36yjYaaAdNTAFoCEdAqBweQdS2pnV9lChoBkdAcFBSpzcRDmgHTUQBaAhHQKgdbuR9w3p1fZQoaAZHQHAuXBk7OmloB02nAWgIR0CoHxHFxXGPdX2UKGgGR0BwWZ7+kxh2aAdNaAFoCEdAqCCVoYekpXV9lChoBkdAcMeVIqbz9WgHTWEBaAhHQKgmX7SApa11fZQoaAZHQG7bBmGucMFoB00qAWgIR0CoJ/u/L1VYdX2UKGgGR0A719vjwQUYaAdL2mgIR0CoKRw6p5u7dX2UKGgGR0BvVVm+TNdJaAdNKAFoCEdAqCp7BKtga3V9lChoBkdAbPz46fapP2gHTVMBaAhHQKgru2606YF1fZQoaAZHQHDtuxfOUt9oB01iAWgIR0CoLShkI5YHdX2UKGgGR0BwLBcKPXCkaAdNQQFoCEdAqC5O/pMYdnV9lChoBkdAcL29zfaYeGgHTREBaAhHQKgyHuE25x11fZQoaAZHQG+YcsDnvDxoB00wAWgIR0CoM0OWKMvRdX2UKGgGR0BjgsNvwVj7aAdN6ANoCEdAqDclRzijtXV9lChoBkdAcOBWKMvRJGgHTTcBaAhHQKg4RjiGWUt1fZQoaAZHQHKkQU+LWI5oB009AWgIR0CoOV86eXiSdX2UKGgGR0Bw0N3Qla8paAdNWAFoCEdAqD1Cn+AEuHV9lChoBkdAcBmyhSLqEGgHTT8BaAhHQKg+kHhS9/V1fZQoaAZHQHAalAiV0LdoB00lAWgIR0CoQAI4VARkdX2UKGgGR0Bw2ZhTfixWaAdNMgFoCEdAqEGHn+yZ8nV9lChoBkdAb7x4bCJoCmgHTTUBaAhHQKhDFtALRa51fZQoaAZHQHD9AV0tAcFoB00hAWgIR0CoRJpSBK+SdX2UKGgGR0BwuzT5O8CgaAdNTAFoCEdAqEoI9mpVCHV9lChoBkdAb/ZAxBVuJmgHTToBaAhHQKhLI6JZW7x1fZQoaAZHQG9PoRh+fAdoB00sAWgIR0CoTDlbVz6rdX2UKGgGR0Bw+Tl6qsEJaAdNQAFoCEdAqE1tuNxVAHV9lChoBkdAb0NCtzS1E2gHTT4BaAhHQKhOkWZZ0S11fZQoaAZHQGu0qPwNLDhoB01QAWgIR0CoT9lxXGOudX2UKGgGR0BxPubhFVkuaAdNIwFoCEdAqFDh24d6s3V9lChoBkdAcjuWvr4WUWgHTXoBaAhHQKhUzuIAOrh1fZQoaAZHQG76G5tm+TNoB008AWgIR0CoVfreyiVTdX2UKGgGR0Br9sxyn1nNaAdNOAFoCEdAqFcm01IiDHV9lChoBkdAcTDz7/GVA2gHTRUBaAhHQKhYHLnLaEl1fZQoaAZHQG5n1CXyAhBoB00ZAWgIR0CoWSgdOqNqdX2UKGgGR0A9CPldTo+waAdL6mgIR0CoWfPH93r2dX2UKGgGR0Bt7NNQCSzPaAdNMQFoCEdAqFsLzTWoWHV9lChoBkdAcDBiV0Lc9GgHTRsBaAhHQKhfa44Ia991fZQoaAZHQDyXJNj9XLhoB0vtaAhHQKhgevyLAHp1fZQoaAZHQHBlj9XLeRBoB008AWgIR0CoYjANwzcidX2UKGgGR0BuJxoM8YAKaAdNVwFoCEdAqGQY+jdpI3V9lChoBkdAZsg2y9mHxmgHTSsCaAhHQKhnvl1bJOp1fZQoaAZHQDhTfHggow5oB00KAWgIR0CoaKRk/bCadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4890, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ab4dcb07156f0dba2584476967edc131aad55b8673772f018acd622211af9710
|
| 3 |
+
size 146086
|
ppo-LunarLander-v2/data
CHANGED
|
@@ -4,34 +4,34 @@
|
|
| 4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
"__module__": "stable_baselines3.common.policies",
|
| 6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
| 8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
| 9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
| 10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
| 11 |
-
"_build": "<function ActorCriticPolicy._build at
|
| 12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
| 13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
| 14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
| 15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
| 16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
| 17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
| 18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
| 19 |
"__abstractmethods__": "frozenset()",
|
| 20 |
-
"_abc_impl": "<_abc._abc_data object at
|
| 21 |
},
|
| 22 |
"verbose": 1,
|
| 23 |
"policy_kwargs": {},
|
| 24 |
-
"num_timesteps":
|
| 25 |
-
"_total_timesteps":
|
| 26 |
"_num_timesteps_at_start": 0,
|
| 27 |
"seed": null,
|
| 28 |
"action_noise": null,
|
| 29 |
-
"start_time":
|
| 30 |
"learning_rate": 0.0003,
|
| 31 |
"tensorboard_log": null,
|
| 32 |
"_last_obs": {
|
| 33 |
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
-
":serialized:": "
|
| 35 |
},
|
| 36 |
"_last_episode_starts": {
|
| 37 |
":type:": "<class 'numpy.ndarray'>",
|
|
@@ -41,17 +41,17 @@
|
|
| 41 |
"_episode_num": 0,
|
| 42 |
"use_sde": false,
|
| 43 |
"sde_sample_freq": -1,
|
| 44 |
-
"_current_progress_remaining": -
|
| 45 |
"_stats_window_size": 100,
|
| 46 |
"ep_info_buffer": {
|
| 47 |
":type:": "<class 'collections.deque'>",
|
| 48 |
-
":serialized:": "
|
| 49 |
},
|
| 50 |
"ep_success_buffer": {
|
| 51 |
":type:": "<class 'collections.deque'>",
|
| 52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
},
|
| 54 |
-
"_n_updates":
|
| 55 |
"observation_space": {
|
| 56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
|
| 4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
"__module__": "stable_baselines3.common.policies",
|
| 6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ea55cb6d900>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ea55cb6d990>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ea55cb6da20>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ea55cb6dab0>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ea55cb6db40>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ea55cb6dbd0>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ea55cb6dc60>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ea55cb6dcf0>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ea55cb6dd80>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ea55cb6de10>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ea55cb6dea0>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ea55cb6df30>",
|
| 19 |
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ea55cb74e00>"
|
| 21 |
},
|
| 22 |
"verbose": 1,
|
| 23 |
"policy_kwargs": {},
|
| 24 |
+
"num_timesteps": 1001472,
|
| 25 |
+
"_total_timesteps": 1000000,
|
| 26 |
"_num_timesteps_at_start": 0,
|
| 27 |
"seed": null,
|
| 28 |
"action_noise": null,
|
| 29 |
+
"start_time": 1689256408646272345,
|
| 30 |
"learning_rate": 0.0003,
|
| 31 |
"tensorboard_log": null,
|
| 32 |
"_last_obs": {
|
| 33 |
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAABqPHj1ogXo/V0NMPbX4k74xMda7jsqpPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
| 35 |
},
|
| 36 |
"_last_episode_starts": {
|
| 37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
|
| 41 |
"_episode_num": 0,
|
| 42 |
"use_sde": false,
|
| 43 |
"sde_sample_freq": -1,
|
| 44 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
| 45 |
"_stats_window_size": 100,
|
| 46 |
"ep_info_buffer": {
|
| 47 |
":type:": "<class 'collections.deque'>",
|
| 48 |
+
":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDJNESdvsJKMAWyUS/eMAXSUR0CnoAxtP558dX2UKGgGR0BrvBW1c+qzaAdNMAFoCEdAp6EgSamXPnV9lChoBkdAb5YqVhTfi2gHTTgBaAhHQKelEal1r7B1fZQoaAZHQHF8qAWi1zBoB01rAWgIR0CnppQAdXDFdX2UKGgGR0Bu75emelKsaAdNXwFoCEdAp6h0Z1mrbXV9lChoBkdAbFPQXQ+lj2gHTSYBaAhHQKep43DNyHV1fZQoaAZHQHBmlBIFvAJoB00+AWgIR0Cnq3D4pMHsdX2UKGgGR0BtT0gdOqNqaAdNOwFoCEdAp60WdNFjNXV9lChoBkdAbgQNNrTH82gHTSoBaAhHQKex8OOsDGN1fZQoaAZHQG62fDDTBqNoB009AWgIR0Cnsw3nhbW3dX2UKGgGR0BgLWE0zj3maAdN6ANoCEdAp7gQc/+sHXV9lChoBkdAcPq1vVEux2gHTYIBaAhHQKe5a9h7Vrh1fZQoaAZHQG9sjfNzKcNoB01XAWgIR0CnvWbpu/DcdX2UKGgGR0Bukfjhky1vaAdNIwFoCEdAp75xgZ0jknV9lChoBkdAYrsOYIBzWGgHTegDaAhHQKfCW7e2uxN1fZQoaAZHwDoxUBGQSzxoB0v6aAhHQKfDO1/lQuV1fZQoaAZHQGya5RTCLuRoB00uAWgIR0CnxGMqSX+mdX2UKGgGR0BwPBtIkJKKaAdNTAFoCEdAp8nGA3DNyHV9lChoBkdAcLRvysjmjmgHTTgBaAhHQKfLfTNMXad1fZQoaAZHQG4f0bkwN9ZoB00rAWgIR0CnzSQmNR3vdX2UKGgGR0Bvu75TIeYEaAdNNQFoCEdAp868B6rvLHV9lChoBkdAcXFtuk1uSGgHTWUBaAhHQKfP/NZeRgZ1fZQoaAZHQG5xhw++ueVoB01vAmgIR0Cn1UEjX4CZdX2UKGgGR0ByOftjTa0yaAdNSAFoCEdAp9Z60a6z3XV9lChoBkdAcOVsQNCqqGgHTV8BaAhHQKfXxbwBo251fZQoaAZHQG4N3eFcpspoB01ZAWgIR0Cn2Q+t0V8DdX2UKGgGR0BwxBeOXE61aAdNSQFoCEdAp9o/sC1Z1XV9lChoBkdAcG5Z9NN8E2gHTWEBaAhHQKfbkMuOCGx1fZQoaAZHQHBwbb5/LDBoB00xAWgIR0Cn34E9U0emdX2UKGgGR0Bu0FAPd2xIaAdNSAFoCEdAp+CqLIgeR3V9lChoBkdAbrYF2V3Ux2gHTUABaAhHQKfh4BBAv+R1fZQoaAZHQG8HgZTAFgVoB008AWgIR0Cn4zpyIYWMdX2UKGgGR0BvEyvA44p+aAdNLgFoCEdAp+Si3qiXY3V9lChoBkdAcSuD4gzP8mgHTXUBaAhHQKfmaUHIIWx1fZQoaAZHQG9e+HBUJfJoB01DAWgIR0Cn6DKfvnbJdX2UKGgGR0Bu9xJyyUs4aAdNJgFoCEdAp+20Gs3hoHV9lChoBkdAbqz6NVBD5WgHTSMBaAhHQKfuyx+rlvJ1fZQoaAZHQGxs2criEQJoB00xAWgIR0Cn7+v4ubqhdX2UKGgGR0BAuvt2LYPHaAdL+2gIR0Cn8Mk74i5edX2UKGgGR0BxH1R0lqrSaAdNVwFoCEdAp/IBQ79ycXV9lChoBkdAb+e2tMfzSWgHTSwBaAhHQKfzG/UONHZ1fZQoaAZHQDWH2tdRiw1oB0v8aAhHQKfz+Y4yXUp1fZQoaAZHQHHlCX+l0o1oB00ZAWgIR0Cn96FrVOKwdX2UKGgGR0BteaA+Y+jeaAdNLgFoCEdAp/i9ZvDP4XV9lChoBkdAcFBOCXhOxmgHTTQBaAhHQKf58xxDLKV1fZQoaAZHQG+8fIKc/dJoB02HAWgIR0Cn+32x6fJ4dX2UKGgGR0Bwyym65Gz9aAdNJwFoCEdAp/yQ8uBczXV9lChoBkdAYzMncclw+GgHTegDaAhHQKgERqGDcud1fZQoaAZHQG+Wo/RmbspoB01eAWgIR0CoBhfeUILPdX2UKGgGR0BwbYERraduaAdNGwFoCEdAqAe3OB19v3V9lChoBkdAcboJz1bqyGgHTWEBaAhHQKgJgCJXQt11fZQoaAZHQHCctNahYeVoB01VAWgIR0CoC0lqzqrzdX2UKGgGR0BuR0NQTEiuaAdNOAFoCEdAqA86mj0tiHV9lChoBkdAcQeY3eenRGgHTTEBaAhHQKgQZjNIK+l1fZQoaAZHQG/MxWDHwPRoB00lAWgIR0CoEYUwSJ0odX2UKGgGR0BhPuK4x1xLaAdN6ANoCEdAqBW4Ym9g4XV9lChoBkdAbvwv7m+0xGgHTTUBaAhHQKgW3Z00WM11fZQoaAZHQHDdJRTCLuRoB01eAWgIR0CoGs0rsjVydX2UKGgGR0Bw9w36yjYaaAdNTAFoCEdAqBweQdS2pnV9lChoBkdAcFBSpzcRDmgHTUQBaAhHQKgdbuR9w3p1fZQoaAZHQHAuXBk7OmloB02nAWgIR0CoHxHFxXGPdX2UKGgGR0BwWZ7+kxh2aAdNaAFoCEdAqCCVoYekpXV9lChoBkdAcMeVIqbz9WgHTWEBaAhHQKgmX7SApa11fZQoaAZHQG7bBmGucMFoB00qAWgIR0CoJ/u/L1VYdX2UKGgGR0A719vjwQUYaAdL2mgIR0CoKRw6p5u7dX2UKGgGR0BvVVm+TNdJaAdNKAFoCEdAqCp7BKtga3V9lChoBkdAbPz46fapP2gHTVMBaAhHQKgru2606YF1fZQoaAZHQHDtuxfOUt9oB01iAWgIR0CoLShkI5YHdX2UKGgGR0BwLBcKPXCkaAdNQQFoCEdAqC5O/pMYdnV9lChoBkdAcL29zfaYeGgHTREBaAhHQKgyHuE25x11fZQoaAZHQG+YcsDnvDxoB00wAWgIR0CoM0OWKMvRdX2UKGgGR0BjgsNvwVj7aAdN6ANoCEdAqDclRzijtXV9lChoBkdAcOBWKMvRJGgHTTcBaAhHQKg4RjiGWUt1fZQoaAZHQHKkQU+LWI5oB009AWgIR0CoOV86eXiSdX2UKGgGR0Bw0N3Qla8paAdNWAFoCEdAqD1Cn+AEuHV9lChoBkdAcBmyhSLqEGgHTT8BaAhHQKg+kHhS9/V1fZQoaAZHQHAalAiV0LdoB00lAWgIR0CoQAI4VARkdX2UKGgGR0Bw2ZhTfixWaAdNMgFoCEdAqEGHn+yZ8nV9lChoBkdAb7x4bCJoCmgHTTUBaAhHQKhDFtALRa51fZQoaAZHQHD9AV0tAcFoB00hAWgIR0CoRJpSBK+SdX2UKGgGR0BwuzT5O8CgaAdNTAFoCEdAqEoI9mpVCHV9lChoBkdAb/ZAxBVuJmgHTToBaAhHQKhLI6JZW7x1fZQoaAZHQG9PoRh+fAdoB00sAWgIR0CoTDlbVz6rdX2UKGgGR0Bw+Tl6qsEJaAdNQAFoCEdAqE1tuNxVAHV9lChoBkdAb0NCtzS1E2gHTT4BaAhHQKhOkWZZ0S11fZQoaAZHQGu0qPwNLDhoB01QAWgIR0CoT9lxXGOudX2UKGgGR0BxPubhFVkuaAdNIwFoCEdAqFDh24d6s3V9lChoBkdAcjuWvr4WUWgHTXoBaAhHQKhUzuIAOrh1fZQoaAZHQG76G5tm+TNoB008AWgIR0CoVfreyiVTdX2UKGgGR0Br9sxyn1nNaAdNOAFoCEdAqFcm01IiDHV9lChoBkdAcTDz7/GVA2gHTRUBaAhHQKhYHLnLaEl1fZQoaAZHQG5n1CXyAhBoB00ZAWgIR0CoWSgdOqNqdX2UKGgGR0A9CPldTo+waAdL6mgIR0CoWfPH93r2dX2UKGgGR0Bt7NNQCSzPaAdNMQFoCEdAqFsLzTWoWHV9lChoBkdAcDBiV0Lc9GgHTRsBaAhHQKhfa44Ia991fZQoaAZHQDyXJNj9XLhoB0vtaAhHQKhgevyLAHp1fZQoaAZHQHBlj9XLeRBoB008AWgIR0CoYjANwzcidX2UKGgGR0BuJxoM8YAKaAdNVwFoCEdAqGQY+jdpI3V9lChoBkdAZsg2y9mHxmgHTSsCaAhHQKhnvl1bJOp1fZQoaAZHQDhTfHggow5oB00KAWgIR0CoaKRk/bCadWUu"
|
| 49 |
},
|
| 50 |
"ep_success_buffer": {
|
| 51 |
":type:": "<class 'collections.deque'>",
|
| 52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
},
|
| 54 |
+
"_n_updates": 4890,
|
| 55 |
"observation_space": {
|
| 56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 87929
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2b4ae2d80abb2fbbee5971d5d01bd3835a648c26cc5f8b6e2c909dd934fe4272
|
| 3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 43329
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:338eb624674f1a2bede220f28883ba2297c71b125f98f6e51c13b51e7920668c
|
| 3 |
size 43329
|
ppo-LunarLander-v2/system_info.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
- OS: Linux-5.15.
|
| 2 |
- Python: 3.10.12
|
| 3 |
- Stable-Baselines3: 2.0.0a5
|
| 4 |
- PyTorch: 2.0.1+cu118
|
|
|
|
| 1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
| 2 |
- Python: 3.10.12
|
| 3 |
- Stable-Baselines3: 2.0.0a5
|
| 4 |
- PyTorch: 2.0.1+cu118
|
replay.mp4
CHANGED
|
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
|
results.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"mean_reward":
|
|
|
|
| 1 |
+
{"mean_reward": 253.32183446576082, "std_reward": 14.579226080637689, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-13T14:59:03.311582"}
|