asierhv commited on
Commit
83f7295
·
verified ·
1 Parent(s): 5382ed3

added description and "how to use" example

Browse files
Files changed (1) hide show
  1. README.md +119 -37
README.md CHANGED
@@ -27,46 +27,85 @@ model-index:
27
  type: wer
28
  value: 5.408751772230669
29
  ---
 
30
 
31
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
32
- should probably proofread and complete it, then remove this comment. -->
33
 
34
- # Whisper Medium Spanish
 
 
35
 
36
- This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_13_0 es dataset.
37
- It achieves the following results on the evaluation set:
38
- - Loss: 0.1915
39
- - Wer: 5.4088
40
 
41
  ## Model description
42
 
43
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
- ## Intended uses & limitations
 
 
 
46
 
47
- More information needed
 
 
48
 
49
  ## Training and evaluation data
50
 
51
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
  ## Training procedure
54
 
55
  ### Training hyperparameters
56
 
57
- The following hyperparameters were used during training:
58
- - learning_rate: 1e-05
59
- - train_batch_size: 64
60
- - eval_batch_size: 32
61
- - seed: 42
62
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
- - lr_scheduler_type: linear
64
- - lr_scheduler_warmup_steps: 500
65
- - training_steps: 10000
66
 
67
- ### Training results
68
 
69
- | Training Loss | Epoch | Step | Validation Loss | Wer |
70
  |:-------------:|:-----:|:-----:|:---------------:|:------:|
71
  | 0.0917 | 2.0 | 1000 | 0.1944 | 6.8560 |
72
  | 0.0927 | 4.0 | 2000 | 0.1817 | 6.1439 |
@@ -79,27 +118,57 @@ The following hyperparameters were used during training:
79
  | 0.1297 | 18.02 | 9000 | 0.1831 | 5.6885 |
80
  | 0.0377 | 20.02 | 10000 | 0.1915 | 5.4088 |
81
 
 
82
 
83
- ### Framework versions
84
 
85
- - Transformers 4.33.0.dev0
86
- - Pytorch 2.0.1+cu117
87
- - Datasets 2.14.4
88
- - Tokenizers 0.13.3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
  ## Citation
91
 
92
- If you use these models in your research, please cite:
93
 
94
  ```bibtex
95
  @misc{dezuazo2025whisperlmimprovingasrmodels,
96
- title={Whisper-LM: Improving ASR Models with Language Models for Low-Resource Languages},
97
- author={Xabier de Zuazo and Eva Navas and Ibon Saratxaga and Inma Hernáez Rioja},
98
- year={2025},
99
- eprint={2503.23542},
100
- archivePrefix={arXiv},
101
- primaryClass={cs.CL},
102
- url={https://arxiv.org/abs/2503.23542},
103
  }
104
  ```
105
 
@@ -107,9 +176,22 @@ Please, check the related paper preprint in
107
  [arXiv:2503.23542](https://arxiv.org/abs/2503.23542)
108
  for more details.
109
 
110
- ## Licensing
 
 
111
 
112
  This model is available under the
113
  [Apache-2.0 License](https://www.apache.org/licenses/LICENSE-2.0).
114
  You are free to use, modify, and distribute this model as long as you credit
115
- the original creators.
 
 
 
 
 
 
 
 
 
 
 
 
27
  type: wer
28
  value: 5.408751772230669
29
  ---
30
+ # Whisper Medium Spanish
31
 
32
+ ## Model summary
 
33
 
34
+ **Whisper Medium Spanish** is an automatic speech recognition (ASR) model for **Spanish (es)**, fine-tuned from [openai/whisper-medium] on the **Spanish subset of Mozilla Common Voice 13.0**. It achieves a **Word Error Rate (WER) of 5.4088%** on the evaluation split.
35
+
36
+ This model offers higher accuracy than Whisper Small while remaining more efficient than Whisper Large variants, making it suitable for both batch and near real-time transcription of Spanish speech.
37
 
38
+ ---
 
 
 
39
 
40
  ## Model description
41
 
42
+ * **Architecture:** Transformer-based encoder–decoder (Whisper Medium)
43
+ * **Base model:** openai/whisper-medium
44
+ * **Language:** Spanish (es)
45
+ * **Task:** Automatic Speech Recognition (ASR)
46
+ * **Output:** Text transcription in Spanish
47
+ * **Decoding:** Autoregressive sequence-to-sequence decoding
48
+
49
+ Medium-sized model balances accuracy and speed, handling conversational Spanish better than smaller models.
50
+
51
+ ---
52
+
53
+ ## Intended use
54
+
55
+ ### Primary use cases
56
+
57
+ * Batch or streaming transcription of Spanish speech
58
+ * Research on Spanish ASR
59
+ * Applications requiring moderate-to-high transcription accuracy without full-large model compute
60
+
61
+ ### Limitations
62
 
63
+ * Accuracy may drop for:
64
+ * Noisy environments or overlapping speakers
65
+ * Strong regional accents not well represented in Common Voice
66
+ * Extremely fast or slurred speech
67
 
68
+ * Not intended for legal, medical, or other safety-critical transcription.
69
+
70
+ ---
71
 
72
  ## Training and evaluation data
73
 
74
+ * **Dataset:** Mozilla Common Voice 13.0 (Spanish subset)
75
+ * **Data type:** Crowd-sourced read speech
76
+ * **Preprocessing:**
77
+ * Audio resampled to 16 kHz
78
+ * Text tokenized with Whisper tokenizer
79
+ * Removal of invalid or corrupted samples
80
+
81
+ * **Evaluation metric:** Word Error Rate (WER) on held-out evaluation set
82
+
83
+ ---
84
+
85
+ ## Evaluation results
86
+
87
+ | Metric | Value |
88
+ | ---------- | ---------- |
89
+ | WER (eval) | **5.4088%** |
90
+
91
+ ---
92
 
93
  ## Training procedure
94
 
95
  ### Training hyperparameters
96
 
97
+ * Learning rate: 1e-5
98
+ * Optimizer: Adam (β1=0.9, β2=0.999, ε=1e-8)
99
+ * LR scheduler: Linear
100
+ * Warmup steps: 500
101
+ * Training steps: 10000
102
+ * Train batch size: 64
103
+ * Eval batch size: 32
104
+ * Seed: 42
 
105
 
106
+ ### Training results (summary)
107
 
108
+ | Training Loss | Epoch | Step | Validation Loss | WER |
109
  |:-------------:|:-----:|:-----:|:---------------:|:------:|
110
  | 0.0917 | 2.0 | 1000 | 0.1944 | 6.8560 |
111
  | 0.0927 | 4.0 | 2000 | 0.1817 | 6.1439 |
 
118
  | 0.1297 | 18.02 | 9000 | 0.1831 | 5.6885 |
119
  | 0.0377 | 20.02 | 10000 | 0.1915 | 5.4088 |
120
 
121
+ ---
122
 
123
+ ## Framework versions
124
 
125
+ - Transformers 4.33.0.dev0
126
+ - PyTorch 2.0.1+cu117
127
+ - Datasets 2.14.4
128
+ - Tokenizers 0.13.3
129
+
130
+ ---
131
+
132
+ ## Example usage
133
+
134
+ ```python
135
+ from transformers import pipeline
136
+
137
+ hf_model = "HiTZ/whisper-medium-es" # replace with actual repo ID
138
+ device = 0 # -1 for CPU
139
+
140
+ pipe = pipeline(
141
+ task="automatic-speech-recognition",
142
+ model=hf_model,
143
+ device=device
144
+ )
145
+
146
+ result = pipe("audio.wav")
147
+ print(result["text"])
148
+ ```
149
+
150
+ ---
151
+
152
+ ## Ethical considerations and risks
153
+
154
+ * This model transcribes speech and may process personal data.
155
+ * Users should ensure compliance with applicable data protection laws (e.g., GDPR).
156
+ * The model should not be used for surveillance or non-consensual audio processing.
157
+
158
+ ---
159
 
160
  ## Citation
161
 
162
+ If you use this model in your research, please cite:
163
 
164
  ```bibtex
165
  @misc{dezuazo2025whisperlmimprovingasrmodels,
166
+ title={Whisper-LM: Improving ASR Models with Language Models for Low-Resource Languages},
167
+ author={Xabier de Zuazo and Eva Navas and Ibon Saratxaga and Inma Hernáez Rioja},
168
+ year={2025},
169
+ eprint={2503.23542},
170
+ archivePrefix={arXiv},
171
+ primaryClass={cs.CL}
 
172
  }
173
  ```
174
 
 
176
  [arXiv:2503.23542](https://arxiv.org/abs/2503.23542)
177
  for more details.
178
 
179
+ ---
180
+
181
+ ## License
182
 
183
  This model is available under the
184
  [Apache-2.0 License](https://www.apache.org/licenses/LICENSE-2.0).
185
  You are free to use, modify, and distribute this model as long as you credit
186
+ the original creators.
187
+
188
+ ---
189
+
190
+ ## Contact and attribution
191
+
192
+ * Fine-tuning and evaluation: HiTZ/Aholab - Basque Center for Language Technology
193
+ * Base model: OpenAI Whisper
194
+ * Dataset: Mozilla Common Voice
195
+
196
+ For questions or issues, please open an issue in the model repository.
197
+