File size: 6,650 Bytes
1163341
73ca320
 
1163341
 
 
73ca320
1163341
 
73ca320
1163341
 
 
776e23e
1163341
 
 
 
 
73ca320
 
1163341
 
 
 
 
 
73ca320
1163341
 
776e23e
1163341
08a9877
 
 
 
 
 
 
1163341
 
 
08a9877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163341
08a9877
1163341
08a9877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163341
 
 
08a9877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163341
 
 
 
 
08a9877
 
 
 
 
 
 
 
1163341
08a9877
1163341
08a9877
1163341
 
 
 
 
 
 
 
 
 
 
 
08a9877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163341
08a9877
 
 
 
 
 
 
1163341
08a9877
 
 
 
 
c66b5a7
 
 
08a9877
c66b5a7
 
 
08a9877
 
 
 
 
 
c66b5a7
 
 
 
 
 
 
08a9877
 
 
c66b5a7
 
f4bd572
c66b5a7
08a9877
 
 
 
 
 
 
 
 
 
 
6c71385
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
---
language:
- eu
license: apache-2.0
base_model: openai/whisper-medium
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Medium Basque
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_13_0 eu
      type: mozilla-foundation/common_voice_13_0
      config: eu
      split: test
      args: eu
    metrics:
    - name: Wer
      type: wer
      value: 14.119648426424725
---

# Whisper Medium Basque

## Model summary

**Whisper Medium Basque** is an automatic speech recognition (ASR) model for **Basque (eu)** speech. It is fine-tuned from [openai/whisper-medium] on the **Basque portion of Mozilla Common Voice 13.0**, achieving a **Word Error Rate (WER) of 14.12%** on the Common Voice evaluation split.

This model offers a balance between transcription accuracy and computational requirements, providing significantly improved ASR performance over smaller Whisper variants while remaining practical for offline or batch processing.

---

## Model description

* **Architecture:** Transformer-based encoder–decoder (Whisper)
* **Base model:** openai/whisper-medium
* **Language:** Basque (eu)
* **Task:** Automatic Speech Recognition (ASR)
* **Output:** Text transcription in Basque
* **Decoding:** Autoregressive sequence-to-sequence decoding

This medium-sized model leverages Whisper’s multilingual pretraining and is fine-tuned on Basque speech data, delivering higher transcription quality for a low-resource language while remaining manageable for typical GPU or CPU environments.

---

## Intended use

### Primary use cases

* High-quality transcription of Basque audio recordings
* Offline or batch ASR pipelines
* Research and development in Basque ASR
* Media, educational, and archival transcription tasks

### Intended users

* Researchers working on Basque or low-resource ASR
* Developers building Basque speech applications
* Academic and institutional users

### Out-of-scope use

* Real-time or low-latency ASR without additional optimization
* Speech translation tasks
* Safety-critical applications without validation

---

## Limitations and known issues

* Performance may degrade on:
  * Noisy or low-quality recordings
  * Conversational or spontaneous speech
  * Accents underrepresented in Common Voice
* While highly accurate for a medium-sized model, errors can still occur under challenging acoustic conditions
* Dataset biases from Common Voice may be reflected in outputs

Users are encouraged to evaluate the model on their own data before deployment.

---

## Training and evaluation data

### Training data

* **Dataset:** Mozilla Common Voice 13.0 (Basque subset)
* **Data type:** Crowd-sourced, read speech
* **Preprocessing:**
  * Audio resampled to 16 kHz
  * Text normalized using Whisper tokenizer
  * Filtering of invalid or problematic samples

### Evaluation data

* **Dataset:** Mozilla Common Voice 13.0 (Basque evaluation split)
* **Metric:** Word Error Rate (WER)

---

## Evaluation results

| Metric     | Value      |
| ---------- | ---------- |
| WER (eval) | **14.12%** |

These results indicate strong transcription performance for a medium-sized Whisper model fine-tuned for Basque.

---

## Training procedure

### Training hyperparameters

* Learning rate: 1e-5
* Optimizer: Adam (β1=0.9, β2=0.999, ε=1e-8)
* LR scheduler: Linear
* Warmup steps: 500
* Training steps: 10,000
* Train batch size: 64
* Evaluation batch size: 32
* Seed: 42

### Training results (summary)

| Training Loss | Epoch | Step  | Validation Loss | WER     |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.0206        | 4.02  | 1000  | 0.2998          | 16.9995 |
| 0.0036        | 9.01  | 2000  | 0.3235          | 15.5211 |
| 0.0018        | 14.01 | 3000  | 0.3454          | 14.9905 |
| 0.0013        | 19.01 | 4000  | 0.3538          | 14.9439 |
| 0.0013        | 24.01 | 5000  | 0.3587          | 14.8568 |
| 0.0002        | 29.0  | 6000  | 0.3799          | 14.4153 |
| 0.0001        | 33.02 | 7000  | 0.3937          | 14.2067 |
| 0.0001        | 38.02 | 8000  | 0.4050          | 14.1946 |
| 0.0001        | 43.01 | 9000  | 0.4119          | 14.1196 |
| 0.0001        | 48.01 | 10000 | 0.4150          | 14.1358 |

---

## Framework versions

- Transformers 4.33.0.dev0  
- PyTorch 2.0.1+cu117  
- Datasets 2.14.4  
- Tokenizers 0.13.3  

---

## How to use

```python
from transformers import pipeline

hf_model = "HiTZ/whisper-medium-eu"  # replace with actual repo ID
device = 0  # set to -1 for CPU

pipe = pipeline(
    task="automatic-speech-recognition",
    model=hf_model,
    device=device
)

result = pipe("audio.wav")
print(result["text"])
```

---

## Ethical considerations and risks

* This model transcribes speech and may process personal data.
* Users should ensure compliance with applicable data protection laws (e.g., GDPR).
* The model should not be used for surveillance or non-consensual audio processing.

---

## Citation

If you use this model in your research, please cite:

```bibtex
@misc{dezuazo2025whisperlmimprovingasrmodels,
  title={Whisper-LM: Improving ASR Models with Language Models for Low-Resource Languages},
  author={Xabier de Zuazo and Eva Navas and Ibon Saratxaga and Inma Hernáez Rioja},
  year={2025},
  eprint={2503.23542},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
```

Please, check the related paper preprint in
[arXiv:2503.23542](https://arxiv.org/abs/2503.23542)
for more details.

---

## License

This model is available under the
[Apache-2.0 License](https://www.apache.org/licenses/LICENSE-2.0).
You are free to use, modify, and distribute this model as long as you credit
the original creators.

---

## Contact and attribution

* Fine-tuning and evaluation: HiTZ/Aholab - Basque Center for Language Technology
* Base model: OpenAI Whisper
* Dataset: Mozilla Common Voice

For questions or issues, please open an issue in the model repository.

## Funding
This project with reference 2022/TL22/00215335 has been parcially funded by the Ministerio de Transformación Digital and by the Plan de Recuperación, Transformación y Resiliencia – Funded by the European Union – NextGenerationEU [ILENIA](https://proyectoilenia.es/) and by the project [IkerGaitu](https://www.hitz.eus/iker-gaitu/) funded by the Basque Government.
This model was trained at [Hyperion](https://scc.dipc.org/docs/systems/hyperion/overview/), one of the high-performance computing (HPC) systems hosted by the DIPC Supercomputing Center.