File size: 6,650 Bytes
1163341 73ca320 1163341 73ca320 1163341 73ca320 1163341 776e23e 1163341 73ca320 1163341 73ca320 1163341 776e23e 1163341 08a9877 1163341 08a9877 1163341 08a9877 1163341 08a9877 1163341 08a9877 1163341 08a9877 1163341 08a9877 1163341 08a9877 1163341 08a9877 1163341 08a9877 1163341 08a9877 c66b5a7 08a9877 c66b5a7 08a9877 c66b5a7 08a9877 c66b5a7 f4bd572 c66b5a7 08a9877 6c71385 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
---
language:
- eu
license: apache-2.0
base_model: openai/whisper-medium
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Medium Basque
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_13_0 eu
type: mozilla-foundation/common_voice_13_0
config: eu
split: test
args: eu
metrics:
- name: Wer
type: wer
value: 14.119648426424725
---
# Whisper Medium Basque
## Model summary
**Whisper Medium Basque** is an automatic speech recognition (ASR) model for **Basque (eu)** speech. It is fine-tuned from [openai/whisper-medium] on the **Basque portion of Mozilla Common Voice 13.0**, achieving a **Word Error Rate (WER) of 14.12%** on the Common Voice evaluation split.
This model offers a balance between transcription accuracy and computational requirements, providing significantly improved ASR performance over smaller Whisper variants while remaining practical for offline or batch processing.
---
## Model description
* **Architecture:** Transformer-based encoder–decoder (Whisper)
* **Base model:** openai/whisper-medium
* **Language:** Basque (eu)
* **Task:** Automatic Speech Recognition (ASR)
* **Output:** Text transcription in Basque
* **Decoding:** Autoregressive sequence-to-sequence decoding
This medium-sized model leverages Whisper’s multilingual pretraining and is fine-tuned on Basque speech data, delivering higher transcription quality for a low-resource language while remaining manageable for typical GPU or CPU environments.
---
## Intended use
### Primary use cases
* High-quality transcription of Basque audio recordings
* Offline or batch ASR pipelines
* Research and development in Basque ASR
* Media, educational, and archival transcription tasks
### Intended users
* Researchers working on Basque or low-resource ASR
* Developers building Basque speech applications
* Academic and institutional users
### Out-of-scope use
* Real-time or low-latency ASR without additional optimization
* Speech translation tasks
* Safety-critical applications without validation
---
## Limitations and known issues
* Performance may degrade on:
* Noisy or low-quality recordings
* Conversational or spontaneous speech
* Accents underrepresented in Common Voice
* While highly accurate for a medium-sized model, errors can still occur under challenging acoustic conditions
* Dataset biases from Common Voice may be reflected in outputs
Users are encouraged to evaluate the model on their own data before deployment.
---
## Training and evaluation data
### Training data
* **Dataset:** Mozilla Common Voice 13.0 (Basque subset)
* **Data type:** Crowd-sourced, read speech
* **Preprocessing:**
* Audio resampled to 16 kHz
* Text normalized using Whisper tokenizer
* Filtering of invalid or problematic samples
### Evaluation data
* **Dataset:** Mozilla Common Voice 13.0 (Basque evaluation split)
* **Metric:** Word Error Rate (WER)
---
## Evaluation results
| Metric | Value |
| ---------- | ---------- |
| WER (eval) | **14.12%** |
These results indicate strong transcription performance for a medium-sized Whisper model fine-tuned for Basque.
---
## Training procedure
### Training hyperparameters
* Learning rate: 1e-5
* Optimizer: Adam (β1=0.9, β2=0.999, ε=1e-8)
* LR scheduler: Linear
* Warmup steps: 500
* Training steps: 10,000
* Train batch size: 64
* Evaluation batch size: 32
* Seed: 42
### Training results (summary)
| Training Loss | Epoch | Step | Validation Loss | WER |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.0206 | 4.02 | 1000 | 0.2998 | 16.9995 |
| 0.0036 | 9.01 | 2000 | 0.3235 | 15.5211 |
| 0.0018 | 14.01 | 3000 | 0.3454 | 14.9905 |
| 0.0013 | 19.01 | 4000 | 0.3538 | 14.9439 |
| 0.0013 | 24.01 | 5000 | 0.3587 | 14.8568 |
| 0.0002 | 29.0 | 6000 | 0.3799 | 14.4153 |
| 0.0001 | 33.02 | 7000 | 0.3937 | 14.2067 |
| 0.0001 | 38.02 | 8000 | 0.4050 | 14.1946 |
| 0.0001 | 43.01 | 9000 | 0.4119 | 14.1196 |
| 0.0001 | 48.01 | 10000 | 0.4150 | 14.1358 |
---
## Framework versions
- Transformers 4.33.0.dev0
- PyTorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
---
## How to use
```python
from transformers import pipeline
hf_model = "HiTZ/whisper-medium-eu" # replace with actual repo ID
device = 0 # set to -1 for CPU
pipe = pipeline(
task="automatic-speech-recognition",
model=hf_model,
device=device
)
result = pipe("audio.wav")
print(result["text"])
```
---
## Ethical considerations and risks
* This model transcribes speech and may process personal data.
* Users should ensure compliance with applicable data protection laws (e.g., GDPR).
* The model should not be used for surveillance or non-consensual audio processing.
---
## Citation
If you use this model in your research, please cite:
```bibtex
@misc{dezuazo2025whisperlmimprovingasrmodels,
title={Whisper-LM: Improving ASR Models with Language Models for Low-Resource Languages},
author={Xabier de Zuazo and Eva Navas and Ibon Saratxaga and Inma Hernáez Rioja},
year={2025},
eprint={2503.23542},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
Please, check the related paper preprint in
[arXiv:2503.23542](https://arxiv.org/abs/2503.23542)
for more details.
---
## License
This model is available under the
[Apache-2.0 License](https://www.apache.org/licenses/LICENSE-2.0).
You are free to use, modify, and distribute this model as long as you credit
the original creators.
---
## Contact and attribution
* Fine-tuning and evaluation: HiTZ/Aholab - Basque Center for Language Technology
* Base model: OpenAI Whisper
* Dataset: Mozilla Common Voice
For questions or issues, please open an issue in the model repository.
## Funding
This project with reference 2022/TL22/00215335 has been parcially funded by the Ministerio de Transformación Digital and by the Plan de Recuperación, Transformación y Resiliencia – Funded by the European Union – NextGenerationEU [ILENIA](https://proyectoilenia.es/) and by the project [IkerGaitu](https://www.hitz.eus/iker-gaitu/) funded by the Basque Government.
This model was trained at [Hyperion](https://scc.dipc.org/docs/systems/hyperion/overview/), one of the high-performance computing (HPC) systems hosted by the DIPC Supercomputing Center.
|