File size: 6,290 Bytes
8ff395c
73b01f4
 
8ff395c
 
 
73b01f4
8ff395c
 
73b01f4
8ff395c
 
 
234c7d6
8ff395c
 
 
 
 
73b01f4
 
8ff395c
 
 
 
 
 
 
 
 
234c7d6
8ff395c
f1e3dcb
 
 
 
 
 
 
8ff395c
 
 
f1e3dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ff395c
f1e3dcb
8ff395c
f1e3dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ff395c
 
 
f1e3dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ff395c
 
 
 
 
f1e3dcb
 
 
 
 
 
 
 
8ff395c
f1e3dcb
8ff395c
f1e3dcb
8ff395c
 
 
 
 
 
 
f1e3dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f8a19d
f1e3dcb
 
 
 
 
 
 
8ff395c
f1e3dcb
 
 
 
 
 
 
8ff395c
f1e3dcb
 
 
 
 
3324c14
 
 
f1e3dcb
3324c14
 
 
f1e3dcb
 
 
 
 
 
3324c14
 
 
 
 
 
 
f1e3dcb
 
 
3324c14
 
c41b2c5
3324c14
f1e3dcb
 
 
 
 
 
 
 
 
 
 
b39f0a6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
---
language:
- eu
license: apache-2.0
base_model: openai/whisper-small
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Small Basque
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_13_0 eu
      type: mozilla-foundation/common_voice_13_0
      config: eu
      split: test
      args: eu
    metrics:
    - name: Wer
      type: wer
      value: 18.417108833893636
---

# Whisper Small Basque

## Model summary

**Whisper Small Basque** is an automatic speech recognition (ASR) model for **Basque (eu)** speech. It is fine-tuned from [openai/whisper-small] on the **Basque portion of Mozilla Common Voice 13.0**, achieving a **Word Error Rate (WER) of 18.42%** on the Common Voice evaluation split.

The model provides a balance between transcription accuracy and computational efficiency, offering substantially improved performance over tiny models while remaining suitable for offline and batch ASR use.

---

## Model description

* **Architecture:** Transformer-based encoder–decoder (Whisper)
* **Base model:** openai/whisper-small
* **Language:** Basque (eu)
* **Task:** Automatic Speech Recognition (ASR)
* **Output:** Text transcription in Basque
* **Decoding:** Autoregressive sequence-to-sequence decoding

This model builds on Whisper’s multilingual pretraining and is further fine-tuned on Basque speech data to improve recognition quality for a low-resource language while maintaining moderate computational requirements.

---

## Intended use

### Primary use cases

* Transcription of Basque audio recordings
* Offline or batch ASR pipelines
* Research on Basque and low-resource speech recognition
* Media, educational, and archival transcription tasks

### Intended users

* Researchers working on Basque ASR
* Developers building Basque speech applications
* Academic and institutional users

### Out-of-scope use

* Real-time or low-latency ASR without further optimization
* Speech translation tasks
* Safety-critical or high-risk applications without additional validation

---

## Limitations and known issues

* Performance may degrade on:
  * Highly noisy or low-quality recordings
  * Conversational or spontaneous speech
  * Accents underrepresented in Common Voice
* While significantly more accurate than tiny models, it may still produce errors in challenging acoustic conditions
* Biases present in the Common Voice dataset may be reflected in outputs

Users are encouraged to evaluate the model on their own data before deployment.

---

## Training and evaluation data

### Training data

* **Dataset:** Mozilla Common Voice 13.0 (Basque subset)
* **Data type:** Crowd-sourced, read speech
* **Preprocessing:**
  * Audio resampled to 16 kHz
  * Text normalized using Whisper tokenizer
  * Filtering of invalid or problematic samples

### Evaluation data

* **Dataset:** Mozilla Common Voice 13.0 (Basque evaluation split)
* **Metric:** Word Error Rate (WER)

---

## Evaluation results

| Metric     | Value      |
| ---------- | ---------- |
| WER (eval) | **18.42%** |

These results demonstrate a strong improvement over smaller Whisper variants for Basque ASR.

---

## Training procedure

### Training hyperparameters

* Learning rate: 1e-5
* Optimizer: Adam (β1=0.9, β2=0.999, ε=1e-8)
* LR scheduler: Linear
* Warmup steps: 500
* Training steps: 5,000
* Train batch size: 16
* Evaluation batch size: 8
* Seed: 42

### Training results (summary)

| Training Loss | Epoch | Step | Validation Loss | WER     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2826        | 1.04  | 1000 | 0.3472          | 24.9342 |
| 0.0872        | 2.07  | 2000 | 0.3012          | 20.2661 |
| 0.0275        | 3.11  | 3000 | 0.3085          | 19.3021 |
| 0.0086        | 4.14  | 4000 | 0.3297          | 18.7513 |
| 0.0051        | 6.01  | 5000 | 0.3390          | 18.4171 |

---

## Framework versions

- Transformers 4.33.0.dev0  
- PyTorch 2.0.1+cu117  
- Datasets 2.14.4  
- Tokenizers 0.13.3  

---

## How to use

```python
from transformers import pipeline

hf_model = "HiTZ/whisper-small-eu"  # replace with actual repo ID
device = 0  # set to -1 for CPU

pipe = pipeline(
    task="automatic-speech-recognition",
    model=hf_model,
    device=device
)

result = pipe("audio.wav")
print(result["text"])
```

---

## Ethical considerations and risks

* This model transcribes speech and may process personal data.
* Users should ensure compliance with applicable data protection laws (e.g., GDPR).
* The model should not be used for surveillance or non-consensual audio processing.

---

## Citation

If you use this model in your research, please cite:

```bibtex
@misc{dezuazo2025whisperlmimprovingasrmodels,
  title={Whisper-LM: Improving ASR Models with Language Models for Low-Resource Languages},
  author={Xabier de Zuazo and Eva Navas and Ibon Saratxaga and Inma Hernáez Rioja},
  year={2025},
  eprint={2503.23542},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
```

Please, check the related paper preprint in
[arXiv:2503.23542](https://arxiv.org/abs/2503.23542)
for more details.

---

## License

This model is available under the
[Apache-2.0 License](https://www.apache.org/licenses/LICENSE-2.0).
You are free to use, modify, and distribute this model as long as you credit
the original creators.

---

## Contact and attribution

* Fine-tuning and evaluation: HiTZ/Aholab - Basque Center for Language Technology
* Base model: OpenAI Whisper
* Dataset: Mozilla Common Voice

For questions or issues, please open an issue in the model repository.

## Funding
This project with reference 2022/TL22/00215335 has been parcially funded by the Ministerio de Transformación Digital and by the Plan de Recuperación, Transformación y Resiliencia – Funded by the European Union – NextGenerationEU [ILENIA](https://proyectoilenia.es/) and by the project [IkerGaitu](https://www.hitz.eus/iker-gaitu/) funded by the Basque Government.
This model was trained at [Hyperion](https://scc.dipc.org/docs/systems/hyperion/overview/), one of the high-performance computing (HPC) systems hosted by the DIPC Supercomputing Center.