File size: 5,020 Bytes
26b9575 40a7cea 26b9575 40a7cea 26b9575 40a7cea 26b9575 40a7cea 26b9575 40a7cea 26b9575 40a7cea 26b9575 727c33a 26b9575 727c33a 26b9575 727c33a 26b9575 727c33a 26b9575 727c33a 26b9575 727c33a 26b9575 727c33a 26b9575 727c33a 26b9575 727c33a 26b9575 727c33a 26b9575 727c33a 9652d10 727c33a 9652d10 727c33a 9652d10 727c33a 9652d10 727c33a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
language:
- ca
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Tiny Catalan
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_13_0 ca
type: mozilla-foundation/common_voice_13_0
config: ca
split: test
args: ca
metrics:
- name: Wer
type: wer
value: 16.904258359531294
---
# Whisper Tiny Catalan
## Model summary
**Whisper Tiny Catalan** is an automatic speech recognition (ASR) model for **Catalan (ca)** speech. It is fine-tuned from [openai/whisper-tiny] on the **Catalan subset of Mozilla Common Voice 13.0**, achieving a **Word Error Rate (WER) of 16.90%** on the evaluation split.
This model is intended for general-purpose transcription of Catalan audio.
---
## Model description
* **Architecture:** Transformer-based encoder–decoder (Whisper)
* **Base model:** openai/whisper-tiny
* **Language:** Catalan (ca)
* **Task:** Automatic Speech Recognition (ASR)
* **Output:** Text transcription in Catalan
* **Decoding:** Autoregressive sequence-to-sequence decoding
Fine-tuned to improve transcription quality on Catalan audio, leveraging Whisper’s multilingual pretraining.
---
## Intended use
### Primary use cases
* Transcription of Catalan audio recordings
* Offline or batch ASR pipelines
* Research and development in Catalan ASR
* Educational and media applications
### Out-of-scope use
* Real-time or low-latency ASR without optimization
* Speech translation tasks
* Safety-critical applications without further validation
---
## Limitations and known issues
* Performance may degrade on:
* Noisy or low-quality recordings
* Conversational or spontaneous speech
* Dialects underrepresented in Common Voice
* Dataset biases may be reflected in outputs
* Occasional transcription errors can occur under difficult acoustic conditions
---
## Training and evaluation data
* **Dataset:** Mozilla Common Voice 13.0 (Catalan subset)
* **Data type:** Crowd-sourced, read speech
* **Preprocessing:**
* Audio resampled to 16 kHz
* Text normalized using Whisper tokenizer
* Filtering of invalid or problematic samples
* **Evaluation metric:** Word Error Rate (WER) on held-out evaluation set
---
## Evaluation results
| Metric | Value |
| ---------- | ---------- |
| WER (eval) | **16.90%** |
---
## Training procedure
### Training hyperparameters
* Learning rate: 3.75e-5
* Optimizer: Adam (β1=0.9, β2=0.999, ε=1e-8)
* LR scheduler: Linear
* Warmup steps: 500
* Training steps: 5,000
* Train batch size: 256
* Eval batch size: 128
* Seed: 42
### Training results (summary)
| Training Loss | Epoch | Step | Validation Loss | WER |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2098 | 7.02 | 1000 | 0.3994 | 22.5047 |
| 0.162 | 15.02 | 2000 | 0.3454 | 19.4181 |
| 0.0662 | 23.01 | 3000 | 0.3526 | 18.5687 |
| 0.0934 | 31.01 | 4000 | 0.3312 | 18.1600 |
| 0.1167 | 39.0 | 5000 | 0.3180 | 16.9043 |
---
## Framework versions
- Transformers 4.33.0.dev0
- PyTorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
---
## How to use
```python
from transformers import pipeline
hf_model = "HiTZ/whisper-tiny-ca" # replace with actual repo ID
device = 0 # set to -1 for CPU
pipe = pipeline(
task="automatic-speech-recognition",
model=hf_model,
device=device
)
result = pipe("audio.wav")
print(result["text"])
```
---
## Ethical considerations and risks
* This model transcribes speech and may process personal data.
* Users should ensure compliance with applicable data protection laws (e.g., GDPR).
* The model should not be used for surveillance or non-consensual audio processing.
---
## Citation
If you use this model in your research, please cite:
```bibtex
@misc{dezuazo2025whisperlmimprovingasrmodels,
title={Whisper-LM: Improving ASR Models with Language Models for Low-Resource Languages},
author={Xabier de Zuazo and Eva Navas and Ibon Saratxaga and Inma Hernáez Rioja},
year={2025},
eprint={2503.23542},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
Please, check the related paper preprint in
[arXiv:2503.23542](https://arxiv.org/abs/2503.23542)
for more details.
---
## License
This model is available under the
[Apache-2.0 License](https://www.apache.org/licenses/LICENSE-2.0).
You are free to use, modify, and distribute this model as long as you credit
the original creators.
---
## Contact and attribution
* Fine-tuning and evaluation: HiTZ/Aholab - Basque Center for Language Technology
* Base model: OpenAI Whisper
* Dataset: Mozilla Common Voice
For questions or issues, please open an issue in the model repository.
|