File size: 5,020 Bytes
26b9575
40a7cea
 
26b9575
 
 
40a7cea
26b9575
 
40a7cea
26b9575
 
 
40a7cea
26b9575
 
 
 
 
40a7cea
 
26b9575
 
 
 
 
 
 
 
 
40a7cea
26b9575
727c33a
 
 
 
 
 
 
26b9575
 
 
727c33a
 
 
 
 
 
 
 
26b9575
727c33a
 
 
 
 
26b9575
727c33a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26b9575
 
 
727c33a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26b9575
 
 
 
 
727c33a
 
 
 
 
 
 
 
26b9575
727c33a
26b9575
727c33a
26b9575
 
 
 
 
 
 
727c33a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26b9575
727c33a
 
 
 
 
26b9575
727c33a
 
 
 
 
 
 
 
 
 
 
 
 
9652d10
 
 
727c33a
9652d10
 
 
727c33a
 
 
 
 
 
9652d10
 
 
 
 
 
 
727c33a
 
 
9652d10
 
 
 
727c33a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
language:
- ca
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Tiny Catalan
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_13_0 ca
      type: mozilla-foundation/common_voice_13_0
      config: ca
      split: test
      args: ca
    metrics:
    - name: Wer
      type: wer
      value: 16.904258359531294
---

# Whisper Tiny Catalan

## Model summary

**Whisper Tiny Catalan** is an automatic speech recognition (ASR) model for **Catalan (ca)** speech. It is fine-tuned from [openai/whisper-tiny] on the **Catalan subset of Mozilla Common Voice 13.0**, achieving a **Word Error Rate (WER) of 16.90%** on the evaluation split.

This model is intended for general-purpose transcription of Catalan audio.

---

## Model description

* **Architecture:** Transformer-based encoder–decoder (Whisper)  
* **Base model:** openai/whisper-tiny  
* **Language:** Catalan (ca)  
* **Task:** Automatic Speech Recognition (ASR)  
* **Output:** Text transcription in Catalan  
* **Decoding:** Autoregressive sequence-to-sequence decoding  

Fine-tuned to improve transcription quality on Catalan audio, leveraging Whisper’s multilingual pretraining.

---

## Intended use

### Primary use cases

* Transcription of Catalan audio recordings  
* Offline or batch ASR pipelines  
* Research and development in Catalan ASR  
* Educational and media applications  

### Out-of-scope use

* Real-time or low-latency ASR without optimization  
* Speech translation tasks  
* Safety-critical applications without further validation  

---

## Limitations and known issues

* Performance may degrade on:
  * Noisy or low-quality recordings  
  * Conversational or spontaneous speech  
  * Dialects underrepresented in Common Voice  
* Dataset biases may be reflected in outputs  
* Occasional transcription errors can occur under difficult acoustic conditions  

---

## Training and evaluation data

* **Dataset:** Mozilla Common Voice 13.0 (Catalan subset)  
* **Data type:** Crowd-sourced, read speech  
* **Preprocessing:**  
  * Audio resampled to 16 kHz  
  * Text normalized using Whisper tokenizer  
  * Filtering of invalid or problematic samples  

* **Evaluation metric:** Word Error Rate (WER) on held-out evaluation set  

---

## Evaluation results

| Metric     | Value      |
| ---------- | ---------- |
| WER (eval) | **16.90%** |

---

## Training procedure

### Training hyperparameters

* Learning rate: 3.75e-5  
* Optimizer: Adam (β1=0.9, β2=0.999, ε=1e-8)  
* LR scheduler: Linear  
* Warmup steps: 500  
* Training steps: 5,000  
* Train batch size: 256  
* Eval batch size: 128  
* Seed: 42  

### Training results (summary)

| Training Loss | Epoch | Step | Validation Loss | WER     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2098        | 7.02  | 1000 | 0.3994          | 22.5047 |
| 0.162         | 15.02 | 2000 | 0.3454          | 19.4181 |
| 0.0662        | 23.01 | 3000 | 0.3526          | 18.5687 |
| 0.0934        | 31.01 | 4000 | 0.3312          | 18.1600 |
| 0.1167        | 39.0  | 5000 | 0.3180          | 16.9043 |

---

## Framework versions

- Transformers 4.33.0.dev0  
- PyTorch 2.0.1+cu117  
- Datasets 2.14.4  
- Tokenizers 0.13.3  

---

## How to use

```python
from transformers import pipeline

hf_model = "HiTZ/whisper-tiny-ca"  # replace with actual repo ID
device = 0  # set to -1 for CPU

pipe = pipeline(
    task="automatic-speech-recognition",
    model=hf_model,
    device=device
)

result = pipe("audio.wav")
print(result["text"])
```

---

## Ethical considerations and risks

* This model transcribes speech and may process personal data.
* Users should ensure compliance with applicable data protection laws (e.g., GDPR).
* The model should not be used for surveillance or non-consensual audio processing.

---

## Citation

If you use this model in your research, please cite:

```bibtex
@misc{dezuazo2025whisperlmimprovingasrmodels,
  title={Whisper-LM: Improving ASR Models with Language Models for Low-Resource Languages},
  author={Xabier de Zuazo and Eva Navas and Ibon Saratxaga and Inma Hernáez Rioja},
  year={2025},
  eprint={2503.23542},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
```

Please, check the related paper preprint in
[arXiv:2503.23542](https://arxiv.org/abs/2503.23542)
for more details.

---

## License

This model is available under the
[Apache-2.0 License](https://www.apache.org/licenses/LICENSE-2.0).
You are free to use, modify, and distribute this model as long as you credit
the original creators.

---

## Contact and attribution

* Fine-tuning and evaluation: HiTZ/Aholab - Basque Center for Language Technology
* Base model: OpenAI Whisper
* Dataset: Mozilla Common Voice

For questions or issues, please open an issue in the model repository.