Update handler.py
Browse files- handler.py +150 -194
handler.py
CHANGED
|
@@ -1,230 +1,186 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
|
|
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
-
import json
|
| 5 |
import logging
|
| 6 |
|
| 7 |
-
#
|
| 8 |
logging.basicConfig(level=logging.INFO)
|
| 9 |
logger = logging.getLogger(__name__)
|
| 10 |
|
|
|
|
| 11 |
class EndpointHandler:
|
| 12 |
def __init__(self, path=""):
|
| 13 |
"""
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
# Tokenizer'ı yükle - Qwen2 için trust_remote_code gerekli
|
| 20 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 21 |
-
path,
|
| 22 |
-
trust_remote_code=True,
|
| 23 |
-
use_fast=True # Fast tokenizer kullan
|
| 24 |
-
)
|
| 25 |
-
|
| 26 |
-
# Model konfigürasyonu
|
| 27 |
-
model_kwargs = {
|
| 28 |
-
"torch_dtype": torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16,
|
| 29 |
-
"device_map": "auto",
|
| 30 |
-
"trust_remote_code": True,
|
| 31 |
-
"low_cpu_mem_usage": True, # Bellek optimizasyonu
|
| 32 |
-
}
|
| 33 |
-
|
| 34 |
-
# Modeli yükle
|
| 35 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
| 36 |
-
path,
|
| 37 |
-
**model_kwargs
|
| 38 |
-
)
|
| 39 |
-
|
| 40 |
-
# Model'i eval moduna al
|
| 41 |
-
self.model.eval()
|
| 42 |
-
|
| 43 |
-
# Tokenizer ayarları
|
| 44 |
-
if self.tokenizer.pad_token is None:
|
| 45 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 46 |
-
if self.tokenizer.pad_token_id is None:
|
| 47 |
-
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
| 48 |
-
|
| 49 |
-
# Chat template kontrolü
|
| 50 |
-
self.has_chat_template = hasattr(self.tokenizer, 'chat_template') and self.tokenizer.chat_template is not None
|
| 51 |
-
|
| 52 |
-
logger.info(f"Model başarıyla yüklendi. Chat template: {self.has_chat_template}")
|
| 53 |
-
logger.info(f"Device: {next(self.model.parameters()).device}")
|
| 54 |
-
logger.info(f"Dtype: {next(self.model.parameters()).dtype}")
|
| 55 |
-
|
| 56 |
-
except Exception as e:
|
| 57 |
-
logger.error(f"Model yükleme hatası: {str(e)}")
|
| 58 |
-
raise RuntimeError(f"Model initialization failed: {str(e)}")
|
| 59 |
-
|
| 60 |
-
def format_chat_input(self, messages: List[Dict[str, str]]) -> str:
|
| 61 |
-
"""
|
| 62 |
-
Chat formatında gelen mesajları işle
|
| 63 |
"""
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
| 84 |
|
| 85 |
-
@torch.inference_mode()
|
| 86 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 87 |
"""
|
| 88 |
-
Inference endpoint
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
"""
|
| 90 |
try:
|
| 91 |
-
#
|
| 92 |
-
inputs = data.
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
#
|
| 96 |
-
if
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
#
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
# Generation parametreleri
|
| 109 |
-
max_new_tokens = parameters.get("max_new_tokens", 256)
|
| 110 |
-
temperature = parameters.get("temperature", 0.7)
|
| 111 |
-
top_p = parameters.get("top_p", 0.9)
|
| 112 |
-
top_k = parameters.get("top_k", 50)
|
| 113 |
-
do_sample = parameters.get("do_sample", True)
|
| 114 |
-
repetition_penalty = parameters.get("repetition_penalty", 1.1)
|
| 115 |
-
num_return_sequences = parameters.get("num_return_sequences", 1)
|
| 116 |
-
stop_sequences = parameters.get("stop_sequences", None)
|
| 117 |
-
|
| 118 |
-
logger.info(f"Processing input (length: {len(text_input)})")
|
| 119 |
-
|
| 120 |
-
# Tokenize
|
| 121 |
-
inputs_encoded = self.tokenizer(
|
| 122 |
-
text_input,
|
| 123 |
-
return_tensors="pt",
|
| 124 |
-
padding=True,
|
| 125 |
-
truncation=True,
|
| 126 |
-
max_length=min(2048, self.model.config.max_position_embeddings),
|
| 127 |
-
return_attention_mask=True
|
| 128 |
-
)
|
| 129 |
-
|
| 130 |
-
# Device'a taşı
|
| 131 |
-
input_ids = inputs_encoded["input_ids"].to(self.model.device)
|
| 132 |
-
attention_mask = inputs_encoded["attention_mask"].to(self.model.device)
|
| 133 |
-
|
| 134 |
-
# Stopping criteria ayarla
|
| 135 |
-
stop_token_ids = []
|
| 136 |
-
if stop_sequences:
|
| 137 |
-
for seq in stop_sequences:
|
| 138 |
-
tokens = self.tokenizer.encode(seq, add_special_tokens=False)
|
| 139 |
-
stop_token_ids.extend(tokens)
|
| 140 |
-
|
| 141 |
-
# Generate
|
| 142 |
-
generation_kwargs = {
|
| 143 |
-
"input_ids": input_ids,
|
| 144 |
-
"attention_mask": attention_mask,
|
| 145 |
-
"max_new_tokens": max_new_tokens,
|
| 146 |
-
"temperature": temperature if do_sample else 1.0,
|
| 147 |
-
"top_p": top_p if do_sample else 1.0,
|
| 148 |
-
"top_k": top_k if do_sample else None,
|
| 149 |
-
"do_sample": do_sample,
|
| 150 |
-
"repetition_penalty": repetition_penalty,
|
| 151 |
-
"num_return_sequences": num_return_sequences,
|
| 152 |
-
"pad_token_id": self.tokenizer.pad_token_id,
|
| 153 |
-
"eos_token_id": self.tokenizer.eos_token_id,
|
| 154 |
-
"use_cache": True,
|
| 155 |
}
|
| 156 |
|
| 157 |
-
#
|
| 158 |
-
|
| 159 |
-
generation_kwargs["eos_token_id"] = stop_token_ids
|
| 160 |
|
| 161 |
-
#
|
| 162 |
-
|
| 163 |
|
| 164 |
-
#
|
| 165 |
results = []
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
results.append({
|
| 176 |
-
"generated_text": generated_text
|
| 177 |
-
"details": {
|
| 178 |
-
"finish_reason": "length" if len(generated_ids) >= max_new_tokens else "stop",
|
| 179 |
-
"generated_tokens": len(generated_ids),
|
| 180 |
-
"input_tokens": input_ids.shape[-1]
|
| 181 |
-
}
|
| 182 |
})
|
| 183 |
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
# Tek sonuç istenmişse direkt döndür
|
| 187 |
-
if num_return_sequences == 1:
|
| 188 |
-
return results
|
| 189 |
-
else:
|
| 190 |
-
return [{"results": results}]
|
| 191 |
|
| 192 |
-
except torch.cuda.OutOfMemoryError:
|
| 193 |
-
logger.error("GPU bellek yetersiz!")
|
| 194 |
-
return [{
|
| 195 |
-
"error": "GPU out of memory. Try reducing max_new_tokens or input length",
|
| 196 |
-
"type": "memory_error"
|
| 197 |
-
}]
|
| 198 |
except Exception as e:
|
| 199 |
-
logger.error(f"Inference
|
| 200 |
-
import traceback
|
| 201 |
-
logger.error(traceback.format_exc())
|
| 202 |
return [{
|
| 203 |
"error": str(e),
|
| 204 |
-
"
|
| 205 |
-
"traceback": traceback.format_exc()
|
| 206 |
}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
-
def
|
| 209 |
"""
|
| 210 |
-
|
| 211 |
"""
|
| 212 |
try:
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
"
|
| 222 |
-
"
|
| 223 |
-
"device": str(next(self.model.parameters()).device),
|
| 224 |
-
"dtype": str(next(self.model.parameters()).dtype)
|
| 225 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
except Exception as e:
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
"error": str(e)
|
| 230 |
-
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Custom Inference Handler for Huseyin/tekno25 Model
|
| 3 |
+
Hugging Face Inference Endpoints için özelleştirilmiş handler
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
import torch
|
| 7 |
+
from typing import Dict, List, Any
|
| 8 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 9 |
import logging
|
| 10 |
|
| 11 |
+
# Logger ayarla
|
| 12 |
logging.basicConfig(level=logging.INFO)
|
| 13 |
logger = logging.getLogger(__name__)
|
| 14 |
|
| 15 |
+
|
| 16 |
class EndpointHandler:
|
| 17 |
def __init__(self, path=""):
|
| 18 |
"""
|
| 19 |
+
Model ve tokenizer'ı yükle
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
path: Model dosyalarının bulunduğu dizin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
"""
|
| 24 |
+
logger.info(f"Model yükleniyor: {path}")
|
| 25 |
+
|
| 26 |
+
# Tokenizer'ı yükle
|
| 27 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 28 |
+
path,
|
| 29 |
+
trust_remote_code=True
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# Modeli yükle
|
| 33 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 34 |
+
path,
|
| 35 |
+
torch_dtype=torch.float16, # Bellek optimizasyonu için
|
| 36 |
+
device_map="auto", # Otomatik cihaz ataması
|
| 37 |
+
trust_remote_code=True
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
# Eğer tokenizer'da pad_token yoksa ekle
|
| 41 |
+
if self.tokenizer.pad_token is None:
|
| 42 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 43 |
+
|
| 44 |
+
logger.info("Model başarıyla yüklendi!")
|
| 45 |
|
|
|
|
| 46 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 47 |
"""
|
| 48 |
+
Inference endpoint'i için ana fonksiyon
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
data: İstek verisi
|
| 52 |
+
- inputs (str veya List[str]): Giriş metni/metinleri
|
| 53 |
+
- parameters (dict, optional): Generasyon parametreleri
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
List[Dict]: Üretilen metin(ler)
|
| 57 |
"""
|
| 58 |
try:
|
| 59 |
+
# Giriş verilerini al
|
| 60 |
+
inputs = data.get("inputs", "")
|
| 61 |
+
parameters = data.get("parameters", {})
|
| 62 |
+
|
| 63 |
+
# Eğer inputs bir string ise listeye çevir
|
| 64 |
+
if isinstance(inputs, str):
|
| 65 |
+
inputs = [inputs]
|
| 66 |
+
|
| 67 |
+
# Varsayılan parametreler
|
| 68 |
+
default_params = {
|
| 69 |
+
"max_new_tokens": 512,
|
| 70 |
+
"temperature": 0.7,
|
| 71 |
+
"top_p": 0.9,
|
| 72 |
+
"top_k": 50,
|
| 73 |
+
"do_sample": True,
|
| 74 |
+
"repetition_penalty": 1.1,
|
| 75 |
+
"return_full_text": False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
}
|
| 77 |
|
| 78 |
+
# Kullanıcı parametrelerini varsayılanlarla birleştir
|
| 79 |
+
generation_params = {**default_params, **parameters}
|
|
|
|
| 80 |
|
| 81 |
+
# return_full_text parametresini ayır
|
| 82 |
+
return_full_text = generation_params.pop("return_full_text", False)
|
| 83 |
|
| 84 |
+
# Batch işleme için sonuçları topla
|
| 85 |
results = []
|
| 86 |
+
|
| 87 |
+
for text_input in inputs:
|
| 88 |
+
# Tokenize et
|
| 89 |
+
encoded_inputs = self.tokenizer(
|
| 90 |
+
text_input,
|
| 91 |
+
return_tensors="pt",
|
| 92 |
+
padding=True,
|
| 93 |
+
truncation=True,
|
| 94 |
+
max_length=2048
|
| 95 |
+
).to(self.model.device)
|
| 96 |
+
|
| 97 |
+
# Çıktı üret
|
| 98 |
+
with torch.no_grad():
|
| 99 |
+
output_ids = self.model.generate(
|
| 100 |
+
**encoded_inputs,
|
| 101 |
+
**generation_params
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Decode et
|
| 105 |
+
if return_full_text:
|
| 106 |
+
# Tam metni döndür (giriş + üretilen)
|
| 107 |
+
generated_text = self.tokenizer.decode(
|
| 108 |
+
output_ids[0],
|
| 109 |
+
skip_special_tokens=True
|
| 110 |
+
)
|
| 111 |
+
else:
|
| 112 |
+
# Sadece üretilen kısmı döndür
|
| 113 |
+
input_length = encoded_inputs.input_ids.shape[1]
|
| 114 |
+
generated_text = self.tokenizer.decode(
|
| 115 |
+
output_ids[0][input_length:],
|
| 116 |
+
skip_special_tokens=True
|
| 117 |
+
)
|
| 118 |
|
| 119 |
results.append({
|
| 120 |
+
"generated_text": generated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
})
|
| 122 |
|
| 123 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
except Exception as e:
|
| 126 |
+
logger.error(f"Inference sırasında hata: {str(e)}")
|
|
|
|
|
|
|
| 127 |
return [{
|
| 128 |
"error": str(e),
|
| 129 |
+
"error_type": type(e).__name__
|
|
|
|
| 130 |
}]
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
# Alternatif: Pipeline kullanımı için handler
|
| 134 |
+
class PipelineHandler:
|
| 135 |
+
"""
|
| 136 |
+
Transformers pipeline kullanarak daha basit bir handler
|
| 137 |
+
"""
|
| 138 |
+
|
| 139 |
+
def __init__(self, path=""):
|
| 140 |
+
from transformers import pipeline
|
| 141 |
+
|
| 142 |
+
logger.info(f"Pipeline yükleniyor: {path}")
|
| 143 |
+
|
| 144 |
+
self.pipeline = pipeline(
|
| 145 |
+
"text-generation",
|
| 146 |
+
model=path,
|
| 147 |
+
torch_dtype=torch.float16,
|
| 148 |
+
device_map="auto",
|
| 149 |
+
trust_remote_code=True
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
logger.info("Pipeline başarıyla yüklendi!")
|
| 153 |
|
| 154 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 155 |
"""
|
| 156 |
+
Pipeline tabanlı inference
|
| 157 |
"""
|
| 158 |
try:
|
| 159 |
+
inputs = data.get("inputs", "")
|
| 160 |
+
parameters = data.get("parameters", {})
|
| 161 |
+
|
| 162 |
+
# Varsayılan parametreler
|
| 163 |
+
default_params = {
|
| 164 |
+
"max_new_tokens": 512,
|
| 165 |
+
"temperature": 0.7,
|
| 166 |
+
"top_p": 0.9,
|
| 167 |
+
"do_sample": True,
|
| 168 |
+
"return_full_text": False
|
|
|
|
|
|
|
| 169 |
}
|
| 170 |
+
|
| 171 |
+
generation_params = {**default_params, **parameters}
|
| 172 |
+
|
| 173 |
+
# Pipeline'ı çalıştır
|
| 174 |
+
outputs = self.pipeline(
|
| 175 |
+
inputs,
|
| 176 |
+
**generation_params
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
return outputs
|
| 180 |
+
|
| 181 |
except Exception as e:
|
| 182 |
+
logger.error(f"Pipeline inference hatası: {str(e)}")
|
| 183 |
+
return [{
|
| 184 |
+
"error": str(e),
|
| 185 |
+
"error_type": type(e).__name__
|
| 186 |
+
}]
|