IntelliGrow commited on
Commit
c6451a2
verified
1 Parent(s): b67a32f

Create README.md

Browse files

# Modelo CNN para Clasificaci贸n de C谩ncer Cerebral

![PyTorch](https://img.shields.io/badge/PyTorch-EE4C2C?style=for-the-badge&logo=pytorch&logoColor=white) ![Python](https://img.shields.io/badge/Python-3776AB?style=for-the-badge&logo=python&logoColor=white)

<p align="center">
<b>鈿狅笍 ADVERTENCIA IMPORTANTE 鈿狅笍</b><br>
<b>Este modelo es un PROTOTIPO de investigaci贸n y NO DEBE SER UTILIZADO para diagn贸stico m茅dico real.</b><br>
<b>Cualquier decisi贸n m茅dica debe ser tomada por un profesional de la salud cualificado.</b>
</p>

Este repositorio contiene un modelo de Red Neuronal Convolucional (CNN) entrenado con PyTorch para clasificar im谩genes de resonancias magn茅ticas cerebrales en tres categor铆as.

## Descripci贸n del Modelo

El modelo es una CNN dise帽ada para la tarea de clasificaci贸n de im谩genes. Fue entrenado para distinguir entre los siguientes tres tipos de tumores cerebrales:

* **Glioma (`brain_glioma`)**
* **Meningioma (`brain_menin`)**
* **Tumor pituitario (`brain_tumor`)**

**Arquitectura:** El modelo utiliza una CNN personalizada (`SimpleCNN`) con cuatro capas convolucionales (32, 64, 128, 256 filtros respectivamente), cada una seguida de una capa de activaci贸n ReLU y una capa de max-pooling. Despu茅s de las capas convolucionales, la salida se aplana y se pasa a trav茅s de dos capas completamente conectadas (512 neuronas en la primera) para la clasificaci贸n final en 3 clases.

**Framework:** PyTorch

Este repositorio tambi茅n incluye el notebook `evaluar_dataset.ipynb`, que contiene el c贸digo utilizado para evaluar el modelo, generar la matriz de confusi贸n y calcular las m茅tricas de rendimiento.

El dataset utilizado para el entrenamiento, validaci贸n y test se encuentra en la carpeta `data/`.

## C贸mo Empezar

Para utilizar este modelo, necesitas tener PyTorch y Torchvision instalados. Puedes cargar el modelo y usarlo para hacer predicciones de la siguiente manera.

Aseg煤rate de guardar tu modelo entrenado (por ejemplo, como `torch_brain_cancer_91.pth`) y usar el siguiente script.

```python
import torch
from torchvision import transforms
from PIL import Image

# 1. Cargar el modelo
# Aseg煤rate de que la ruta al archivo .pth sea correcta
model = torch.load('modelo/torch_brain_cancer_91.pth')
model.eval()

# 2. Definir las transformaciones de la imagen
# 隆IMPORTANTE! Usa las mismas transformaciones que usaste para la validaci贸n/test.
# Rellena los valores correctos de reescalado y normalizaci贸n.
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], # [DATO A RELLENAR: si usaste valores diferentes]
std=[0.229, 0.224, 0.225] # [DATO A RELLENAR: si usaste valores diferentes]
)
])

# 3. Cargar y preprocesar la imagen
img = Image.open("[RUTA/A/TU/IMAGEN.jpg]").convert('RGB')
img_preprocessed = preprocess(img)
batch_img_tensor = torch.unsqueeze(img_preprocessed, 0)

# 4. Realizar la predicci贸n
with torch.no_grad():
output = model(batch_img_tensor)

# 5. Obtener la clase predicha
class_names = ['brain_glioma', 'brain_menin', 'brain_tumor']
_, index = torch.max(output, 1)
predicted_class = class_names[index[0]]
print(f"La clase predicha es: {predicted_class}")

```

## Dataset de Entrenamiento

**Descripci贸n:** Este conjunto de datos contiene una colecci贸n completa de im谩genes de resonancia magn茅tica para la investigaci贸n del c谩ncer cerebral, espec铆ficamente destinadas a respaldar el diagn贸stico m茅dico. Es un dataset de im谩genes de resonancia magn茅tica de c谩ncer cerebral.

**Divisi贸n de datos:**
El dataset fue pre-procesado y dividido en:
* **Entrenamiento:** 70%
* **Test:** 15%
* **Validaci贸n:** 15%

**Preprocesamiento:**
Se aplicaron diferentes transformaciones a las im谩genes para el entrenamiento y la evaluaci贸n:

* **Para el conjunto de entrenamiento (`transformaciones_train`):**
* `RandomResizedCrop(224)`: Recorte aleatorio y redimensionamiento a 224x224 p铆xeles.
* `RandomHorizontalFlip()`: Volteo horizontal aleatorio.
* `RandomRotation(15)`: Rotaci贸n aleatoria de hasta 15 grados.
* `ToTensor()`: Conversi贸n de las im谩genes a tensores PyTorch.
* `Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])`: Normalizaci贸n con los valores medios y desviaci贸n est谩ndar de ImageNet.

* **Para los conjuntos de validaci贸n y test (`transformaciones_test`):**
* `Resize(256)`: Redimensionamiento de la imagen a 256 p铆xeles en el lado m谩s corto.
* `CenterCrop(224)`: Recorte central a 224x224 p铆xeles.
* `ToTensor()`: Conversi贸n de las im谩genes a tensores PyTorch.
* `Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])`: Normalizaci贸n con los valores medios y desviaci贸n est谩ndar de ImageNet.

Estas transformaciones se aplicaron a los datasets utilizando `ImageFolder` y se cargaron con `DataLoader` con un `batch_size` de 32.

## Procedimiento de Entrenamiento

**Hiperpar谩metros:**
* **Optimizador:** Adam
* **Tasa de aprendizaje (Learning Rate):** 0.001
* **Funci贸n de p茅rdida:** CrossEntropyLoss
* **N煤mero de 茅pocas (Epochs):** 25
* **Tama帽o del lote (Batch Size):** 32

## Evaluaci贸n

El modelo fue evaluado en el conjunto de test, obteniendo los siguientes resultados:

```
Reporte de Clasificaci贸n:
precision recall f1-score support

brain_glioma 0.95 0.95 0.95 300
brain_menin 0.84 0.91 0.87 300
brain_tumor 0.94 0.86 0.90 307

accuracy 0.91 907
macro avg 0.91 0.91 0.91 907
weighted avg 0.91 0.91 0.91 907
```

**Precisi贸n por clase:**
* brain_glioma: 95.00%
* brain_menin: 91.00%
* brain_tumor: 85.99%

**Matriz de Confusi贸n:**

| | brain_glioma | brain_menin | brain_tumor |
| :---------- | :----------- | :---------- | :---------- |
| brain_glioma | 285 | 15 | 0 |
| brain_menin | 9 | 273 | 18 |
| brain_tumor | 6 | 37 | 264 |

**An谩lisis de la Matriz de Confusi贸n:**
La matriz de confusi贸n muestra el rendimiento del modelo para cada clase. Se observa que el modelo clasifica la clase `brain_glioma` con una alta precisi贸n y pocos errores. La principal 谩rea de mejora se encuentra en la distinci贸n entre las clases `brain_menin` y `brain_tumor`. Hay un n煤mero notable de falsos negativos y falsos positivos entre estas dos categor铆as, lo que indica que el modelo a veces confunde estos dos tipos de tumores entre s铆. Por ejemplo, 37 casos de `brain_tumor` fueron clasificados err贸neamente como `brain_menin`, y 18 casos de `brain_menin` fueron clasificados como `brain_tumor`.

## Limitaciones y Consideraciones 脡ticas

* **NO PARA DIAGN脫STICO M脡DICO:** Este modelo es una prueba de concepto y **no debe ser utilizado para el diagn贸stico m茅dico real**. Cualquier diagn贸stico debe ser realizado por un profesional de la salud cualificado.
* **Sesgos del Dataset:** El rendimiento del modelo est谩 limitado por la naturaleza del dataset de entrenamiento. Puede no generalizar bien a im谩genes de esc谩neres con configuraciones diferentes o a datos demogr谩ficos no representados en el conjunto de datos.
* **Generalizaci贸n:** El modelo fue entrenado y evaluado en un conjunto de datos espec铆fico. Su rendimiento en datos completamente nuevos y no vistos puede variar.

---
*Model card creada por IntelliGrow.*

Files changed (1) hide show
  1. README.md +17 -0
README.md ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language: es
4
+ tags:
5
+ - image-classification
6
+ - pytorch
7
+ - cnn
8
+ - medical-imaging
9
+ - brain-cancer
10
+ datasets:
11
+ - brain-cancer
12
+ metrics:
13
+ - accuracy
14
+ - precision
15
+ - recall
16
+ - f1
17
+ ---