Upload model files: SDAR-VL-Instruct-4B
Browse files- README.md +0 -0
- added_tokens.json +29 -0
- all_results.json +8 -0
- chat_template.jinja +30 -0
- config.json +229 -0
- configuration_llava_onevision.py +200 -0
- configuration_sdar.py +212 -0
- fused_linear_diffusion_cross_entropy.py +682 -0
- generation_config.json +13 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +848 -0
- modeling_llava_onevision.py +1451 -0
- modeling_sdar.py +909 -0
- preprocessor_config.json +178 -0
- processor_config.json +8 -0
- special_tokens_map.json +39 -0
- tokenization_qwen2.py +342 -0
- tokenizer_config.json +257 -0
- train_results.json +8 -0
- video_preprocessor_config.json +74 -0
- vocab.json +0 -0
README.md
ADDED
|
File without changes
|
added_tokens.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</think>": 151668,
|
| 3 |
+
"</tool_call>": 151658,
|
| 4 |
+
"</tool_response>": 151666,
|
| 5 |
+
"<think>": 151667,
|
| 6 |
+
"<tool_call>": 151657,
|
| 7 |
+
"<tool_response>": 151665,
|
| 8 |
+
"<|MASK|>": 151669,
|
| 9 |
+
"<|box_end|>": 151649,
|
| 10 |
+
"<|box_start|>": 151648,
|
| 11 |
+
"<|endoftext|>": 151643,
|
| 12 |
+
"<|file_sep|>": 151664,
|
| 13 |
+
"<|fim_middle|>": 151660,
|
| 14 |
+
"<|fim_pad|>": 151662,
|
| 15 |
+
"<|fim_prefix|>": 151659,
|
| 16 |
+
"<|fim_suffix|>": 151661,
|
| 17 |
+
"<|im_end|>": 151645,
|
| 18 |
+
"<|im_start|>": 151644,
|
| 19 |
+
"<|image_pad|>": 151655,
|
| 20 |
+
"<|object_ref_end|>": 151647,
|
| 21 |
+
"<|object_ref_start|>": 151646,
|
| 22 |
+
"<|quad_end|>": 151651,
|
| 23 |
+
"<|quad_start|>": 151650,
|
| 24 |
+
"<|repo_name|>": 151663,
|
| 25 |
+
"<|video_pad|>": 151656,
|
| 26 |
+
"<|vision_end|>": 151653,
|
| 27 |
+
"<|vision_pad|>": 151654,
|
| 28 |
+
"<|vision_start|>": 151652
|
| 29 |
+
}
|
all_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 1.0,
|
| 3 |
+
"total_flos": 2.964601169621549e+20,
|
| 4 |
+
"train_loss": 0.849951366135661,
|
| 5 |
+
"train_runtime": 90359.1865,
|
| 6 |
+
"train_samples_per_second": 7.51,
|
| 7 |
+
"train_steps_per_second": 0.117
|
| 8 |
+
}
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- set image_count = namespace(value=0) -%}
|
| 2 |
+
{%- set video_count = namespace(value=0) -%}
|
| 3 |
+
{%- for message in messages %}
|
| 4 |
+
{%- if loop.first and message['role'] != 'system' %}
|
| 5 |
+
{{- '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' -}}
|
| 6 |
+
{%- endif %}
|
| 7 |
+
{{- '<|im_start|>' + message['role'] -}}
|
| 8 |
+
{%- if message['content'] is string -%}
|
| 9 |
+
{{- '\n\n' + message['content'] -}}
|
| 10 |
+
{%- else -%}
|
| 11 |
+
{{- '\n' -}}
|
| 12 |
+
{%- for content in message['content'] -%}
|
| 13 |
+
{%- if content['type'] == 'image' or 'image' in content or 'image_url' in content -%}
|
| 14 |
+
{%- set image_count.value = image_count.value + 1 -%}
|
| 15 |
+
{%- if add_vision_id %}{{ 'Picture ' }}{{ image_count.value }}{{ ': ' }}{% endif -%}
|
| 16 |
+
{{- '<|image_pad|>' -}}
|
| 17 |
+
{%- elif content['type'] == 'video' or 'video' in content -%}
|
| 18 |
+
{%- set video_count.value = video_count.value + 1 -%}
|
| 19 |
+
{%- if add_vision_id %}{{ 'Video ' }}{{ video_count.value }}{{ ': ' }}{% endif -%}
|
| 20 |
+
{{- '<|video_pad|>' -}}
|
| 21 |
+
{%- elif 'text' in content -%}
|
| 22 |
+
{{- content['text'] -}}
|
| 23 |
+
{%- endif -%}
|
| 24 |
+
{%- endfor %}
|
| 25 |
+
{%- endif -%}
|
| 26 |
+
{{- '\n<|im_end|>\n' -}}
|
| 27 |
+
{% endfor %}
|
| 28 |
+
{%- if add_generation_prompt -%}
|
| 29 |
+
{{- '<|im_start|>assistant\n' -}}
|
| 30 |
+
{%- endif %}
|
config.json
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"LlavaOnevisionForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_llava_onevision.LlavaOnevisionConfig",
|
| 7 |
+
"AutoModel": "modeling_llava_onevision.LlavaOnevisionForConditionalGeneration",
|
| 8 |
+
"AutoModelForCausalLM": "modeling_llava_onevision.LlavaOnevisionForConditionalGeneration",
|
| 9 |
+
"AutoModelForImageTextToText": "modeling_llava_onevision.LlavaOnevisionForConditionalGeneration"
|
| 10 |
+
},
|
| 11 |
+
"hidden_size": 2560,
|
| 12 |
+
"ignore_index": -100,
|
| 13 |
+
"image_grid_pinpoints": [
|
| 14 |
+
[
|
| 15 |
+
384,
|
| 16 |
+
384
|
| 17 |
+
],
|
| 18 |
+
[
|
| 19 |
+
384,
|
| 20 |
+
768
|
| 21 |
+
],
|
| 22 |
+
[
|
| 23 |
+
384,
|
| 24 |
+
1152
|
| 25 |
+
],
|
| 26 |
+
[
|
| 27 |
+
384,
|
| 28 |
+
1536
|
| 29 |
+
],
|
| 30 |
+
[
|
| 31 |
+
384,
|
| 32 |
+
1920
|
| 33 |
+
],
|
| 34 |
+
[
|
| 35 |
+
384,
|
| 36 |
+
2304
|
| 37 |
+
],
|
| 38 |
+
[
|
| 39 |
+
768,
|
| 40 |
+
384
|
| 41 |
+
],
|
| 42 |
+
[
|
| 43 |
+
768,
|
| 44 |
+
768
|
| 45 |
+
],
|
| 46 |
+
[
|
| 47 |
+
768,
|
| 48 |
+
1152
|
| 49 |
+
],
|
| 50 |
+
[
|
| 51 |
+
768,
|
| 52 |
+
1536
|
| 53 |
+
],
|
| 54 |
+
[
|
| 55 |
+
768,
|
| 56 |
+
1920
|
| 57 |
+
],
|
| 58 |
+
[
|
| 59 |
+
768,
|
| 60 |
+
2304
|
| 61 |
+
],
|
| 62 |
+
[
|
| 63 |
+
1152,
|
| 64 |
+
384
|
| 65 |
+
],
|
| 66 |
+
[
|
| 67 |
+
1152,
|
| 68 |
+
768
|
| 69 |
+
],
|
| 70 |
+
[
|
| 71 |
+
1152,
|
| 72 |
+
1152
|
| 73 |
+
],
|
| 74 |
+
[
|
| 75 |
+
1152,
|
| 76 |
+
1536
|
| 77 |
+
],
|
| 78 |
+
[
|
| 79 |
+
1152,
|
| 80 |
+
1920
|
| 81 |
+
],
|
| 82 |
+
[
|
| 83 |
+
1152,
|
| 84 |
+
2304
|
| 85 |
+
],
|
| 86 |
+
[
|
| 87 |
+
1536,
|
| 88 |
+
384
|
| 89 |
+
],
|
| 90 |
+
[
|
| 91 |
+
1536,
|
| 92 |
+
768
|
| 93 |
+
],
|
| 94 |
+
[
|
| 95 |
+
1536,
|
| 96 |
+
1152
|
| 97 |
+
],
|
| 98 |
+
[
|
| 99 |
+
1536,
|
| 100 |
+
1536
|
| 101 |
+
],
|
| 102 |
+
[
|
| 103 |
+
1536,
|
| 104 |
+
1920
|
| 105 |
+
],
|
| 106 |
+
[
|
| 107 |
+
1536,
|
| 108 |
+
2304
|
| 109 |
+
],
|
| 110 |
+
[
|
| 111 |
+
1920,
|
| 112 |
+
384
|
| 113 |
+
],
|
| 114 |
+
[
|
| 115 |
+
1920,
|
| 116 |
+
768
|
| 117 |
+
],
|
| 118 |
+
[
|
| 119 |
+
1920,
|
| 120 |
+
1152
|
| 121 |
+
],
|
| 122 |
+
[
|
| 123 |
+
1920,
|
| 124 |
+
1536
|
| 125 |
+
],
|
| 126 |
+
[
|
| 127 |
+
1920,
|
| 128 |
+
1920
|
| 129 |
+
],
|
| 130 |
+
[
|
| 131 |
+
1920,
|
| 132 |
+
2304
|
| 133 |
+
],
|
| 134 |
+
[
|
| 135 |
+
2304,
|
| 136 |
+
384
|
| 137 |
+
],
|
| 138 |
+
[
|
| 139 |
+
2304,
|
| 140 |
+
768
|
| 141 |
+
],
|
| 142 |
+
[
|
| 143 |
+
2304,
|
| 144 |
+
1152
|
| 145 |
+
],
|
| 146 |
+
[
|
| 147 |
+
2304,
|
| 148 |
+
1536
|
| 149 |
+
],
|
| 150 |
+
[
|
| 151 |
+
2304,
|
| 152 |
+
1920
|
| 153 |
+
],
|
| 154 |
+
[
|
| 155 |
+
2304,
|
| 156 |
+
2304
|
| 157 |
+
]
|
| 158 |
+
],
|
| 159 |
+
"image_token_index": 151655,
|
| 160 |
+
"model_type": "sdar_v",
|
| 161 |
+
"multimodal_projector_bias": true,
|
| 162 |
+
"projector_hidden_act": "gelu",
|
| 163 |
+
"text_config": {
|
| 164 |
+
"_name_or_path": "/mnt/shared-storage-user/chengshuang/projects/mdllm/llama_factory_sdar/saves/sdar_v_stage1/full/sft",
|
| 165 |
+
"architectures": [
|
| 166 |
+
"SDAR"
|
| 167 |
+
],
|
| 168 |
+
"attention_bias": false,
|
| 169 |
+
"attention_dropout": 0.0,
|
| 170 |
+
"auto_map": {
|
| 171 |
+
"AutoConfig": "configuration_sdar.SDARConfig",
|
| 172 |
+
"AutoModel": "modeling_sdar.SDARModel",
|
| 173 |
+
"AutoModelForCausalLM": "modeling_sdar.SDARForCausalLM"
|
| 174 |
+
},
|
| 175 |
+
"block_size": 4,
|
| 176 |
+
"bos_token_id": 151643,
|
| 177 |
+
"debug": false,
|
| 178 |
+
"eos_token_id": 151643,
|
| 179 |
+
"ep_size": 1,
|
| 180 |
+
"fuse_cross_entropy": true,
|
| 181 |
+
"head_dim": 128,
|
| 182 |
+
"hidden_act": "silu",
|
| 183 |
+
"hidden_size": 2560,
|
| 184 |
+
"initializer_range": 0.02,
|
| 185 |
+
"intermediate_size": 9728,
|
| 186 |
+
"mask_token_id": 151669,
|
| 187 |
+
"max_position_embeddings": 32768,
|
| 188 |
+
"max_window_layers": 36,
|
| 189 |
+
"micro_forward": false,
|
| 190 |
+
"model_type": "sdar",
|
| 191 |
+
"num_attention_heads": 32,
|
| 192 |
+
"num_hidden_layers": 36,
|
| 193 |
+
"num_key_value_heads": 8,
|
| 194 |
+
"rms_norm_eps": 1e-06,
|
| 195 |
+
"rope_scaling": null,
|
| 196 |
+
"rope_theta": 1000000,
|
| 197 |
+
"skip_checkpoint": false,
|
| 198 |
+
"sliding_window": null,
|
| 199 |
+
"torch_dtype": "bfloat16",
|
| 200 |
+
"use_cache": false,
|
| 201 |
+
"use_deepep": false,
|
| 202 |
+
"use_sliding_window": false,
|
| 203 |
+
"vocab_size": 151936
|
| 204 |
+
},
|
| 205 |
+
"tie_word_embeddings": false,
|
| 206 |
+
"torch_dtype": "bfloat16",
|
| 207 |
+
"transformers_version": "4.52.4",
|
| 208 |
+
"use_cache": false,
|
| 209 |
+
"use_image_newline_parameter": true,
|
| 210 |
+
"video_token_index": 151656,
|
| 211 |
+
"vision_aspect_ratio": "anyres_max_9",
|
| 212 |
+
"vision_config": {
|
| 213 |
+
"attention_dropout": 0.0,
|
| 214 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 215 |
+
"hidden_size": 1152,
|
| 216 |
+
"image_size": 384,
|
| 217 |
+
"intermediate_size": 4304,
|
| 218 |
+
"layer_norm_eps": 1e-06,
|
| 219 |
+
"model_type": "siglip_vision_model",
|
| 220 |
+
"num_attention_heads": 16,
|
| 221 |
+
"num_channels": 3,
|
| 222 |
+
"num_hidden_layers": 27,
|
| 223 |
+
"patch_size": 14,
|
| 224 |
+
"torch_dtype": "bfloat16",
|
| 225 |
+
"vision_use_head": false
|
| 226 |
+
},
|
| 227 |
+
"vision_feature_layer": -1,
|
| 228 |
+
"vision_feature_select_strategy": "full"
|
| 229 |
+
}
|
configuration_llava_onevision.py
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 18 |
+
from transformers.utils import (
|
| 19 |
+
logging,
|
| 20 |
+
)
|
| 21 |
+
from transformers.models.auto import CONFIG_MAPPING, AutoConfig
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
logger = logging.get_logger(__name__)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class LlavaOnevisionConfig(PretrainedConfig):
|
| 28 |
+
r"""
|
| 29 |
+
This is the configuration class to store the configuration of a [`LlavaOnevisionForConditionalGeneration`]. It is used to instantiate an
|
| 30 |
+
Llava-NeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 31 |
+
with the defaults will yield a similar configuration to that of the [llava-hf/llava-onevision-qwen2-7b-ov-hf](https://huggingface.co/llava-hf/llava-onevision-qwen2-7b-ov-hf)
|
| 32 |
+
model.
|
| 33 |
+
|
| 34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 35 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `SiglipVisionConfig`):
|
| 39 |
+
The config object or dictionary of the vision backbone.
|
| 40 |
+
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `Qwen2Config`):
|
| 41 |
+
The config object or dictionary of the text backbone.
|
| 42 |
+
image_token_index (`int`, *optional*, defaults to 151646):
|
| 43 |
+
The image token index to encode the image prompt.
|
| 44 |
+
video_token_index (`int`, *optional*, defaults to 151647):
|
| 45 |
+
The video token index to encode the video prompt.
|
| 46 |
+
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
|
| 47 |
+
The activation function used by the multimodal projector.
|
| 48 |
+
vision_feature_select_strategy (`str`, *optional*, defaults to `"full"`):
|
| 49 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
| 50 |
+
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
|
| 51 |
+
If `"full"`, the full vision features are used.
|
| 52 |
+
vision_feature_layer (`Union[int, List[int]]`, *optional*, defaults to -1):
|
| 53 |
+
The index of the layer to select the vision feature. If multiple indices are provided,
|
| 54 |
+
the vision feature of the corresponding indices will be concatenated to form the
|
| 55 |
+
vision features.
|
| 56 |
+
vision_aspect_ratio (`str`, *optional*, defaults to `"anyres_max_9"`):
|
| 57 |
+
Aspect ratio used when processong image features. The default value is "anyres_max_9".
|
| 58 |
+
image_grid_pinpoints (`List`, *optional*):
|
| 59 |
+
A list of possible resolutions to use for processing high resolution images. Each item in the list should be a tuple or list
|
| 60 |
+
of the form `(height, width)`.
|
| 61 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 62 |
+
Whether the model's input and output word embeddings should be tied.
|
| 63 |
+
multimodal_projector_bias (`bool`, *optional*, defaults to `True`):
|
| 64 |
+
Whether to use bias in the multimodal projector.
|
| 65 |
+
|
| 66 |
+
Example:
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
>>> from transformers import LlavaOnevisionForConditionalGeneration, LlavaOnevisionConfig, SiglipVisionConfig, Qwen2Config
|
| 70 |
+
|
| 71 |
+
>>> # Initializing a CLIP-vision config
|
| 72 |
+
>>> vision_config = SiglipVisionConfig()
|
| 73 |
+
|
| 74 |
+
>>> # Initializing a Llama config
|
| 75 |
+
>>> text_config = Qwen2Config()
|
| 76 |
+
|
| 77 |
+
>>> # Initializing a Llava-Next llava-hf/llava-onevision-qwen2-7b-ov-hf style configuration
|
| 78 |
+
>>> configuration = LlavaOnevisionConfig(vision_config, text_config)
|
| 79 |
+
|
| 80 |
+
>>> # Initializing a model from the llava-hf/llava-onevision-qwen2-7b-ov-hf style configuration
|
| 81 |
+
>>> model = LlavaOnevisionForConditionalGeneration(configuration)
|
| 82 |
+
|
| 83 |
+
>>> # Accessing the model configuration
|
| 84 |
+
>>> configuration = model.config
|
| 85 |
+
```"""
|
| 86 |
+
|
| 87 |
+
model_type = "sdar_v"
|
| 88 |
+
attribute_map = {
|
| 89 |
+
"image_token_id": "image_token_index",
|
| 90 |
+
"video_token_id": "video_token_index",
|
| 91 |
+
}
|
| 92 |
+
sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig}
|
| 93 |
+
|
| 94 |
+
def __init__(
|
| 95 |
+
self,
|
| 96 |
+
vision_config=None,
|
| 97 |
+
text_config=None,
|
| 98 |
+
image_token_index=151646,
|
| 99 |
+
video_token_index=151647,
|
| 100 |
+
projector_hidden_act="gelu",
|
| 101 |
+
vision_feature_select_strategy="full",
|
| 102 |
+
vision_feature_layer=-1,
|
| 103 |
+
vision_aspect_ratio="anyres_max_9",
|
| 104 |
+
image_grid_pinpoints=None,
|
| 105 |
+
tie_word_embeddings=False,
|
| 106 |
+
multimodal_projector_bias=True,
|
| 107 |
+
**kwargs,
|
| 108 |
+
):
|
| 109 |
+
self.image_token_index = image_token_index
|
| 110 |
+
self.video_token_index = video_token_index
|
| 111 |
+
self.projector_hidden_act = projector_hidden_act
|
| 112 |
+
self.multimodal_projector_bias = multimodal_projector_bias
|
| 113 |
+
|
| 114 |
+
if vision_feature_select_strategy not in ["default", "full"]:
|
| 115 |
+
raise ValueError(
|
| 116 |
+
"vision_feature_select_strategy should be one of 'default', 'full'."
|
| 117 |
+
f"Got: {vision_feature_select_strategy}"
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
self.vision_feature_select_strategy = vision_feature_select_strategy
|
| 121 |
+
self.vision_feature_layer = vision_feature_layer
|
| 122 |
+
self.vision_aspect_ratio = vision_aspect_ratio
|
| 123 |
+
image_grid_pinpoints = (
|
| 124 |
+
image_grid_pinpoints
|
| 125 |
+
if image_grid_pinpoints is not None
|
| 126 |
+
else [
|
| 127 |
+
[384, 384],
|
| 128 |
+
[384, 768],
|
| 129 |
+
[384, 1152],
|
| 130 |
+
[384, 1536],
|
| 131 |
+
[384, 1920],
|
| 132 |
+
[384, 2304],
|
| 133 |
+
[768, 384],
|
| 134 |
+
[768, 768],
|
| 135 |
+
[768, 1152],
|
| 136 |
+
[768, 1536],
|
| 137 |
+
[768, 1920],
|
| 138 |
+
[768, 2304],
|
| 139 |
+
[1152, 384],
|
| 140 |
+
[1152, 768],
|
| 141 |
+
[1152, 1152],
|
| 142 |
+
[1152, 1536],
|
| 143 |
+
[1152, 1920],
|
| 144 |
+
[1152, 2304],
|
| 145 |
+
[1536, 384],
|
| 146 |
+
[1536, 768],
|
| 147 |
+
[1536, 1152],
|
| 148 |
+
[1536, 1536],
|
| 149 |
+
[1536, 1920],
|
| 150 |
+
[1536, 2304],
|
| 151 |
+
[1920, 384],
|
| 152 |
+
[1920, 768],
|
| 153 |
+
[1920, 1152],
|
| 154 |
+
[1920, 1536],
|
| 155 |
+
[1920, 1920],
|
| 156 |
+
[1920, 2304],
|
| 157 |
+
[2304, 384],
|
| 158 |
+
[2304, 768],
|
| 159 |
+
[2304, 1152],
|
| 160 |
+
[2304, 1536],
|
| 161 |
+
[2304, 1920],
|
| 162 |
+
[2304, 2304],
|
| 163 |
+
]
|
| 164 |
+
)
|
| 165 |
+
self.image_grid_pinpoints = image_grid_pinpoints
|
| 166 |
+
|
| 167 |
+
if isinstance(vision_config, dict):
|
| 168 |
+
vision_config["model_type"] = (
|
| 169 |
+
vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model"
|
| 170 |
+
)
|
| 171 |
+
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
|
| 172 |
+
elif vision_config is None:
|
| 173 |
+
vision_config = CONFIG_MAPPING["siglip_vision_model"](
|
| 174 |
+
hidden_size=1152,
|
| 175 |
+
intermediate_size=4304,
|
| 176 |
+
patch_size=14,
|
| 177 |
+
image_size=384,
|
| 178 |
+
num_hidden_layers=26,
|
| 179 |
+
num_attention_heads=14,
|
| 180 |
+
vision_use_head=False,
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
self.vision_config = vision_config
|
| 184 |
+
|
| 185 |
+
if isinstance(text_config, dict):
|
| 186 |
+
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "qwen2"
|
| 187 |
+
try:
|
| 188 |
+
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
|
| 189 |
+
except:
|
| 190 |
+
from .configuration_sdar import SDARConfig
|
| 191 |
+
text_config = SDARConfig(**text_config)
|
| 192 |
+
elif text_config is None:
|
| 193 |
+
text_config = CONFIG_MAPPING["qwen2"]()
|
| 194 |
+
|
| 195 |
+
self.text_config = text_config
|
| 196 |
+
|
| 197 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
__all__ = ["LlavaOnevisionConfig"]
|
configuration_sdar.py
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""SDAR model configuration"""
|
| 16 |
+
|
| 17 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 18 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 19 |
+
from transformers.utils import logging
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
logger = logging.get_logger(__name__)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class SDARConfig(PretrainedConfig):
|
| 26 |
+
r"""
|
| 27 |
+
This is the configuration class to store the configuration of a [`SDARModel`]. It is used to instantiate a
|
| 28 |
+
SDAR model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 29 |
+
with the defaults will yield a similar configuration to that of
|
| 30 |
+
SDAR-1.7B [DiffuOpen/SDAR-1.7B-Chat](https://huggingface.co/DiffuOpen/SDAR-1.7B-Chat/).
|
| 31 |
+
|
| 32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 33 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
| 38 |
+
Vocabulary size of the SDAR model. Defines the number of different tokens that can be represented by the
|
| 39 |
+
`inputs_ids` passed when calling [`SDARModel`]
|
| 40 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 41 |
+
Dimension of the hidden representations.
|
| 42 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
| 43 |
+
Dimension of the MLP representations.
|
| 44 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 45 |
+
Number of hidden layers in the Transformer encoder.
|
| 46 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 47 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 48 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
| 49 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 50 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 51 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 52 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 53 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 54 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
| 55 |
+
head_dim (`int`, *optional*, defaults to 128):
|
| 56 |
+
The attention head dimension.
|
| 57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 58 |
+
The non-linear activation function (function or string) in the decoder.
|
| 59 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
| 60 |
+
The maximum sequence length that this model might ever be used with.
|
| 61 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 62 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 63 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 64 |
+
The epsilon used by the rms normalization layers.
|
| 65 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 66 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 67 |
+
relevant if `config.is_decoder=True`.
|
| 68 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 69 |
+
Whether the model's input and output word embeddings should be tied.
|
| 70 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 71 |
+
The base period of the RoPE embeddings.
|
| 72 |
+
rope_scaling (`Dict`, *optional*):
|
| 73 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
| 74 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 75 |
+
accordingly.
|
| 76 |
+
Expected contents:
|
| 77 |
+
`rope_type` (`str`):
|
| 78 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
| 79 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
| 80 |
+
`factor` (`float`, *optional*):
|
| 81 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
| 82 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 83 |
+
original maximum pre-trained length.
|
| 84 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
| 85 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
| 86 |
+
pretraining.
|
| 87 |
+
`attention_factor` (`float`, *optional*):
|
| 88 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 89 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
| 90 |
+
`factor` field to infer the suggested value.
|
| 91 |
+
`beta_fast` (`float`, *optional*):
|
| 92 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 93 |
+
ramp function. If unspecified, it defaults to 32.
|
| 94 |
+
`beta_slow` (`float`, *optional*):
|
| 95 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 96 |
+
ramp function. If unspecified, it defaults to 1.
|
| 97 |
+
`short_factor` (`List[float]`, *optional*):
|
| 98 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
| 99 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 100 |
+
size divided by the number of attention heads divided by 2
|
| 101 |
+
`long_factor` (`List[float]`, *optional*):
|
| 102 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
| 103 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 104 |
+
size divided by the number of attention heads divided by 2
|
| 105 |
+
`low_freq_factor` (`float`, *optional*):
|
| 106 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 107 |
+
`high_freq_factor` (`float`, *optional*):
|
| 108 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
| 109 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
| 110 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 111 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
| 112 |
+
Whether to use sliding window attention.
|
| 113 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
| 114 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
| 115 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
| 116 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
| 117 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 118 |
+
The dropout ratio for the attention probabilities.
|
| 119 |
+
|
| 120 |
+
```python
|
| 121 |
+
>>> from transformers import SDARModel, SDARConfig
|
| 122 |
+
|
| 123 |
+
>>> # Initializing a SDAR style configuration
|
| 124 |
+
>>> configuration = SDARConfig()
|
| 125 |
+
|
| 126 |
+
>>> # Initializing a model from the SDAR-8B style configuration
|
| 127 |
+
>>> model = SDARModel(configuration)
|
| 128 |
+
|
| 129 |
+
>>> # Accessing the model configuration
|
| 130 |
+
>>> configuration = model.config
|
| 131 |
+
```"""
|
| 132 |
+
|
| 133 |
+
model_type = "sdar"
|
| 134 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 135 |
+
|
| 136 |
+
# Default tensor parallel plan for base model `SDAR`
|
| 137 |
+
base_model_tp_plan = {
|
| 138 |
+
"layers.*.self_attn.q_proj": "colwise",
|
| 139 |
+
"layers.*.self_attn.k_proj": "colwise",
|
| 140 |
+
"layers.*.self_attn.v_proj": "colwise",
|
| 141 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
| 142 |
+
"layers.*.mlp.gate_proj": "colwise",
|
| 143 |
+
"layers.*.mlp.up_proj": "colwise",
|
| 144 |
+
"layers.*.mlp.down_proj": "rowwise",
|
| 145 |
+
}
|
| 146 |
+
base_model_pp_plan = {
|
| 147 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
| 148 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
| 149 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
def __init__(
|
| 153 |
+
self,
|
| 154 |
+
vocab_size=151936,
|
| 155 |
+
hidden_size=4096,
|
| 156 |
+
intermediate_size=22016,
|
| 157 |
+
num_hidden_layers=32,
|
| 158 |
+
num_attention_heads=32,
|
| 159 |
+
num_key_value_heads=32,
|
| 160 |
+
head_dim=128,
|
| 161 |
+
hidden_act="silu",
|
| 162 |
+
max_position_embeddings=32768,
|
| 163 |
+
initializer_range=0.02,
|
| 164 |
+
rms_norm_eps=1e-6,
|
| 165 |
+
use_cache=True,
|
| 166 |
+
tie_word_embeddings=False,
|
| 167 |
+
rope_theta=10000.0,
|
| 168 |
+
rope_scaling=None,
|
| 169 |
+
attention_bias=False,
|
| 170 |
+
use_sliding_window=False,
|
| 171 |
+
sliding_window=4096,
|
| 172 |
+
max_window_layers=28,
|
| 173 |
+
attention_dropout=0.0,
|
| 174 |
+
**kwargs,
|
| 175 |
+
):
|
| 176 |
+
self.vocab_size = vocab_size
|
| 177 |
+
self.max_position_embeddings = max_position_embeddings
|
| 178 |
+
self.hidden_size = hidden_size
|
| 179 |
+
self.intermediate_size = intermediate_size
|
| 180 |
+
self.num_hidden_layers = num_hidden_layers
|
| 181 |
+
self.num_attention_heads = num_attention_heads
|
| 182 |
+
self.use_sliding_window = use_sliding_window
|
| 183 |
+
self.sliding_window = sliding_window # we check `use_sliding_window` in the modeling code
|
| 184 |
+
self.max_window_layers = max_window_layers
|
| 185 |
+
|
| 186 |
+
# for backward compatibility
|
| 187 |
+
if num_key_value_heads is None:
|
| 188 |
+
num_key_value_heads = num_attention_heads
|
| 189 |
+
|
| 190 |
+
self.num_key_value_heads = num_key_value_heads
|
| 191 |
+
self.head_dim = head_dim
|
| 192 |
+
self.hidden_act = hidden_act
|
| 193 |
+
self.initializer_range = initializer_range
|
| 194 |
+
self.rms_norm_eps = rms_norm_eps
|
| 195 |
+
self.use_cache = use_cache
|
| 196 |
+
self.rope_theta = rope_theta
|
| 197 |
+
self.rope_scaling = rope_scaling
|
| 198 |
+
self.attention_bias = attention_bias
|
| 199 |
+
self.attention_dropout = attention_dropout
|
| 200 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 201 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
| 202 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 203 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 204 |
+
rope_config_validation(self)
|
| 205 |
+
|
| 206 |
+
super().__init__(
|
| 207 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 208 |
+
**kwargs,
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
__all__ = ["SDARConfig"]
|
fused_linear_diffusion_cross_entropy.py
ADDED
|
@@ -0,0 +1,682 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
# Code adapted from
|
| 4 |
+
# https://github.com/fla-org/flash-linear-attention/blob/main/fla/modules/fused_linear_cross_entropy.py
|
| 5 |
+
# Implementation of element-wise division of cross entropy loss
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Code adapted from
|
| 9 |
+
# https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/ops/fused_linear_cross_entropy.py
|
| 10 |
+
|
| 11 |
+
from functools import partial
|
| 12 |
+
from typing import Optional, Tuple
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
import triton
|
| 18 |
+
import triton.language as tl
|
| 19 |
+
from torch.distributed import DeviceMesh
|
| 20 |
+
from torch.distributed.tensor import DTensor, Replicate, Shard, distribute_module
|
| 21 |
+
from torch.distributed.tensor.parallel import ParallelStyle
|
| 22 |
+
|
| 23 |
+
# The hard limit of TRITON_MAX_TENSOR_NUMEL is 1048576
|
| 24 |
+
# https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/language/core.py#L19
|
| 25 |
+
# However, setting limit as 65536 as in LayerNorm tutorial is faster because of less register spilling
|
| 26 |
+
# The optimal maximum block size depends on your hardware, your kernel, and your dtype
|
| 27 |
+
MAX_FUSED_SIZE = 65536 // 2
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@triton.heuristics({
|
| 31 |
+
'HAS_SCALE': lambda args: args['scale'] is not None
|
| 32 |
+
})
|
| 33 |
+
@triton.autotune(
|
| 34 |
+
configs=[
|
| 35 |
+
triton.Config({}, num_warps=num_warps)
|
| 36 |
+
for num_warps in [1, 2, 4, 8, 16, 32]
|
| 37 |
+
],
|
| 38 |
+
key=['D']
|
| 39 |
+
)
|
| 40 |
+
@triton.jit
|
| 41 |
+
def logsumexp_fwd_kernel(
|
| 42 |
+
x,
|
| 43 |
+
z,
|
| 44 |
+
scale,
|
| 45 |
+
D: tl.constexpr,
|
| 46 |
+
B: tl.constexpr,
|
| 47 |
+
HAS_SCALE: tl.constexpr
|
| 48 |
+
):
|
| 49 |
+
i_n, i_d = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64)
|
| 50 |
+
o_d = i_d * B + tl.arange(0, B)
|
| 51 |
+
m_d = o_d < D
|
| 52 |
+
|
| 53 |
+
b_x = tl.load(x + i_n * D + o_d, mask=m_d, other=-float('inf'))
|
| 54 |
+
if HAS_SCALE:
|
| 55 |
+
b_x = b_x * scale
|
| 56 |
+
b_m = tl.max(b_x, 0)
|
| 57 |
+
b_z = tl.log(tl.sum(tl.exp(b_x - b_m), 0)) + b_m
|
| 58 |
+
tl.store(z + i_n * tl.cdiv(D, B) + i_d, b_z)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def logsumexp_fwd(
|
| 62 |
+
x,
|
| 63 |
+
scale: Optional[float] = None,
|
| 64 |
+
dtype: Optional[torch.dtype] = None
|
| 65 |
+
):
|
| 66 |
+
r"""
|
| 67 |
+
Compute the logsumexp of the input tensor over the last dimension.
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
x (Tensor):
|
| 71 |
+
The input tensor of any shape.
|
| 72 |
+
scale (Optional[float]):
|
| 73 |
+
The scale applied to the input tensor. Default: `None`.
|
| 74 |
+
dtype (Optional[torch.dtype]):
|
| 75 |
+
The data type of the output tensor. Default: `None`.
|
| 76 |
+
Returns:
|
| 77 |
+
Tensor: The logsumexp of the input tensor.
|
| 78 |
+
"""
|
| 79 |
+
|
| 80 |
+
shape = x.shape
|
| 81 |
+
x = x.view(-1, shape[-1])
|
| 82 |
+
N, D = x.shape
|
| 83 |
+
B = min(triton.next_power_of_2(D), 64 * 1024)
|
| 84 |
+
ND = triton.cdiv(D, B)
|
| 85 |
+
|
| 86 |
+
z = x.new_empty(N, ND, dtype=torch.float)
|
| 87 |
+
logsumexp_fwd_kernel[(N, ND)](
|
| 88 |
+
x=x,
|
| 89 |
+
z=z,
|
| 90 |
+
scale=scale,
|
| 91 |
+
D=D,
|
| 92 |
+
B=B
|
| 93 |
+
)
|
| 94 |
+
z = z.logsumexp(-1).view(*shape[:-1])
|
| 95 |
+
if dtype is not None and dtype != torch.float:
|
| 96 |
+
z = z.to(dtype)
|
| 97 |
+
return z
|
| 98 |
+
|
| 99 |
+
@triton.jit
|
| 100 |
+
def cross_entropy_kernel(
|
| 101 |
+
logits,
|
| 102 |
+
lse,
|
| 103 |
+
target,
|
| 104 |
+
p_mask,
|
| 105 |
+
loss,
|
| 106 |
+
total,
|
| 107 |
+
ignore_index,
|
| 108 |
+
label_smoothing: tl.constexpr,
|
| 109 |
+
logit_scale: tl.constexpr,
|
| 110 |
+
reduction: tl.constexpr,
|
| 111 |
+
V: tl.constexpr,
|
| 112 |
+
BV: tl.constexpr
|
| 113 |
+
):
|
| 114 |
+
"""
|
| 115 |
+
This kernel computes both cross entropy loss and the gradient of the input.
|
| 116 |
+
We only consider hard label + mean reduction for now.
|
| 117 |
+
Please refer to https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html for the math.
|
| 118 |
+
|
| 119 |
+
Args:
|
| 120 |
+
logits:
|
| 121 |
+
Pointer to logits tensor.
|
| 122 |
+
lse:
|
| 123 |
+
Pointer to logsumexp tensor.
|
| 124 |
+
target: Pointer to target tensor.
|
| 125 |
+
loss:
|
| 126 |
+
Pointer to tensor to store the loss.
|
| 127 |
+
V (int):
|
| 128 |
+
The number of columns in the input tensor.
|
| 129 |
+
total (int):
|
| 130 |
+
The number of non-ignored classes.
|
| 131 |
+
ignore_index (int):
|
| 132 |
+
The index to ignore in the target.
|
| 133 |
+
label_smoothing (float):
|
| 134 |
+
The amount of smoothing when computing the loss, where 0.0 means no smoothing.
|
| 135 |
+
reduction (str):
|
| 136 |
+
The string for the reduction to apply
|
| 137 |
+
BV (int):
|
| 138 |
+
The block size for vocab.
|
| 139 |
+
"""
|
| 140 |
+
|
| 141 |
+
# https://github.com/triton-lang/triton/issues/1058
|
| 142 |
+
# If B*T*V is too large, i_n * stride will overflow out of int32, so we convert to int64
|
| 143 |
+
i_n = tl.program_id(0).to(tl.int64)
|
| 144 |
+
NV = tl.cdiv(V, BV)
|
| 145 |
+
|
| 146 |
+
# 1. Load target first because if the target is ignore_index, we can return right away
|
| 147 |
+
b_y = tl.load(target + i_n)
|
| 148 |
+
# load p_mask
|
| 149 |
+
b_p_mask = tl.load(p_mask + i_n)
|
| 150 |
+
|
| 151 |
+
# 2. locate the start index
|
| 152 |
+
logits += i_n * V
|
| 153 |
+
|
| 154 |
+
if b_y == ignore_index:
|
| 155 |
+
# set all x as 0
|
| 156 |
+
for i in range(0, V, BV):
|
| 157 |
+
o_v = i + tl.arange(0, BV)
|
| 158 |
+
tl.store(logits + o_v, 0.0, mask=o_v < V)
|
| 159 |
+
return
|
| 160 |
+
|
| 161 |
+
# Online softmax: 2 loads + 1 store (compared with 3 loads + 1 store for the safe softmax)
|
| 162 |
+
# Refer to Algorithm 3 in the paper: https://arxiv.org/pdf/1805.02867
|
| 163 |
+
|
| 164 |
+
# 3. [Online softmax] first pass: compute logsumexp
|
| 165 |
+
# we did this in anouter kernel
|
| 166 |
+
b_l = tl.load(logits + b_y) * logit_scale
|
| 167 |
+
b_lse = tl.load(lse + i_n)
|
| 168 |
+
|
| 169 |
+
# 4. Calculate the loss
|
| 170 |
+
# loss = lse - logits_l
|
| 171 |
+
# celoss = -log(q_y) = -log(softmax(x_y))
|
| 172 |
+
b_loss = (b_lse - b_l) / b_p_mask # Diffusion Scaled '1/t'
|
| 173 |
+
|
| 174 |
+
# Label smoothing is a general case of normal cross entropy
|
| 175 |
+
# See the full derivation at https://github.com/linkedin/Liger-Kernel/pull/198#issue-2503665310
|
| 176 |
+
b_z = 0.0
|
| 177 |
+
eps = label_smoothing / V
|
| 178 |
+
|
| 179 |
+
# We need tl.debug_barrier() as mentioned in
|
| 180 |
+
# https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/ops/cross_entropy.py#L34
|
| 181 |
+
tl.debug_barrier()
|
| 182 |
+
|
| 183 |
+
# 5. [Online Softmax] Second pass: compute gradients
|
| 184 |
+
# For 'mean' reduction, gradients are normalized by number of non-ignored elements
|
| 185 |
+
# dx_y = (softmax(x_y) - 1) / N
|
| 186 |
+
# dx_i = softmax(x_i) / N, i != y
|
| 187 |
+
# For label smoothing:
|
| 188 |
+
# dx_i = (softmax(x_y) - label_smoothing / V) / N, i != y
|
| 189 |
+
# dx_y = (softmax(x_y) - label_smoothing / V - (1 - label_smoothing)) / N
|
| 190 |
+
# = dx_i - (1 - label_smoothing) / N
|
| 191 |
+
for iv in range(0, NV):
|
| 192 |
+
o_v = iv * BV + tl.arange(0, BV)
|
| 193 |
+
b_logits = tl.load(logits + o_v, mask=o_v < V, other=float('-inf')) * logit_scale
|
| 194 |
+
if label_smoothing > 0:
|
| 195 |
+
# scale X beforehand to avoid overflow
|
| 196 |
+
b_z += tl.sum(tl.where(o_v < V, -eps * b_logits, 0.0))
|
| 197 |
+
b_p = (tl.exp(b_logits - b_lse) - eps) * logit_scale
|
| 198 |
+
b_p /= b_p_mask # 修改
|
| 199 |
+
if reduction == "mean":
|
| 200 |
+
b_p = b_p / total
|
| 201 |
+
tl.store(logits + o_v, b_p, mask=o_v < V)
|
| 202 |
+
|
| 203 |
+
tl.debug_barrier()
|
| 204 |
+
|
| 205 |
+
# Orginal loss = H(q, p), with label smoothing regularization = H(q', p) and (label_smoothing / V) = eps
|
| 206 |
+
# H(q', p) = (1 - label_smoothing) * H(q, p) + label_smoothing * H(u, p)
|
| 207 |
+
# = (1 - label_smoothing) * H(q, p) + eps * sum(logsoftmax(x_i))
|
| 208 |
+
# By using m (global max of xi) and d (sum of e^(xi-m)), we can simplify as:
|
| 209 |
+
# = (1 - label_smoothing) * H(q, p) + (-sum(x_i * eps) + label_smoothing * (m + logd))
|
| 210 |
+
# Refer to H(q', p) in section 7 of the paper:
|
| 211 |
+
# https://arxiv.org/pdf/1512.00567
|
| 212 |
+
# pytorch:
|
| 213 |
+
# https://github.com/pytorch/pytorch/blob/2981534f54d49fa3a9755c9b0855e7929c2527f0/aten/src/ATen/native/LossNLL.cpp#L516
|
| 214 |
+
# See full derivation at https://github.com/linkedin/Liger-Kernel/pull/198#issuecomment-2333753087
|
| 215 |
+
if label_smoothing > 0:
|
| 216 |
+
b_loss = b_loss * (1 - label_smoothing) + (b_z + label_smoothing * b_lse)
|
| 217 |
+
|
| 218 |
+
# 6. Specially handle the i==y case where `dx_y = (softmax(x_y) - (1 - label_smoothing) / N`
|
| 219 |
+
b_l = tl.load(logits + b_y)
|
| 220 |
+
|
| 221 |
+
# Normalize the loss by the number of non-ignored elements if reduction is "mean"
|
| 222 |
+
if reduction == 'mean':
|
| 223 |
+
b_loss = b_loss / total
|
| 224 |
+
# b_l += (label_smoothing - 1) / total * logit_scale
|
| 225 |
+
# b_l has already been divided by b_p_mask and total
|
| 226 |
+
b_l += (label_smoothing - 1) / b_p_mask / total * logit_scale
|
| 227 |
+
else:
|
| 228 |
+
# b_l += (label_smoothing - 1) * logit_scale
|
| 229 |
+
b_l += (label_smoothing - 1) / b_p_mask * logit_scale
|
| 230 |
+
|
| 231 |
+
tl.store(loss + i_n, b_loss)
|
| 232 |
+
tl.store(logits + b_y, b_l)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
@triton.jit
|
| 236 |
+
def elementwise_mul_kernel(
|
| 237 |
+
x,
|
| 238 |
+
g,
|
| 239 |
+
N: tl.constexpr,
|
| 240 |
+
B: tl.constexpr
|
| 241 |
+
):
|
| 242 |
+
"""
|
| 243 |
+
This function multiplies each element of the tensor pointed by x with the value pointed by g.
|
| 244 |
+
The multiplication is performed in-place on the tensor pointed by x.
|
| 245 |
+
|
| 246 |
+
Parameters:
|
| 247 |
+
x:
|
| 248 |
+
Pointer to the input tensor.
|
| 249 |
+
g:
|
| 250 |
+
Pointer to the gradient output value.
|
| 251 |
+
N (int):
|
| 252 |
+
The number of columns in the input tensor.
|
| 253 |
+
B (int):
|
| 254 |
+
The block size for Triton operations.
|
| 255 |
+
"""
|
| 256 |
+
|
| 257 |
+
# Get the program ID and convert it to int64 to avoid overflow
|
| 258 |
+
i_x = tl.program_id(0).to(tl.int64)
|
| 259 |
+
o_x = i_x * B + tl.arange(0, B)
|
| 260 |
+
|
| 261 |
+
# Load the gradient output value
|
| 262 |
+
b_g = tl.load(g)
|
| 263 |
+
b_x = tl.load(x + o_x, mask=o_x < N)
|
| 264 |
+
tl.store(x + o_x, b_x * b_g, mask=o_x < N)
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
def fused_linear_cross_entropy_forward(
|
| 268 |
+
x: torch.Tensor,
|
| 269 |
+
target: torch.LongTensor,
|
| 270 |
+
weight: torch.Tensor,
|
| 271 |
+
bias: torch.Tensor = None,
|
| 272 |
+
p_mask: torch.Tensor = None,
|
| 273 |
+
ignore_index: int = -100,
|
| 274 |
+
label_smoothing: float = 0.0,
|
| 275 |
+
logit_scale: float = 1.0,
|
| 276 |
+
num_chunks: int = 8,
|
| 277 |
+
reduction: str = "mean"
|
| 278 |
+
):
|
| 279 |
+
device = x.device
|
| 280 |
+
# inputs have shape: [N, H]
|
| 281 |
+
# materialized activations will have shape: [N, V]
|
| 282 |
+
# the increase in memory = [N, V]
|
| 283 |
+
# reduction can be achieved by partitioning the number of tokens N into smaller chunks.
|
| 284 |
+
|
| 285 |
+
# ideally, we would like to achieve the same memory consumption as [N, H],
|
| 286 |
+
# so the expected chunk size should be:
|
| 287 |
+
# NC = ceil(V / H)
|
| 288 |
+
# C = ceil(N / NC)
|
| 289 |
+
# for ex: N = 4096*4, V = 32000, H = 4096 ==> NC = 8, C = ceil(N / NC) = 2048
|
| 290 |
+
N, H, V = *x.shape, weight.shape[0]
|
| 291 |
+
BV = min(MAX_FUSED_SIZE, triton.next_power_of_2(V))
|
| 292 |
+
# TODO: in real cases, we may need to limit the number of chunks NC to
|
| 293 |
+
# ensure the precisions of accumulated gradients
|
| 294 |
+
NC = min(num_chunks, triton.cdiv(V, H))
|
| 295 |
+
C = triton.next_power_of_2(triton.cdiv(N, NC))
|
| 296 |
+
NC = triton.cdiv(N, C)
|
| 297 |
+
|
| 298 |
+
# [N, H]
|
| 299 |
+
dx = torch.zeros_like(x, device=device)
|
| 300 |
+
# [V, H]
|
| 301 |
+
dw = torch.zeros_like(weight, device=device, dtype=torch.float) if weight is not None else None
|
| 302 |
+
# [V]
|
| 303 |
+
db = torch.zeros_like(bias, device=device, dtype=torch.float) if bias is not None else None
|
| 304 |
+
# [N]
|
| 305 |
+
loss = torch.zeros(N, device=device, dtype=torch.float)
|
| 306 |
+
|
| 307 |
+
total = target.ne(ignore_index).sum().item()
|
| 308 |
+
|
| 309 |
+
for ic in range(NC):
|
| 310 |
+
start, end = ic * C, min((ic + 1) * C, N)
|
| 311 |
+
# [C, N]
|
| 312 |
+
c_x = x[start:end]
|
| 313 |
+
# when doing matmul, use the original precision
|
| 314 |
+
# [C, V]
|
| 315 |
+
c_logits = F.linear(c_x, weight, bias)
|
| 316 |
+
c_target = target[start:end]
|
| 317 |
+
c_p_mask = p_mask[start:end]
|
| 318 |
+
# [C]
|
| 319 |
+
# keep lse in fp32 to maintain precision
|
| 320 |
+
c_lse = logsumexp_fwd(c_logits, scale=logit_scale, dtype=torch.float)
|
| 321 |
+
|
| 322 |
+
# unreduced loss
|
| 323 |
+
c_loss = loss[start:end]
|
| 324 |
+
|
| 325 |
+
# Here we calculate the gradient of c_logits in place so we can save memory.
|
| 326 |
+
cross_entropy_kernel[(c_logits.shape[0],)](
|
| 327 |
+
logits=c_logits,
|
| 328 |
+
lse=c_lse,
|
| 329 |
+
target=c_target,
|
| 330 |
+
p_mask=c_p_mask,
|
| 331 |
+
loss=c_loss,
|
| 332 |
+
total=total,
|
| 333 |
+
ignore_index=ignore_index,
|
| 334 |
+
label_smoothing=label_smoothing,
|
| 335 |
+
logit_scale=logit_scale,
|
| 336 |
+
reduction=reduction,
|
| 337 |
+
V=V,
|
| 338 |
+
BV=BV,
|
| 339 |
+
num_warps=32
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
# gradient of logits is computed in-place by the above triton kernel and is of shape: C x V
|
| 343 |
+
# thus dx should be of shape: C x H
|
| 344 |
+
dx[start:end] = torch.mm(c_logits, weight)
|
| 345 |
+
|
| 346 |
+
# keep dw in fp32 to maintain precision
|
| 347 |
+
if weight is not None:
|
| 348 |
+
dw += c_logits.t() @ c_x
|
| 349 |
+
|
| 350 |
+
if bias is not None:
|
| 351 |
+
torch.add(input=db, other=c_logits.sum(0), out=db)
|
| 352 |
+
|
| 353 |
+
loss = loss.sum()
|
| 354 |
+
if dw is not None:
|
| 355 |
+
dw = dw.to(weight)
|
| 356 |
+
if db is not None:
|
| 357 |
+
db = db.to(bias)
|
| 358 |
+
return loss, dx, dw, db
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def fused_linear_cross_entropy_backward(
|
| 362 |
+
do: torch.Tensor,
|
| 363 |
+
dx: torch.Tensor,
|
| 364 |
+
dw: torch.Tensor,
|
| 365 |
+
db: torch.Tensor
|
| 366 |
+
):
|
| 367 |
+
# If cross entropy is the last layer, do is 1.0. Skip the mul to save time
|
| 368 |
+
if torch.ne(do, torch.tensor(1.0, device=do.device)):
|
| 369 |
+
# We use a Triton kernel instead of a PyTorch operation because modifying inputs in-place
|
| 370 |
+
# for gradient storage and backward multiple times causes anomalies with PyTorch but not with Triton.
|
| 371 |
+
N, H = dx.shape
|
| 372 |
+
B = min(MAX_FUSED_SIZE, triton.next_power_of_2(H))
|
| 373 |
+
|
| 374 |
+
elementwise_mul_kernel[(triton.cdiv(N * H, B),)](
|
| 375 |
+
x=dx,
|
| 376 |
+
g=do,
|
| 377 |
+
N=N*H,
|
| 378 |
+
B=B,
|
| 379 |
+
num_warps=32,
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
# handle dw
|
| 383 |
+
if dw is not None:
|
| 384 |
+
V, H = dw.shape
|
| 385 |
+
elementwise_mul_kernel[(triton.cdiv(V * H, B),)](
|
| 386 |
+
x=dw,
|
| 387 |
+
g=do,
|
| 388 |
+
N=V*H,
|
| 389 |
+
B=B,
|
| 390 |
+
num_warps=32,
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
if db is not None:
|
| 394 |
+
V = db.shape[0]
|
| 395 |
+
elementwise_mul_kernel[(triton.cdiv(V, B),)](
|
| 396 |
+
x=db,
|
| 397 |
+
g=do,
|
| 398 |
+
N=V,
|
| 399 |
+
B=B,
|
| 400 |
+
num_warps=32,
|
| 401 |
+
)
|
| 402 |
+
return dx, dw, db
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
class FusedLinearCrossEntropyFunction(torch.autograd.Function):
|
| 406 |
+
|
| 407 |
+
@staticmethod
|
| 408 |
+
def forward(
|
| 409 |
+
ctx,
|
| 410 |
+
x: torch.Tensor,
|
| 411 |
+
target: torch.LongTensor,
|
| 412 |
+
weight: torch.Tensor,
|
| 413 |
+
bias: torch.Tensor = None,
|
| 414 |
+
p_mask: torch.Tensor = None,
|
| 415 |
+
ignore_index: int = -100,
|
| 416 |
+
label_smoothing: float = 0.0,
|
| 417 |
+
logit_scale: float = 1.0,
|
| 418 |
+
num_chunks: int = 8,
|
| 419 |
+
reduction: str = "mean"
|
| 420 |
+
):
|
| 421 |
+
"""
|
| 422 |
+
Fusing the last linear layer with cross-entropy loss
|
| 423 |
+
Reference: https://github.com/mgmalek/efficient_cross_entropy
|
| 424 |
+
|
| 425 |
+
Handle the forward and backward pass of the final linear layer via cross-entropy loss by avoiding
|
| 426 |
+
the materialization of the large logits tensor. Since Cross Entropy Loss is the last layer, we can
|
| 427 |
+
compute the gradient at the forward pass. By doing so, we don't have to store the x and target
|
| 428 |
+
for the backward pass.
|
| 429 |
+
|
| 430 |
+
x (torch.Tensor): [batch_size * seq_len, hidden_size]
|
| 431 |
+
target (torch.LongTensor): [batch_size * seq_len]
|
| 432 |
+
where each value is in [0, vocab_size).
|
| 433 |
+
weight (torch.Tensor): [vocab_size, hidden_size]
|
| 434 |
+
where `vocab_size` is the number of classes.
|
| 435 |
+
bias (Optional[torch.Tensor]): [vocab_size]
|
| 436 |
+
where `vocab_size` is the number of classes.
|
| 437 |
+
p_mask(torch.Tensor): [batch_size * seq_len]
|
| 438 |
+
Its shape should be same as target.
|
| 439 |
+
ignore_index:
|
| 440 |
+
the index to ignore in the target.
|
| 441 |
+
label_smoothing:
|
| 442 |
+
the amount of smoothing when computing the loss, where 0.0 means no smoothing.
|
| 443 |
+
logit_scale: float = 1.0,
|
| 444 |
+
A scaling factor applied to the logits. Default: 1.0
|
| 445 |
+
num_chunks: int
|
| 446 |
+
The number of chunks to split the input tensor into for processing.
|
| 447 |
+
This can help optimize memory usage and computation speed.
|
| 448 |
+
Default: 8
|
| 449 |
+
reduction:
|
| 450 |
+
Specifies the reduction to apply to the output: 'mean' | 'sum'.
|
| 451 |
+
'mean': the weighted mean of the output is taken,
|
| 452 |
+
'sum': the output will be summed.
|
| 453 |
+
Default: 'mean'.
|
| 454 |
+
"""
|
| 455 |
+
loss, dx, dw, db = fused_linear_cross_entropy_forward(
|
| 456 |
+
x,
|
| 457 |
+
target,
|
| 458 |
+
weight,
|
| 459 |
+
bias,
|
| 460 |
+
p_mask,
|
| 461 |
+
ignore_index,
|
| 462 |
+
label_smoothing,
|
| 463 |
+
logit_scale,
|
| 464 |
+
num_chunks,
|
| 465 |
+
reduction
|
| 466 |
+
)
|
| 467 |
+
# downcast to dtype and store for backward
|
| 468 |
+
ctx.save_for_backward(
|
| 469 |
+
dx.detach(),
|
| 470 |
+
dw.detach() if weight is not None else None,
|
| 471 |
+
db.detach() if bias is not None else None,
|
| 472 |
+
)
|
| 473 |
+
return loss
|
| 474 |
+
|
| 475 |
+
@staticmethod
|
| 476 |
+
def backward(ctx, do):
|
| 477 |
+
dx, dw, db = ctx.saved_tensors
|
| 478 |
+
dx, dw, db = fused_linear_cross_entropy_backward(do, dx, dw, db)
|
| 479 |
+
# 10 gradients should be returned, with `p_mask` having no grads
|
| 480 |
+
# Check the number of arguments in the `forward` method
|
| 481 |
+
return dx, None, dw, db, None, None, None, None, None, None
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
def fused_linear_cross_entropy_loss(
|
| 485 |
+
x: torch.Tensor,
|
| 486 |
+
target: torch.LongTensor,
|
| 487 |
+
weight: torch.Tensor,
|
| 488 |
+
bias: torch.Tensor = None,
|
| 489 |
+
p_mask: torch.Tensor = None,
|
| 490 |
+
ignore_index: int = -100,
|
| 491 |
+
label_smoothing: float = 0.0,
|
| 492 |
+
logit_scale: float = 1.0,
|
| 493 |
+
num_chunks: int = 8,
|
| 494 |
+
reduction: str = "mean"
|
| 495 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 496 |
+
"""
|
| 497 |
+
Args:
|
| 498 |
+
x (torch.Tensor): [batch_size * seq_len, hidden_size]
|
| 499 |
+
target (torch.LongTensor): [batch_size * seq_len]
|
| 500 |
+
where each value is in [0, vocab_size).
|
| 501 |
+
weight (torch.Tensor): [vocab_size, hidden_size]
|
| 502 |
+
where `vocab_size` is the number of classes.
|
| 503 |
+
bias (Optional[torch.Tensor]): [vocab_size]
|
| 504 |
+
where `vocab_size` is the number of classes.
|
| 505 |
+
p_mask(torch.Tensor): [batch_size * seq_len]
|
| 506 |
+
Its shape should be same as target.
|
| 507 |
+
ignore_index: int.
|
| 508 |
+
If target == ignore_index, the loss is set to 0.0.
|
| 509 |
+
label_smoothing: float
|
| 510 |
+
logit_scale: float
|
| 511 |
+
A scaling factor applied to the logits. Default: 1.0
|
| 512 |
+
num_chunks: int
|
| 513 |
+
The number of chunks to split the input tensor into for processing.
|
| 514 |
+
This can help optimize memory usage and computation speed.
|
| 515 |
+
Default: 8
|
| 516 |
+
reduction:
|
| 517 |
+
Specifies the reduction to apply to the output: 'mean' | 'sum'.
|
| 518 |
+
'mean': the weighted mean of the output is taken,
|
| 519 |
+
'sum': the output will be summed.
|
| 520 |
+
Default: 'mean'.
|
| 521 |
+
Returns:
|
| 522 |
+
losses: [batch,], float
|
| 523 |
+
"""
|
| 524 |
+
return FusedLinearCrossEntropyFunction.apply(
|
| 525 |
+
x,
|
| 526 |
+
target,
|
| 527 |
+
weight,
|
| 528 |
+
bias,
|
| 529 |
+
p_mask,
|
| 530 |
+
ignore_index,
|
| 531 |
+
label_smoothing,
|
| 532 |
+
logit_scale,
|
| 533 |
+
num_chunks,
|
| 534 |
+
reduction
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
class FusedLinearDiffusionCrossEntropyLoss(nn.Module):
|
| 539 |
+
|
| 540 |
+
def __init__(
|
| 541 |
+
self,
|
| 542 |
+
ignore_index: int = -100,
|
| 543 |
+
label_smoothing: float = 0.0,
|
| 544 |
+
logit_scale: float = 1.0,
|
| 545 |
+
num_chunks: int = 8,
|
| 546 |
+
reduction: str = "mean"
|
| 547 |
+
):
|
| 548 |
+
"""
|
| 549 |
+
Args:
|
| 550 |
+
ignore_index: int.
|
| 551 |
+
If target == ignore_index, the loss is set to 0.0.
|
| 552 |
+
label_smoothing: float
|
| 553 |
+
logit_scale: float
|
| 554 |
+
A scaling factor applied to the logits. Default: 1.0
|
| 555 |
+
num_chunks: int
|
| 556 |
+
The number of chunks to split the input tensor into for processing.
|
| 557 |
+
This can help optimize memory usage and computation speed.
|
| 558 |
+
Default: 8
|
| 559 |
+
reduction:
|
| 560 |
+
Specifies the reduction to apply to the output: 'mean' | 'sum'.
|
| 561 |
+
'mean': the weighted mean of the output is taken,
|
| 562 |
+
'sum': the output will be summed.
|
| 563 |
+
Default: 'mean'.
|
| 564 |
+
"""
|
| 565 |
+
super().__init__()
|
| 566 |
+
|
| 567 |
+
assert reduction in ["mean", "sum"], f"reduction: {reduction} is not supported"
|
| 568 |
+
|
| 569 |
+
self.ignore_index = ignore_index
|
| 570 |
+
self.label_smoothing = label_smoothing
|
| 571 |
+
self.logit_scale = logit_scale
|
| 572 |
+
self.num_chunks = num_chunks
|
| 573 |
+
self.reduction = reduction
|
| 574 |
+
|
| 575 |
+
@torch.compiler.disable
|
| 576 |
+
def forward(
|
| 577 |
+
self,
|
| 578 |
+
x: torch.Tensor,
|
| 579 |
+
target: torch.LongTensor,
|
| 580 |
+
weight: torch.Tensor,
|
| 581 |
+
bias: Optional[torch.Tensor] = None,
|
| 582 |
+
p_mask: torch.Tensor = None
|
| 583 |
+
):
|
| 584 |
+
"""
|
| 585 |
+
Args:
|
| 586 |
+
x (torch.Tensor): [batch_size, seq_len, hidden_size]
|
| 587 |
+
target (torch.LongTensor): [batch_size, seq_len]
|
| 588 |
+
where each value is in [0, V).
|
| 589 |
+
weight (torch.Tensor): [vocab_size, hidden_size]
|
| 590 |
+
where `vocab_size` is the number of classes.
|
| 591 |
+
bias (Optional[torch.Tensor]): [vocab_size]
|
| 592 |
+
where `vocab_size` is the number of classes.
|
| 593 |
+
p_mask(torch.Tensor): [batch_size, seq_len]
|
| 594 |
+
Its shape is same as target.
|
| 595 |
+
Shape: (1, packed_length) when varlen attn is used.
|
| 596 |
+
Returns:
|
| 597 |
+
loss
|
| 598 |
+
|
| 599 |
+
TODO:
|
| 600 |
+
follow https://github.com/ML-GSAI/LLaDA/blob/main/GUIDELINES.md#pre-training
|
| 601 |
+
```py
|
| 602 |
+
unreduced_loss /= p_mask
|
| 603 |
+
```
|
| 604 |
+
Scale the values of `unreduced_loss at different positions
|
| 605 |
+
"""
|
| 606 |
+
if p_mask is None:
|
| 607 |
+
p_mask = torch.ones_like(target, dtype=torch.float, device=x.device)
|
| 608 |
+
|
| 609 |
+
x = x.contiguous().view(-1, x.shape[-1])
|
| 610 |
+
target = target.contiguous().view(-1)
|
| 611 |
+
weight = weight.contiguous()
|
| 612 |
+
bias = bias.contiguous() if bias else None
|
| 613 |
+
p_mask = p_mask.contiguous().view(-1)
|
| 614 |
+
l, d = x.shape
|
| 615 |
+
assert l == target.shape[0] == p_mask.shape[0], f"{x.shape=}, {target.shape=}, {p_mask.shape=}"
|
| 616 |
+
|
| 617 |
+
loss = fused_linear_cross_entropy_loss(
|
| 618 |
+
x,
|
| 619 |
+
target,
|
| 620 |
+
weight=weight,
|
| 621 |
+
bias=bias,
|
| 622 |
+
p_mask=p_mask,
|
| 623 |
+
ignore_index=self.ignore_index,
|
| 624 |
+
label_smoothing=self.label_smoothing,
|
| 625 |
+
logit_scale=self.logit_scale,
|
| 626 |
+
num_chunks=self.num_chunks,
|
| 627 |
+
reduction=self.reduction
|
| 628 |
+
)
|
| 629 |
+
return loss
|
| 630 |
+
|
| 631 |
+
|
| 632 |
+
class LinearLossParallel(ParallelStyle):
|
| 633 |
+
def __init__(
|
| 634 |
+
self,
|
| 635 |
+
*,
|
| 636 |
+
sequence_dim: int = 1,
|
| 637 |
+
use_local_output: bool = False,
|
| 638 |
+
):
|
| 639 |
+
super().__init__()
|
| 640 |
+
|
| 641 |
+
self.sequence_sharding = (Shard(sequence_dim),)
|
| 642 |
+
self.use_local_output = use_local_output
|
| 643 |
+
|
| 644 |
+
@staticmethod
|
| 645 |
+
def _prepare_input_fn(sequence_sharding, mod, inputs, device_mesh):
|
| 646 |
+
x, target, weight, bias = inputs
|
| 647 |
+
|
| 648 |
+
if not isinstance(x, DTensor):
|
| 649 |
+
# assume the input passed in already sharded on the sequence dim and create the DTensor
|
| 650 |
+
x = DTensor.from_local(x, device_mesh, sequence_sharding)
|
| 651 |
+
if x.placements != sequence_sharding:
|
| 652 |
+
x = x.redistribute(placements=sequence_sharding, async_op=True)
|
| 653 |
+
if not isinstance(target, DTensor):
|
| 654 |
+
target = DTensor.from_local(target, device_mesh, [Replicate()])
|
| 655 |
+
if target.placements != sequence_sharding:
|
| 656 |
+
target = target.redistribute(placements=sequence_sharding, async_op=True)
|
| 657 |
+
|
| 658 |
+
if not isinstance(weight, DTensor):
|
| 659 |
+
weight = DTensor.from_local(weight, device_mesh, [Replicate()])
|
| 660 |
+
if weight.placements != [Replicate()]:
|
| 661 |
+
# we replicate the weight/bias in FLCE
|
| 662 |
+
weight = weight.redistribute(placements=[Replicate()], async_op=True)
|
| 663 |
+
|
| 664 |
+
if bias is not None and not isinstance(bias, DTensor):
|
| 665 |
+
bias = DTensor.from_local(bias, device_mesh, [Replicate()])
|
| 666 |
+
if bias is not None and bias.placements != [Replicate()]:
|
| 667 |
+
bias = bias.redistribute(placements=[Replicate()], async_op=True)
|
| 668 |
+
|
| 669 |
+
return x.to_local(), target.to_local(), weight.to_local(), bias.to_local() if bias is not None else bias
|
| 670 |
+
|
| 671 |
+
@staticmethod
|
| 672 |
+
def _prepare_output_fn(use_local_output, mod, outputs, device_mesh):
|
| 673 |
+
return outputs.to_local() if use_local_output else outputs
|
| 674 |
+
|
| 675 |
+
def _apply(self, module: nn.Module, device_mesh: DeviceMesh) -> nn.Module:
|
| 676 |
+
return distribute_module(
|
| 677 |
+
module,
|
| 678 |
+
device_mesh,
|
| 679 |
+
partition_fn=None,
|
| 680 |
+
input_fn=partial(self._prepare_input_fn, self.sequence_sharding),
|
| 681 |
+
output_fn=partial(self._prepare_output_fn, self.use_local_output)
|
| 682 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"temperature": 0.6,
|
| 10 |
+
"top_k": 20,
|
| 11 |
+
"top_p": 0.95,
|
| 12 |
+
"transformers_version": "4.51.0"
|
| 13 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:39baf3cd60eafe330cb12fd1b486ce9e6f44cb76d857a0b93cc28522c02d1223
|
| 3 |
+
size 4955015232
|
model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e5ddbfbe89faadb7fd02f7675703a01d5e61e492ba62d787acf1f21ba205f64e
|
| 3 |
+
size 4712941464
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,848 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 9667843808
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"image_newline": "model-00001-of-00002.safetensors",
|
| 7 |
+
"language_model.lm_head.weight": "model-00002-of-00002.safetensors",
|
| 8 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 13 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"language_model.model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"language_model.model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"language_model.model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"language_model.model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"language_model.model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"language_model.model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"language_model.model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 49 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"language_model.model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"language_model.model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 61 |
+
"language_model.model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 66 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"language_model.model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"language_model.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"language_model.model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"language_model.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"language_model.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"language_model.model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"language_model.model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 85 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 88 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 91 |
+
"language_model.model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"language_model.model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 97 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 98 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 99 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 100 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 101 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 102 |
+
"language_model.model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 103 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 105 |
+
"language_model.model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 109 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 110 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 111 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 112 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 113 |
+
"language_model.model.layers.17.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 114 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 115 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 116 |
+
"language_model.model.layers.17.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 117 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 118 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 119 |
+
"language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 120 |
+
"language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 121 |
+
"language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 122 |
+
"language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 123 |
+
"language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 124 |
+
"language_model.model.layers.18.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 125 |
+
"language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 126 |
+
"language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 127 |
+
"language_model.model.layers.18.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 128 |
+
"language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 129 |
+
"language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 130 |
+
"language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 131 |
+
"language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 132 |
+
"language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 133 |
+
"language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 134 |
+
"language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 135 |
+
"language_model.model.layers.19.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 136 |
+
"language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 137 |
+
"language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 138 |
+
"language_model.model.layers.19.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 139 |
+
"language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 140 |
+
"language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 141 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 144 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 145 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 146 |
+
"language_model.model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 148 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 149 |
+
"language_model.model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 150 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 151 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 153 |
+
"language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 154 |
+
"language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 155 |
+
"language_model.model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 156 |
+
"language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 157 |
+
"language_model.model.layers.20.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 158 |
+
"language_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 159 |
+
"language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 160 |
+
"language_model.model.layers.20.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 161 |
+
"language_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 162 |
+
"language_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 163 |
+
"language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 164 |
+
"language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 165 |
+
"language_model.model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 166 |
+
"language_model.model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 167 |
+
"language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 168 |
+
"language_model.model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 169 |
+
"language_model.model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 170 |
+
"language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 171 |
+
"language_model.model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 172 |
+
"language_model.model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 173 |
+
"language_model.model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 174 |
+
"language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 175 |
+
"language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 176 |
+
"language_model.model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 177 |
+
"language_model.model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 178 |
+
"language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 179 |
+
"language_model.model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 180 |
+
"language_model.model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 181 |
+
"language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 182 |
+
"language_model.model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 183 |
+
"language_model.model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 184 |
+
"language_model.model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 185 |
+
"language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 186 |
+
"language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 187 |
+
"language_model.model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 188 |
+
"language_model.model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 189 |
+
"language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 190 |
+
"language_model.model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 191 |
+
"language_model.model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 192 |
+
"language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 193 |
+
"language_model.model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 194 |
+
"language_model.model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 195 |
+
"language_model.model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 196 |
+
"language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 197 |
+
"language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 198 |
+
"language_model.model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 199 |
+
"language_model.model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 200 |
+
"language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 201 |
+
"language_model.model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 202 |
+
"language_model.model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 203 |
+
"language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 204 |
+
"language_model.model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 205 |
+
"language_model.model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 206 |
+
"language_model.model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 207 |
+
"language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 208 |
+
"language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 209 |
+
"language_model.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 210 |
+
"language_model.model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 211 |
+
"language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 212 |
+
"language_model.model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 213 |
+
"language_model.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 214 |
+
"language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 215 |
+
"language_model.model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 216 |
+
"language_model.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 217 |
+
"language_model.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 218 |
+
"language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 219 |
+
"language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 220 |
+
"language_model.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 221 |
+
"language_model.model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 222 |
+
"language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 223 |
+
"language_model.model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 224 |
+
"language_model.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 225 |
+
"language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 226 |
+
"language_model.model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 227 |
+
"language_model.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 228 |
+
"language_model.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 229 |
+
"language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 230 |
+
"language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 231 |
+
"language_model.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 232 |
+
"language_model.model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 233 |
+
"language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 234 |
+
"language_model.model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 235 |
+
"language_model.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 236 |
+
"language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 237 |
+
"language_model.model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 238 |
+
"language_model.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 239 |
+
"language_model.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 240 |
+
"language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 241 |
+
"language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 242 |
+
"language_model.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 243 |
+
"language_model.model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 244 |
+
"language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 245 |
+
"language_model.model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 246 |
+
"language_model.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 247 |
+
"language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 248 |
+
"language_model.model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 249 |
+
"language_model.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 250 |
+
"language_model.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 251 |
+
"language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 252 |
+
"language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 253 |
+
"language_model.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 254 |
+
"language_model.model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 255 |
+
"language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 256 |
+
"language_model.model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 257 |
+
"language_model.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 258 |
+
"language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 259 |
+
"language_model.model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 260 |
+
"language_model.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 261 |
+
"language_model.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 262 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 263 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 264 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 265 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 266 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 267 |
+
"language_model.model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 268 |
+
"language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 269 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 270 |
+
"language_model.model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 271 |
+
"language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 272 |
+
"language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 273 |
+
"language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 274 |
+
"language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 275 |
+
"language_model.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 276 |
+
"language_model.model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 277 |
+
"language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 278 |
+
"language_model.model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 279 |
+
"language_model.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 280 |
+
"language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 281 |
+
"language_model.model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 282 |
+
"language_model.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 283 |
+
"language_model.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 284 |
+
"language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 285 |
+
"language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 286 |
+
"language_model.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 287 |
+
"language_model.model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 288 |
+
"language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 289 |
+
"language_model.model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 290 |
+
"language_model.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 291 |
+
"language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 292 |
+
"language_model.model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 293 |
+
"language_model.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 294 |
+
"language_model.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 295 |
+
"language_model.model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 296 |
+
"language_model.model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 297 |
+
"language_model.model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 298 |
+
"language_model.model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 299 |
+
"language_model.model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 300 |
+
"language_model.model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 301 |
+
"language_model.model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 302 |
+
"language_model.model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 303 |
+
"language_model.model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 304 |
+
"language_model.model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 305 |
+
"language_model.model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 306 |
+
"language_model.model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 307 |
+
"language_model.model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 308 |
+
"language_model.model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 309 |
+
"language_model.model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 310 |
+
"language_model.model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 311 |
+
"language_model.model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 312 |
+
"language_model.model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 313 |
+
"language_model.model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 314 |
+
"language_model.model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 315 |
+
"language_model.model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 316 |
+
"language_model.model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 317 |
+
"language_model.model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 318 |
+
"language_model.model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 319 |
+
"language_model.model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 320 |
+
"language_model.model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 321 |
+
"language_model.model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 322 |
+
"language_model.model.layers.34.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 323 |
+
"language_model.model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 324 |
+
"language_model.model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 325 |
+
"language_model.model.layers.34.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 326 |
+
"language_model.model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 327 |
+
"language_model.model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 328 |
+
"language_model.model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 329 |
+
"language_model.model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 330 |
+
"language_model.model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 331 |
+
"language_model.model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 332 |
+
"language_model.model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 333 |
+
"language_model.model.layers.35.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 334 |
+
"language_model.model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 335 |
+
"language_model.model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 336 |
+
"language_model.model.layers.35.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 337 |
+
"language_model.model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 338 |
+
"language_model.model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 339 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 340 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 341 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 342 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 343 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 344 |
+
"language_model.model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 345 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 346 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 347 |
+
"language_model.model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 348 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 349 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 350 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 351 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 352 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 353 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 354 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 355 |
+
"language_model.model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 356 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 357 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 358 |
+
"language_model.model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 359 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 360 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 361 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 362 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 363 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 364 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 365 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 366 |
+
"language_model.model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 367 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 368 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 369 |
+
"language_model.model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 370 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 371 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 372 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 373 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 374 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 375 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 376 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 377 |
+
"language_model.model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 378 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 379 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 380 |
+
"language_model.model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 381 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 382 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 383 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 384 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 385 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 386 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 387 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 388 |
+
"language_model.model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 389 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 390 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 391 |
+
"language_model.model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 392 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 393 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 394 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 395 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 396 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 397 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 398 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 399 |
+
"language_model.model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 400 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 401 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 402 |
+
"language_model.model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 403 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 404 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 405 |
+
"language_model.model.norm.weight": "model-00002-of-00002.safetensors",
|
| 406 |
+
"multi_modal_projector.linear_1.bias": "model-00001-of-00002.safetensors",
|
| 407 |
+
"multi_modal_projector.linear_1.weight": "model-00001-of-00002.safetensors",
|
| 408 |
+
"multi_modal_projector.linear_2.bias": "model-00001-of-00002.safetensors",
|
| 409 |
+
"multi_modal_projector.linear_2.weight": "model-00001-of-00002.safetensors",
|
| 410 |
+
"vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
|
| 411 |
+
"vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
|
| 412 |
+
"vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00002.safetensors",
|
| 413 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 414 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 415 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 416 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 417 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 418 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 419 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 420 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 421 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 422 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 423 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 424 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 425 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 426 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 427 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 428 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 429 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 430 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 431 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 432 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 433 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 434 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 435 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 436 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 437 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 438 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 439 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 440 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 441 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 442 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 443 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 444 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 445 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 446 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 447 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 448 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 449 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 450 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 451 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 452 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 453 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 454 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 455 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 456 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 457 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 458 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 459 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 460 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 461 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 462 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 463 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 464 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 465 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 466 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 467 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 468 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 469 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 470 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 471 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 472 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 473 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 474 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 475 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 476 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 477 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 478 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 479 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 480 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 481 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 482 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 483 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 484 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 485 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 486 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 487 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 488 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 489 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 490 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 491 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 492 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 493 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 494 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 495 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 496 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 497 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 498 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 499 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 500 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 501 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 502 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 503 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 504 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 505 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 506 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 507 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 508 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 509 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 510 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 511 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 512 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 513 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 514 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 515 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 516 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 517 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 518 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 519 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 520 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 521 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 522 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 523 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 524 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 525 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 526 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 527 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 528 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 529 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 530 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 531 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 532 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 533 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 534 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 535 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 536 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 537 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 538 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 539 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 540 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 541 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 542 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 543 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 544 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 545 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 546 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 547 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 548 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 549 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 550 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 551 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 552 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 553 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 554 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 555 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 556 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 557 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 558 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 559 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 560 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 561 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 562 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 563 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 564 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 565 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 566 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 567 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 568 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 569 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 570 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 571 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 572 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 573 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 574 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 575 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 576 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 577 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 578 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 579 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 580 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 581 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 582 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 583 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 584 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 585 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 586 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 587 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 588 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 589 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 590 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 591 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 592 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 593 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 594 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 595 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 596 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 597 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 598 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 599 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 600 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 601 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 602 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 603 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 604 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 605 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 606 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 607 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 608 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 609 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 610 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 611 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 612 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 613 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 614 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 615 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 616 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 617 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 618 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 619 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 620 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 621 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 622 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 623 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 624 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 625 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 626 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 627 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 628 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 629 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 630 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 631 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 632 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 633 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 634 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 635 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 636 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 637 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 638 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 639 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 640 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 641 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 642 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 643 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 644 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 645 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 646 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 647 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 648 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 649 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 650 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 651 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 652 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 653 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 654 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 655 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 656 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 657 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 658 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 659 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 660 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 661 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 662 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 663 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 664 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 665 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 666 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 667 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 668 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 669 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 670 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 671 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 672 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 673 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 674 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 675 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 676 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 677 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 678 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 679 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 680 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 681 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 682 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 683 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 684 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 685 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 686 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 687 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 688 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 689 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 690 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 691 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 692 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 693 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 694 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 695 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 696 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 697 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 698 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 699 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 700 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 701 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 702 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 703 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 704 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 705 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 706 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 707 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 708 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 709 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 710 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 711 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 712 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 713 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 714 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 715 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 716 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 717 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 718 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 719 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 720 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 721 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 722 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 723 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 724 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 725 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 726 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 727 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 728 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 729 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 730 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 731 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 732 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 733 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 734 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 735 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 736 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 737 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 738 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 739 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 740 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 741 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 742 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 743 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 744 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 745 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 746 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 747 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 748 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 749 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 750 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 751 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 752 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 753 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 754 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 755 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 756 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 757 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 758 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 759 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 760 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 761 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 762 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 763 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 764 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 765 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 766 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 767 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 768 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 769 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 770 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 771 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 772 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 773 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 774 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 775 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 776 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 777 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 778 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 779 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 780 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 781 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 782 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 783 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 784 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 785 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 786 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 787 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 788 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 789 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 790 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 791 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 792 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 793 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 794 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 795 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 796 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 797 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 798 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 799 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 800 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 801 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 802 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 803 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 804 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 805 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 806 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 807 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 808 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 809 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 810 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 811 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 812 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 813 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 814 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 815 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 816 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 817 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 818 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 819 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 820 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 821 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 822 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 823 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 824 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 825 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 826 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 827 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 828 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 829 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 830 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 831 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 832 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 833 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 834 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 835 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 836 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 837 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 838 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 839 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 840 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 841 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 842 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 843 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 844 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 845 |
+
"vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 846 |
+
"vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00002.safetensors"
|
| 847 |
+
}
|
| 848 |
+
}
|
modeling_llava_onevision.py
ADDED
|
@@ -0,0 +1,1451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 2 |
+
# This file was automatically generated from src/transformers/models/llava_onevision/modular_llava_onevision.py.
|
| 3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
| 4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
| 5 |
+
# modular_llava_onevision.py file directly. One of our CI enforces this.
|
| 6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 7 |
+
# coding=utf-8
|
| 8 |
+
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
|
| 9 |
+
#
|
| 10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 11 |
+
# you may not use this file except in compliance with the License.
|
| 12 |
+
# You may obtain a copy of the License at
|
| 13 |
+
#
|
| 14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 15 |
+
#
|
| 16 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 19 |
+
# See the License for the specific language governing permissions and
|
| 20 |
+
# limitations under the License.
|
| 21 |
+
|
| 22 |
+
import math
|
| 23 |
+
from dataclasses import dataclass
|
| 24 |
+
from typing import List, Optional, Tuple, Union
|
| 25 |
+
|
| 26 |
+
import numpy as np
|
| 27 |
+
import torch
|
| 28 |
+
from torch import nn
|
| 29 |
+
import torch.distributed as dist
|
| 30 |
+
|
| 31 |
+
from transformers.activations import ACT2FN
|
| 32 |
+
from transformers.generation import GenerationMixin
|
| 33 |
+
from transformers.image_processing_utils import select_best_resolution
|
| 34 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 35 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
| 36 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 37 |
+
from transformers.processing_utils import Unpack
|
| 38 |
+
from transformers.utils import (
|
| 39 |
+
LossKwargs,
|
| 40 |
+
auto_docstring,
|
| 41 |
+
can_return_tuple,
|
| 42 |
+
is_torchdynamo_compiling,
|
| 43 |
+
logging,
|
| 44 |
+
)
|
| 45 |
+
from transformers.models.auto import AutoModel
|
| 46 |
+
from torch.nn.attention.flex_attention import create_block_mask
|
| 47 |
+
from .configuration_llava_onevision import LlavaOnevisionConfig
|
| 48 |
+
from .fused_linear_diffusion_cross_entropy import FusedLinearDiffusionCrossEntropyLoss
|
| 49 |
+
|
| 50 |
+
logger = logging.get_logger(__name__)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
@dataclass
|
| 54 |
+
class LlavaOnevisionModelOutputWithPast(BaseModelOutputWithPast):
|
| 55 |
+
"""
|
| 56 |
+
Base class for Llava outputs, with hidden states and attentions.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 60 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
| 61 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 62 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 63 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
| 64 |
+
|
| 65 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 66 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 67 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 68 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 69 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 70 |
+
|
| 71 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 72 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 73 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 74 |
+
sequence_length)`.
|
| 75 |
+
|
| 76 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 77 |
+
heads.
|
| 78 |
+
image_hidden_states (`torch.FloatTensor`, *optional*):
|
| 79 |
+
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
| 80 |
+
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
| 81 |
+
|
| 82 |
+
video_hidden_states (`torch.FloatTensor`, *optional*):
|
| 83 |
+
A `torch.FloatTensor` of size `(batch_size * num_frames, num_videos, sequence_length, hidden_size)`.
|
| 84 |
+
video_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
image_hidden_states: Optional[torch.FloatTensor] = None
|
| 88 |
+
|
| 89 |
+
video_hidden_states: Optional[torch.FloatTensor] = None
|
| 90 |
+
|
| 91 |
+
logits_to_keep_half: Optional[torch.BoolTensor] = None
|
| 92 |
+
|
| 93 |
+
logits_to_keep: Optional[torch.BoolTensor] = None
|
| 94 |
+
|
| 95 |
+
p_mask: Optional[torch.FloatTensor] = None
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
@dataclass
|
| 100 |
+
class LlavaOnevisionCausalLMOutputWithPast(ModelOutput):
|
| 101 |
+
"""
|
| 102 |
+
Base class for LlavaOnevision causal language model (or autoregressive) outputs.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 106 |
+
Language modeling loss (for next-token prediction).
|
| 107 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 108 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 109 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 110 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 111 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
| 112 |
+
|
| 113 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 114 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 115 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 116 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 117 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 118 |
+
|
| 119 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 120 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 121 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 122 |
+
sequence_length)`.
|
| 123 |
+
|
| 124 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 125 |
+
heads.
|
| 126 |
+
image_hidden_states (`torch.FloatTensor`, *optional*):
|
| 127 |
+
A `torch.FloatTensor` of size (batch_size * num_patches, num_images, sequence_length, hidden_size)`.
|
| 128 |
+
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
| 129 |
+
|
| 130 |
+
video_hidden_states (`torch.FloatTensor`, *optional*):
|
| 131 |
+
A `torch.FloatTensor` of size `(batch_size * num_frames, num_videos, sequence_length, hidden_size)`.
|
| 132 |
+
video_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
| 133 |
+
"""
|
| 134 |
+
|
| 135 |
+
loss: Optional[torch.FloatTensor] = None
|
| 136 |
+
logits: Optional[torch.FloatTensor] = None
|
| 137 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
| 138 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 139 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 140 |
+
image_hidden_states: Optional[torch.FloatTensor] = None
|
| 141 |
+
|
| 142 |
+
video_hidden_states: Optional[torch.FloatTensor] = None
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
class LlavaOnevisionPooler(nn.Module):
|
| 146 |
+
def __init__(self, config):
|
| 147 |
+
super().__init__()
|
| 148 |
+
|
| 149 |
+
mode = config.spatial_pool_mode
|
| 150 |
+
stride = config.spatial_pool_stride
|
| 151 |
+
out_channels = getattr(config, "spatial_pool_out_channels", config.vision_config.hidden_size)
|
| 152 |
+
self.image_size = (config.vision_config.image_size // config.vision_config.patch_size) ** 2
|
| 153 |
+
|
| 154 |
+
if mode == "average":
|
| 155 |
+
self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride)
|
| 156 |
+
elif mode == "max":
|
| 157 |
+
self.pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
|
| 158 |
+
elif mode == "conv":
|
| 159 |
+
self.pool = nn.Conv2d(
|
| 160 |
+
in_channels=config.vision_config.hidden_size,
|
| 161 |
+
out_channels=out_channels,
|
| 162 |
+
kernel_size=stride,
|
| 163 |
+
stride=stride,
|
| 164 |
+
)
|
| 165 |
+
else:
|
| 166 |
+
raise ValueError(f"Unknown pooling mode: {mode}. Has to be one of [`average`, `max`, `conv`]")
|
| 167 |
+
|
| 168 |
+
def forward(self, image_features):
|
| 169 |
+
ori_width = int(math.sqrt(image_features.shape[1] * self.image_size // self.image_size))
|
| 170 |
+
ori_height = int(ori_width * self.image_size // self.image_size)
|
| 171 |
+
|
| 172 |
+
batch_size, _, dim = image_features.shape
|
| 173 |
+
image_features_spatial = image_features.view(batch_size, ori_height, ori_height, dim).permute(0, 3, 1, 2)
|
| 174 |
+
image_features_spatial_pool = self.pool(image_features_spatial)
|
| 175 |
+
|
| 176 |
+
return image_features_spatial_pool.flatten(2).transpose(1, 2).contiguous()
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class LlavaOnevisionMultiModalProjector(nn.Module):
|
| 180 |
+
def __init__(self, config: LlavaOnevisionConfig):
|
| 181 |
+
super().__init__()
|
| 182 |
+
# We have hidden_size * the number of vision feature layers
|
| 183 |
+
num_feature_layers = 1 if isinstance(config.vision_feature_layer, int) else len(config.vision_feature_layer)
|
| 184 |
+
self.linear_1 = nn.Linear(
|
| 185 |
+
config.vision_config.hidden_size * num_feature_layers,
|
| 186 |
+
config.text_config.hidden_size,
|
| 187 |
+
bias=config.multimodal_projector_bias,
|
| 188 |
+
)
|
| 189 |
+
self.act = ACT2FN[config.projector_hidden_act]
|
| 190 |
+
self.linear_2 = nn.Linear(
|
| 191 |
+
config.text_config.hidden_size, config.text_config.hidden_size, bias=config.multimodal_projector_bias
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
def forward(self, image_features):
|
| 195 |
+
hidden_states = self.linear_1(image_features)
|
| 196 |
+
hidden_states = self.act(hidden_states)
|
| 197 |
+
hidden_states = self.linear_2(hidden_states)
|
| 198 |
+
return hidden_states
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
| 202 |
+
"""
|
| 203 |
+
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
| 204 |
+
|
| 205 |
+
Args:
|
| 206 |
+
image_size (`tuple`):
|
| 207 |
+
The size of the input image in the format (width, height).
|
| 208 |
+
grid_pinpoints (`List`):
|
| 209 |
+
A list containing possible resolutions. Each item in the list should be a tuple or list
|
| 210 |
+
of the form `(height, width)`.
|
| 211 |
+
patch_size (`int`):
|
| 212 |
+
The size of each image patch.
|
| 213 |
+
|
| 214 |
+
Returns:
|
| 215 |
+
tuple: The shape of the image patch grid in the format (width, height).
|
| 216 |
+
"""
|
| 217 |
+
if not isinstance(grid_pinpoints, list):
|
| 218 |
+
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
| 219 |
+
|
| 220 |
+
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
| 221 |
+
if not isinstance(image_size, (list, tuple)):
|
| 222 |
+
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
| 223 |
+
raise TypeError(
|
| 224 |
+
f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
|
| 225 |
+
)
|
| 226 |
+
image_size = image_size.tolist()
|
| 227 |
+
|
| 228 |
+
height, width = select_best_resolution(image_size, grid_pinpoints)
|
| 229 |
+
return height // patch_size, width // patch_size
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
|
| 233 |
+
"""
|
| 234 |
+
Calculate the number of patches after the preprocessing for images of any resolution.
|
| 235 |
+
|
| 236 |
+
Args:
|
| 237 |
+
image_size (`torch.LongTensor` or `np.ndarray` or `Tuple[int, int]`):
|
| 238 |
+
The size of the input image in the format (height, width). ?
|
| 239 |
+
grid_pinpoints (`List`):
|
| 240 |
+
A list containing possible resolutions. Each item in the list should be a tuple or list
|
| 241 |
+
of the form `(height, width)`.
|
| 242 |
+
patch_size (`int`):
|
| 243 |
+
The size of each image patch.
|
| 244 |
+
|
| 245 |
+
Returns:
|
| 246 |
+
int: the number of patches
|
| 247 |
+
"""
|
| 248 |
+
if not isinstance(grid_pinpoints, list):
|
| 249 |
+
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
| 250 |
+
|
| 251 |
+
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
| 252 |
+
if not isinstance(image_size, (list, tuple)):
|
| 253 |
+
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
| 254 |
+
raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
|
| 255 |
+
image_size = image_size.tolist()
|
| 256 |
+
|
| 257 |
+
best_resolution = select_best_resolution(image_size, grid_pinpoints)
|
| 258 |
+
height, width = best_resolution
|
| 259 |
+
num_patches = 0
|
| 260 |
+
# consider change to ceil(height/patch_size)*ceil(width/patch_size) + 1
|
| 261 |
+
for i in range(0, height, patch_size):
|
| 262 |
+
for j in range(0, width, patch_size):
|
| 263 |
+
num_patches += 1
|
| 264 |
+
# add the base patch
|
| 265 |
+
num_patches += 1
|
| 266 |
+
return num_patches
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def unpad_image(tensor, original_size):
|
| 270 |
+
"""
|
| 271 |
+
Unpads a PyTorch tensor of a padded and resized image.
|
| 272 |
+
|
| 273 |
+
Args:
|
| 274 |
+
tensor (`torch.Tensor`):
|
| 275 |
+
The image tensor, assumed to be of shape (num_channels, height, width).
|
| 276 |
+
original_size (`tuple`):
|
| 277 |
+
The original size of the image (height, width).
|
| 278 |
+
|
| 279 |
+
Returns:
|
| 280 |
+
`torch.Tensor`: The unpadded image tensor.
|
| 281 |
+
"""
|
| 282 |
+
if not isinstance(original_size, (list, tuple)):
|
| 283 |
+
if not isinstance(original_size, (torch.Tensor, np.ndarray)):
|
| 284 |
+
raise TypeError(
|
| 285 |
+
f"image_size invalid type: {type(original_size)} not valid, should be either list, tuple, np.ndarray or tensor"
|
| 286 |
+
)
|
| 287 |
+
original_size = original_size.tolist()
|
| 288 |
+
original_height, original_width = original_size
|
| 289 |
+
current_height, current_width = tensor.shape[1:]
|
| 290 |
+
|
| 291 |
+
original_aspect_ratio = original_width / original_height
|
| 292 |
+
current_aspect_ratio = current_width / current_height
|
| 293 |
+
|
| 294 |
+
if original_aspect_ratio > current_aspect_ratio:
|
| 295 |
+
scale_factor = current_width / original_width
|
| 296 |
+
new_height = int(round(original_height * scale_factor, 7))
|
| 297 |
+
padding = (current_height - new_height) // 2
|
| 298 |
+
unpadded_tensor = tensor[:, padding : current_height - padding, :]
|
| 299 |
+
else:
|
| 300 |
+
scale_factor = current_height / original_height
|
| 301 |
+
new_width = int(round(original_width * scale_factor, 7))
|
| 302 |
+
padding = (current_width - new_width) // 2
|
| 303 |
+
unpadded_tensor = tensor[:, :, padding : current_width - padding]
|
| 304 |
+
|
| 305 |
+
return unpadded_tensor
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
@auto_docstring
|
| 309 |
+
class LlavaOnevisionPreTrainedModel(PreTrainedModel):
|
| 310 |
+
config_class = LlavaOnevisionConfig
|
| 311 |
+
base_model_prefix = ""
|
| 312 |
+
supports_gradient_checkpointing = True
|
| 313 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
| 314 |
+
_skip_keys_device_placement = "past_key_values"
|
| 315 |
+
_supports_cache_class = True
|
| 316 |
+
_supports_flash_attn_2 = True
|
| 317 |
+
_supports_sdpa = True
|
| 318 |
+
_supports_quantized_cache = True
|
| 319 |
+
_supports_static_cache = True
|
| 320 |
+
_supports_attention_backend = True
|
| 321 |
+
|
| 322 |
+
def _init_weights(self, module):
|
| 323 |
+
std = getattr(self.config, "initializer_range", self.config.get_text_config().initializer_range)
|
| 324 |
+
|
| 325 |
+
if isinstance(module, nn.Linear):
|
| 326 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 327 |
+
if module.bias is not None:
|
| 328 |
+
module.bias.data.zero_()
|
| 329 |
+
elif isinstance(module, LlavaOnevisionModel):
|
| 330 |
+
embed_std = 1 / math.sqrt(self.config.text_config.hidden_size)
|
| 331 |
+
module.image_newline.data.normal_(mean=0.0, std=embed_std)
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
def modify_padded_position_ids(position_ids: torch.Tensor) -> torch.Tensor:
|
| 335 |
+
"""
|
| 336 |
+
使用 PyTorch Tensor 操作修改 packed position_ids 中尾部 padding 的值。
|
| 337 |
+
这个函数假设输入是一个 1D Tensor。
|
| 338 |
+
Args:
|
| 339 |
+
position_ids: 一维 PyTorch Tensor.
|
| 340 |
+
Returns:
|
| 341 |
+
修改后的 position_ids Tensor.
|
| 342 |
+
"""
|
| 343 |
+
seq_len = position_ids.size(0)
|
| 344 |
+
# 找到所有非零元素的索引
|
| 345 |
+
nonzero_indices = (position_ids != 0).nonzero().squeeze()
|
| 346 |
+
|
| 347 |
+
# 确定 padding 开始的位置
|
| 348 |
+
if nonzero_indices.numel() > 0:
|
| 349 |
+
# 如果存在非零元素,padding 从最后一个非零元素的下一个位置开始
|
| 350 |
+
last_nonzero_idx = nonzero_indices.max().item()
|
| 351 |
+
pad_start_idx = last_nonzero_idx + 1
|
| 352 |
+
else:
|
| 353 |
+
pad_start_idx = 0
|
| 354 |
+
|
| 355 |
+
# 如果有需要修改的 padding 部分
|
| 356 |
+
if pad_start_idx < seq_len:
|
| 357 |
+
pad_length = seq_len - pad_start_idx
|
| 358 |
+
new_pad_values = torch.arange(pad_length, device=position_ids.device, dtype=position_ids.dtype)
|
| 359 |
+
position_ids[pad_start_idx:] = new_pad_values
|
| 360 |
+
|
| 361 |
+
return position_ids
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
def modify_padded_position_ids_2d(position_ids: torch.LongTensor) -> torch.LongTensor:
|
| 365 |
+
"""
|
| 366 |
+
使用完全向量化的 PyTorch 操作修改一个 batch 的 packed position_ids。
|
| 367 |
+
这个函数假设输入是一个 2D Tensor,形状为 (batch_size, sequence_length)。
|
| 368 |
+
它会独立地处理 batch 中的每一行。
|
| 369 |
+
|
| 370 |
+
Args:
|
| 371 |
+
position_ids: 二维 PyTorch Tensor, shape (batch_size, sequence_length).
|
| 372 |
+
|
| 373 |
+
Returns:
|
| 374 |
+
修改后的 position_ids Tensor, shape (batch_size, sequence_length).
|
| 375 |
+
"""
|
| 376 |
+
if position_ids.dim() != 2:
|
| 377 |
+
raise ValueError(f"Input tensor must be 2D, but got {position_ids.dim()} dimensions.")
|
| 378 |
+
|
| 379 |
+
batch_size, seq_len = position_ids.shape
|
| 380 |
+
device = position_ids.device
|
| 381 |
+
|
| 382 |
+
col_indices = torch.arange(seq_len, device=device, dtype=position_ids.dtype).expand(batch_size, -1)
|
| 383 |
+
mask = (position_ids != 0)
|
| 384 |
+
|
| 385 |
+
masked_indices = col_indices * mask
|
| 386 |
+
last_nonzero_idx = torch.max(masked_indices, dim=1).values
|
| 387 |
+
has_nonzero = torch.any(mask, dim=1)
|
| 388 |
+
pad_start_idx = torch.where(has_nonzero, last_nonzero_idx + 1, torch.tensor(0, device=device, dtype=position_ids.dtype))
|
| 389 |
+
|
| 390 |
+
padding_mask = col_indices >= pad_start_idx.unsqueeze(1)
|
| 391 |
+
new_pad_values = col_indices - pad_start_idx.unsqueeze(1)
|
| 392 |
+
position_ids = torch.where(padding_mask, new_pad_values, position_ids)
|
| 393 |
+
|
| 394 |
+
return position_ids
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def calculate_token_nums(position_ids: torch.Tensor):
|
| 398 |
+
"""
|
| 399 |
+
使用 PyTorch 高效计算一个批次中每个打包序列的长度。
|
| 400 |
+
|
| 401 |
+
Args:
|
| 402 |
+
position_ids (torch.Tensor): 一个 2D Tensor,形状为 (batch_size, sequence_length)。
|
| 403 |
+
例如:tensor([[0,1,2,3,4,0,1,2,3,4,5,0,1,2,3,0,0,0]])
|
| 404 |
+
Returns:
|
| 405 |
+
list[list[int]]: 一个嵌套列表,包含每个批次项中各个序列的长度。
|
| 406 |
+
例如:[[5, 6, 4, 1, 1, 1]]
|
| 407 |
+
"""
|
| 408 |
+
# 检查输入是否为 2D Tensor
|
| 409 |
+
if position_ids.dim() != 2:
|
| 410 |
+
raise ValueError(f"输入必须是 2D Tensor,但得到了 {position_ids.dim()}D")
|
| 411 |
+
|
| 412 |
+
all_lengths = []
|
| 413 |
+
|
| 414 |
+
# 我们按批次逐行处理。因为每行的序列长度数量不同(ragged),
|
| 415 |
+
# 所以 Python 循环在批次维度上是最高效且最清晰的写法。
|
| 416 |
+
# 循环内部的操作是完全向量化的。
|
| 417 |
+
for pids_row in position_ids:
|
| 418 |
+
# 获取当前行的总长度
|
| 419 |
+
seq_len = pids_row.shape[0]
|
| 420 |
+
|
| 421 |
+
# 1. 找到所有值为 0 的元素的索引
|
| 422 |
+
# pids_row == 0 会返回一个布尔 Tensor: [True, False, ..., True, ...]
|
| 423 |
+
# torch.nonzero 会返回这些 True 值的索引
|
| 424 |
+
# .flatten() 将其从 (N, 1) 形状的 Tensor 变为 (N,) 形状
|
| 425 |
+
zero_indices = torch.nonzero(pids_row == 0).flatten()
|
| 426 |
+
|
| 427 |
+
# 2. 将序列的总长度作为一个额外的切分点添加到末尾
|
| 428 |
+
# 这对于计算最后一个序列的长度至关重要
|
| 429 |
+
# 注意:要确保新创建的 tensor 和原始 tensor 在同一个设备上 (cpu/cuda)
|
| 430 |
+
split_points = torch.cat([
|
| 431 |
+
zero_indices,
|
| 432 |
+
torch.tensor([seq_len], device=pids_row.device, dtype=zero_indices.dtype)
|
| 433 |
+
])
|
| 434 |
+
|
| 435 |
+
# 3. 计算相邻切分点之间的差值,这就是我们想要的长度
|
| 436 |
+
# torch.diff([a, b, c, d]) 会返回 [b-a, c-b, d-c]
|
| 437 |
+
lengths = torch.diff(split_points)
|
| 438 |
+
|
| 439 |
+
all_lengths.append(lengths)
|
| 440 |
+
|
| 441 |
+
return all_lengths
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
# def forward_add_noise_packed(
|
| 445 |
+
# inputs_embeds: torch.Tensor,
|
| 446 |
+
# num_tokens: torch.Tensor,
|
| 447 |
+
# prompt_mask: torch.Tensor,
|
| 448 |
+
# mask_embed: torch.Tensor,
|
| 449 |
+
# eps: float = 1e-3,
|
| 450 |
+
# max_tries: int = 10,
|
| 451 |
+
# ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 452 |
+
# """
|
| 453 |
+
# 为单个打包(packed)序列的 embedding 添加噪声,该序列的形状带有 batch 维度。
|
| 454 |
+
|
| 455 |
+
# 函数为每个逻辑样本(在 inputs_embeds 中拼接)生成一个随机噪声率,
|
| 456 |
+
# 并随机将一部分 token 的 embedding 替换为 mask_embed。
|
| 457 |
+
# 这个过程会避开被 prompt_mask 标记的位置。
|
| 458 |
+
|
| 459 |
+
# Args:
|
| 460 |
+
# inputs_embeds (torch.Tensor): 输入的 embedding 张量,形状为 **(1, total_tokens, embed_dim)**。
|
| 461 |
+
# num_tokens (torch.Tensor): 1D 张量,记录了每个逻辑样本的长度。
|
| 462 |
+
# 例如 [len_sample1, len_sample2, ...]。
|
| 463 |
+
# prompt_mask (torch.Tensor): 布尔型张量,形状为 **(1, total_tokens)**,
|
| 464 |
+
# 值为 True 的位置表示是 prompt,不应添加噪声。
|
| 465 |
+
# mask_embed (torch.Tensor): 用于替换的 mask embedding,形状为 (embed_dim,) 或 (1, embed_dim)。
|
| 466 |
+
# eps (float): 微小值,用于防止噪声率 t 恰好为 0,确保 p_mask > 0。
|
| 467 |
+
# max_tries (int): 为确保至少一个非 prompt token 被 mask,尝试的最大次数。
|
| 468 |
+
|
| 469 |
+
# Returns:
|
| 470 |
+
# Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 471 |
+
# - noisy_embeds (torch.Tensor): 添加噪声后的 embedding 张量,形状为 (1, total_tokens, embed_dim)。
|
| 472 |
+
# - final_masked_indices (torch.Tensor): 布尔型张量,标记了哪些位置被实际 mask 了,形状为 (1, total_tokens)。
|
| 473 |
+
# - p_mask_per_sample (torch.Tensor): 每个逻辑样本实际使用的噪声率,形状为 (num_samples, )。
|
| 474 |
+
# """
|
| 475 |
+
# # 1. 验证和获取形状
|
| 476 |
+
# bsz, total_tokens, embed_dim = inputs_embeds.shape
|
| 477 |
+
# assert bsz == 1, f"此函数设计用于处理 bsz=1 的打包序列,但收到了 bsz={bsz}"
|
| 478 |
+
|
| 479 |
+
# num_samples = len(num_tokens)
|
| 480 |
+
# assert total_tokens == torch.sum(num_tokens), "num_tokens 之和与 inputs_embeds 的总长度不匹配"
|
| 481 |
+
# assert prompt_mask.shape == (bsz, total_tokens), f"prompt_mask 形状不匹配, 期望 {(bsz, total_tokens)}, 得到 {prompt_mask.shape}"
|
| 482 |
+
# assert mask_embed.dim() == 1 or mask_embed.shape[-1] == embed_dim, "mask_embed 形状不匹配"
|
| 483 |
+
|
| 484 |
+
# device = inputs_embeds.device
|
| 485 |
+
|
| 486 |
+
# # 调整 mask_embed 形状以便广播: (dim,) -> (1, 1, dim)
|
| 487 |
+
# mask_embed = mask_embed.view(1, 1, embed_dim)
|
| 488 |
+
|
| 489 |
+
# # --- 确定可以被 mask 的位置 ---
|
| 490 |
+
# eligible_for_masking = ~prompt_mask
|
| 491 |
+
|
| 492 |
+
# # 如果没有任何 token 可以被 mask,直接返回原始输入
|
| 493 |
+
# if not eligible_for_masking.any():
|
| 494 |
+
# return (
|
| 495 |
+
# inputs_embeds,
|
| 496 |
+
# torch.zeros_like(prompt_mask, dtype=torch.bool),
|
| 497 |
+
# torch.full((num_samples,), eps, device=device)
|
| 498 |
+
# )
|
| 499 |
+
|
| 500 |
+
# # 2. 生成噪声率和 mask,尝试几次以确保至少 mask 一个 token
|
| 501 |
+
# final_masked_indices = torch.zeros_like(prompt_mask, dtype=torch.bool)
|
| 502 |
+
|
| 503 |
+
# for _ in range(max_tries):
|
| 504 |
+
# # 为每个逻辑样本生成一个独立的随机噪声率 t in [0, 1]
|
| 505 |
+
# t = torch.rand(num_samples, device=device) # shape: (num_samples,)
|
| 506 |
+
# p_mask_per_sample = (1 - eps) * t + eps
|
| 507 |
+
|
| 508 |
+
# # 将每个样本的噪声率扩展到其所有 token 上
|
| 509 |
+
# p_mask_per_token_1d = torch.repeat_interleave(p_mask_per_sample, num_tokens) # shape: (total_tokens,)
|
| 510 |
+
# p_mask_per_token = p_mask_per_token_1d.unsqueeze(0) # shape: (1, total_tokens)
|
| 511 |
+
|
| 512 |
+
# # 生成随机数并根据 p_mask 创建初步的 mask
|
| 513 |
+
# masked_indices = torch.rand_like(p_mask_per_token) < p_mask_per_token # shape: (1, total_tokens)
|
| 514 |
+
|
| 515 |
+
# # 应用约束:只在允许的位置进行 mask
|
| 516 |
+
# final_masked_indices = masked_indices & eligible_for_masking
|
| 517 |
+
|
| 518 |
+
# if final_masked_indices.any():
|
| 519 |
+
# break
|
| 520 |
+
|
| 521 |
+
# # 3. 根据最终的 mask 生成带噪声的 embedding
|
| 522 |
+
# # final_masked_indices 是 (1, total_tokens),需要扩展到 (1, total_tokens, 1)
|
| 523 |
+
# # 以便和 (1, total_tokens, embed_dim) 的张量在 torch.where 中正确广播
|
| 524 |
+
# noisy_embeds = torch.where(
|
| 525 |
+
# final_masked_indices.unsqueeze(-1),
|
| 526 |
+
# mask_embed,
|
| 527 |
+
# inputs_embeds
|
| 528 |
+
# )
|
| 529 |
+
|
| 530 |
+
# return noisy_embeds, final_masked_indices, p_mask_per_token[final_masked_indices]
|
| 531 |
+
|
| 532 |
+
def forward_add_noise_packed(
|
| 533 |
+
inputs_embeds: torch.Tensor,
|
| 534 |
+
num_tokens_list: List[torch.Tensor],
|
| 535 |
+
prompt_mask: torch.Tensor,
|
| 536 |
+
mask_embed: torch.Tensor,
|
| 537 |
+
eps: float = 1e-3,
|
| 538 |
+
max_tries: int = 10,
|
| 539 |
+
) -> Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]]:
|
| 540 |
+
"""
|
| 541 |
+
为一批打包(packed)序列的 embedding 添加噪声。
|
| 542 |
+
|
| 543 |
+
函数为每个逻辑样本(在每个批次项内拼接)生成一个独立的随机噪声率,
|
| 544 |
+
并随机将一部分 token 的 embedding 替换为 mask_embed。
|
| 545 |
+
这个过程会避开被 prompt_mask 标记的位置。
|
| 546 |
+
|
| 547 |
+
Args:
|
| 548 |
+
inputs_embeds (torch.Tensor):
|
| 549 |
+
输入的 embedding 张量,形状为 (bsz, total_tokens, embed_dim)。
|
| 550 |
+
num_tokens_list (List[torch.Tensor]):
|
| 551 |
+
一个张量列表,长度为 bsz。列表中的每个张量记录了对应批次项中
|
| 552 |
+
每个逻辑样本的长度。例如: [tensor([len1, len2]), tensor([len3, len4, len5])].
|
| 553 |
+
prompt_mask (torch.Tensor):
|
| 554 |
+
布尔型张量,形状为 (bsz, total_tokens),值为 True 的位置表示是 prompt,
|
| 555 |
+
不应添加噪声。
|
| 556 |
+
mask_embed (torch.Tensor):
|
| 557 |
+
用于替换的 mask embedding,形状为 (embed_dim,) 或 (1, embed_dim)。
|
| 558 |
+
eps (float):
|
| 559 |
+
微小值,用于防止噪声率 t 恰好为 0,确保 p_mask > 0。
|
| 560 |
+
max_tries (int):
|
| 561 |
+
为确保至少一个非 prompt token 被 mask,对每个批次项尝试的最大次数。
|
| 562 |
+
|
| 563 |
+
Returns:
|
| 564 |
+
Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]]:
|
| 565 |
+
- noisy_embeds (torch.Tensor):
|
| 566 |
+
添加噪声后的 embedding 张量,形状为 (bsz, total_tokens, embed_dim)。
|
| 567 |
+
- final_masked_indices (torch.Tensor):
|
| 568 |
+
布尔型张量,标记了哪些位置被实际 mask 了,形状为 (bsz, total_tokens)。
|
| 569 |
+
- p_masks_list (List[torch.Tensor]):
|
| 570 |
+
一个张量列表,长度为 bsz。每个张量包含了对应批次项中每个逻辑样本的
|
| 571 |
+
实际噪声率。
|
| 572 |
+
"""
|
| 573 |
+
# 1. 验证和获取形状
|
| 574 |
+
bsz, total_tokens, embed_dim = inputs_embeds.shape
|
| 575 |
+
device = inputs_embeds.device
|
| 576 |
+
|
| 577 |
+
# 检查输入的一致性
|
| 578 |
+
assert len(num_tokens_list) == bsz, f"num_tokens_list 的长度 ({len(num_tokens_list)}) 必须等于 bsz ({bsz})"
|
| 579 |
+
assert prompt_mask.shape == (bsz, total_tokens), f"prompt_mask 形状不匹配, 期望 {(bsz, total_tokens)}, 得到 {prompt_mask.shape}"
|
| 580 |
+
|
| 581 |
+
# 准备结果容器
|
| 582 |
+
noisy_embeds_list = []
|
| 583 |
+
final_masked_indices_list = []
|
| 584 |
+
p_masks_list = []
|
| 585 |
+
|
| 586 |
+
# 调整 mask_embed 形状以便广播: (dim,) -> (1, 1, dim)
|
| 587 |
+
mask_embed_view = mask_embed.view(1, 1, embed_dim)
|
| 588 |
+
|
| 589 |
+
# 2. 在批次维度上迭代
|
| 590 |
+
# 这是处理不同打包结构最直接有效的方法
|
| 591 |
+
for i in range(bsz):
|
| 592 |
+
# 提取当前批次项的数据
|
| 593 |
+
current_embeds = inputs_embeds[i:i+1] # shape: (1, total_tokens, embed_dim)
|
| 594 |
+
current_num_tokens = num_tokens_list[i]
|
| 595 |
+
current_prompt_mask = prompt_mask[i:i+1] # shape: (1, total_tokens)
|
| 596 |
+
|
| 597 |
+
num_samples_in_item = len(current_num_tokens)
|
| 598 |
+
assert total_tokens == torch.sum(current_num_tokens), \
|
| 599 |
+
f"批次项 {i} 的 num_tokens 之和与总长度不匹配"
|
| 600 |
+
|
| 601 |
+
eligible_for_masking = ~current_prompt_mask
|
| 602 |
+
|
| 603 |
+
# 如果没有任何 token 可以被 mask,直接使用原始输入
|
| 604 |
+
if not eligible_for_masking.any():
|
| 605 |
+
noisy_embeds_list.append(current_embeds)
|
| 606 |
+
final_masked_indices_list.append(torch.zeros_like(current_prompt_mask, dtype=torch.bool))
|
| 607 |
+
p_masks_list.append(torch.full((total_tokens,), eps, device=device))
|
| 608 |
+
continue
|
| 609 |
+
|
| 610 |
+
# --- 尝试生成 mask,确保至少 mask 一个 token ---
|
| 611 |
+
final_masked_indices_item = torch.zeros_like(current_prompt_mask, dtype=torch.bool)
|
| 612 |
+
p_mask_per_token = None
|
| 613 |
+
for _ in range(max_tries):
|
| 614 |
+
t = torch.rand(num_samples_in_item, device=device)
|
| 615 |
+
p_mask_per_sample = (1 - eps) * t + eps
|
| 616 |
+
|
| 617 |
+
p_mask_per_token_1d = torch.repeat_interleave(p_mask_per_sample, current_num_tokens)
|
| 618 |
+
p_mask_per_token = p_mask_per_token_1d.unsqueeze(0)
|
| 619 |
+
|
| 620 |
+
masked_indices = torch.rand_like(p_mask_per_token) < p_mask_per_token
|
| 621 |
+
final_masked_indices_item = masked_indices & eligible_for_masking
|
| 622 |
+
|
| 623 |
+
if final_masked_indices_item.any():
|
| 624 |
+
break
|
| 625 |
+
|
| 626 |
+
# --- 根据最终的 mask 生成带噪声的 embedding ---
|
| 627 |
+
noisy_embeds_item = torch.where(
|
| 628 |
+
final_masked_indices_item.unsqueeze(-1),
|
| 629 |
+
mask_embed_view,
|
| 630 |
+
current_embeds
|
| 631 |
+
)
|
| 632 |
+
|
| 633 |
+
# 保存这个批次项的结果
|
| 634 |
+
noisy_embeds_list.append(noisy_embeds_item)
|
| 635 |
+
final_masked_indices_list.append(final_masked_indices_item)
|
| 636 |
+
|
| 637 |
+
p_masks_list.append(p_mask_per_token)
|
| 638 |
+
|
| 639 |
+
# 3. 将列表中的结果堆叠成最终的批处理张量
|
| 640 |
+
final_noisy_embeds = torch.cat(noisy_embeds_list, dim=0)
|
| 641 |
+
final_masked_indices = torch.cat(final_masked_indices_list, dim=0)
|
| 642 |
+
p_mask = torch.cat(p_masks_list, dim=0)
|
| 643 |
+
return final_noisy_embeds, final_masked_indices, p_mask[final_masked_indices]
|
| 644 |
+
|
| 645 |
+
|
| 646 |
+
def block_diff_mask(b, h, q_idx, kv_idx, block_size=None, n=None):
|
| 647 |
+
"""
|
| 648 |
+
Constructs the specialized block diffusion attention mask for training
|
| 649 |
+
composed of three masks:
|
| 650 |
+
- **Block Diagonal Mask (M_BD)**: Self-attention within noised blocks
|
| 651 |
+
- **Offset Block Causal Mask (M_OBC)**: Cross-attention for conditional context
|
| 652 |
+
- **Block Causal Mask (M_BC)**: Attention to update x0
|
| 653 |
+
|
| 654 |
+
Args:
|
| 655 |
+
b, h: Batch and head indices (ignored for mask logic).
|
| 656 |
+
q_idx, kv_idx: Query and Key indices.
|
| 657 |
+
seq_len: Total sequence length.
|
| 658 |
+
block_size: Defines the block structure.
|
| 659 |
+
|
| 660 |
+
Returns:
|
| 661 |
+
A boolean attention mask.
|
| 662 |
+
"""
|
| 663 |
+
|
| 664 |
+
# Indicate whether token belongs to xt or x0
|
| 665 |
+
x0_flag_q = q_idx >= n
|
| 666 |
+
x0_flag_kv = kv_idx >= n
|
| 667 |
+
|
| 668 |
+
# Compute block indices
|
| 669 |
+
block_q = torch.where(
|
| 670 |
+
x0_flag_q == 1, (q_idx - n) // block_size, q_idx // block_size
|
| 671 |
+
)
|
| 672 |
+
block_kv = torch.where(
|
| 673 |
+
x0_flag_kv == 1, (kv_idx - n) // block_size, kv_idx // block_size
|
| 674 |
+
)
|
| 675 |
+
|
| 676 |
+
# **1. Block Diagonal Mask (M_BD) **
|
| 677 |
+
block_diagonal = (block_q == block_kv) & (x0_flag_q == x0_flag_kv)
|
| 678 |
+
|
| 679 |
+
# **2. Offset Block-Causal Mask (M_OBC) **
|
| 680 |
+
offset_block_causal = (block_q > block_kv) & (
|
| 681 |
+
x0_flag_kv == 1) & (x0_flag_q == 0)
|
| 682 |
+
|
| 683 |
+
# **3. Block-Causal Mask (M_BC) **
|
| 684 |
+
block_causal = (block_q >= block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 1)
|
| 685 |
+
|
| 686 |
+
# **4. Combine Masks **
|
| 687 |
+
return block_diagonal | offset_block_causal | block_causal
|
| 688 |
+
|
| 689 |
+
|
| 690 |
+
def block_attn_mask(num_tokens, block_size, device):
|
| 691 |
+
masks = []
|
| 692 |
+
for i in range(len(num_tokens)):
|
| 693 |
+
cur_masks = []
|
| 694 |
+
for num in num_tokens[i]:
|
| 695 |
+
# 全部返回 n*n 而非 2n*2n
|
| 696 |
+
single_mask = block_diff_mask(
|
| 697 |
+
b=None,
|
| 698 |
+
h=None,
|
| 699 |
+
q_idx=torch.arange(num * 2, device=device)[:, None],
|
| 700 |
+
kv_idx=torch.arange(num * 2, device=device)[None, :],
|
| 701 |
+
block_size=block_size,
|
| 702 |
+
n=num,
|
| 703 |
+
)
|
| 704 |
+
cur_masks.append(single_mask)
|
| 705 |
+
masks.append(torch.block_diag(*cur_masks))
|
| 706 |
+
masks = torch.stack(masks, dim=0)
|
| 707 |
+
return masks
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
@auto_docstring(
|
| 711 |
+
custom_intro="""
|
| 712 |
+
The Llava-Next model which consists of a vision backbone and a language model without language modeling head.
|
| 713 |
+
"""
|
| 714 |
+
)
|
| 715 |
+
class LlavaOnevisionModel(LlavaOnevisionPreTrainedModel):
|
| 716 |
+
_checkpoint_conversion_mapping = {"language_model.model": "language_model"}
|
| 717 |
+
|
| 718 |
+
def __init__(self, config):
|
| 719 |
+
super().__init__(config)
|
| 720 |
+
self.vision_tower = AutoModel.from_config(config.vision_config)
|
| 721 |
+
|
| 722 |
+
self.multi_modal_projector = LlavaOnevisionMultiModalProjector(config)
|
| 723 |
+
embed_std = 1 / math.sqrt(config.text_config.hidden_size)
|
| 724 |
+
self.image_newline = nn.Parameter(torch.randn(config.text_config.hidden_size, dtype=self.dtype) * embed_std)
|
| 725 |
+
|
| 726 |
+
self.vocab_size = config.text_config.vocab_size
|
| 727 |
+
if "auto_map" in config.text_config.to_dict():
|
| 728 |
+
logger.warning_once(
|
| 729 |
+
"The text_config of this model contains `auto_map` in its configuration. This might result in errors when using `from_pretrained` to load the model. Please make sure that the `auto_map` is correct."
|
| 730 |
+
)
|
| 731 |
+
config.text_config._name_or_path = config._name_or_path
|
| 732 |
+
self.language_model = AutoModel.from_config(config.text_config, trust_remote_code=True)
|
| 733 |
+
else:
|
| 734 |
+
self.language_model = AutoModel.from_config(config.text_config)
|
| 735 |
+
|
| 736 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
| 737 |
+
self.post_init()
|
| 738 |
+
|
| 739 |
+
def get_input_embeddings(self):
|
| 740 |
+
return self.language_model.get_input_embeddings()
|
| 741 |
+
|
| 742 |
+
def set_input_embeddings(self, value):
|
| 743 |
+
self.language_model.set_input_embeddings(value)
|
| 744 |
+
|
| 745 |
+
def pack_image_features(self, image_features, image_sizes, image_newline=None, vision_aspect_ratio="anyres_max_9"):
|
| 746 |
+
"""
|
| 747 |
+
Reshape, unpad and then pack each image_feature into a single image_features tensor containing all visual vectors.
|
| 748 |
+
|
| 749 |
+
Args:
|
| 750 |
+
image_features (`List[torch.Tensor]` of length num_images, each of shape `(num_patches, image_length, embed_dim)`)
|
| 751 |
+
List of image feature tensor, each contains all the visual feature of all patches.
|
| 752 |
+
image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
|
| 753 |
+
Actual image size of each images (H, W).
|
| 754 |
+
image_newline (`torch.Tensor` of shape `(embed_dim)`)
|
| 755 |
+
New line embedding vector.
|
| 756 |
+
vision_aspect_ratio (`str`, *optional*, "anyres_max_9"):
|
| 757 |
+
Aspect ratio used when processong image features. The default value is "anyres_max_9".
|
| 758 |
+
Returns:
|
| 759 |
+
image_features (`torch.Tensor` of shape `(all_feat_len, embed_dim)`)
|
| 760 |
+
feature_lens (`List[int]`)
|
| 761 |
+
token length of each image in image_features
|
| 762 |
+
"""
|
| 763 |
+
new_image_features = []
|
| 764 |
+
feature_lens = []
|
| 765 |
+
for image_idx, image_feature in enumerate(image_features):
|
| 766 |
+
if image_feature.shape[0] > 1:
|
| 767 |
+
base_image_feature = image_feature[0]
|
| 768 |
+
image_feature = image_feature[1:]
|
| 769 |
+
height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
|
| 770 |
+
if height * width != base_image_feature.shape[0]:
|
| 771 |
+
raise ValueError("The number of patches is not consistent with the image size.")
|
| 772 |
+
num_patch_height, num_patch_width = get_anyres_image_grid_shape(
|
| 773 |
+
image_sizes[image_idx],
|
| 774 |
+
self.config.image_grid_pinpoints,
|
| 775 |
+
self.config.vision_config.image_size,
|
| 776 |
+
)
|
| 777 |
+
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
|
| 778 |
+
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
| 779 |
+
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
| 780 |
+
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
| 781 |
+
max_num_patches = int(vision_aspect_ratio.strip("anyres_max_"))
|
| 782 |
+
channels, curr_height, curr_width = image_feature.shape
|
| 783 |
+
ratio = math.sqrt(curr_height * curr_width / (max_num_patches * height**2))
|
| 784 |
+
if ratio > 1.1:
|
| 785 |
+
image_feature = image_feature[None]
|
| 786 |
+
image_feature = nn.functional.interpolate(
|
| 787 |
+
image_feature, [int(curr_height // ratio), int(curr_width // ratio)], mode="bilinear"
|
| 788 |
+
)[0]
|
| 789 |
+
if image_newline is not None:
|
| 790 |
+
image_feature = torch.cat(
|
| 791 |
+
(
|
| 792 |
+
image_feature,
|
| 793 |
+
image_newline[:, None, None]
|
| 794 |
+
.expand(*image_feature.shape[:-1], 1)
|
| 795 |
+
.to(image_feature.device, image_feature.dtype),
|
| 796 |
+
),
|
| 797 |
+
dim=-1,
|
| 798 |
+
)
|
| 799 |
+
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
| 800 |
+
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
| 801 |
+
else:
|
| 802 |
+
image_feature = image_feature[0]
|
| 803 |
+
if image_newline is not None:
|
| 804 |
+
image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0)
|
| 805 |
+
new_image_features.append(image_feature)
|
| 806 |
+
feature_lens.append(image_feature.size(0))
|
| 807 |
+
image_features = torch.cat(new_image_features, dim=0)
|
| 808 |
+
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
|
| 809 |
+
return image_features, feature_lens
|
| 810 |
+
|
| 811 |
+
def get_image_features(
|
| 812 |
+
self,
|
| 813 |
+
pixel_values: torch.FloatTensor,
|
| 814 |
+
image_sizes: torch.Tensor,
|
| 815 |
+
vision_feature_layer: Optional[Union[int, List[int]]] = None,
|
| 816 |
+
vision_feature_select_strategy: Optional[str] = None,
|
| 817 |
+
):
|
| 818 |
+
"""
|
| 819 |
+
Obtains image last hidden states from the vision tower and apply multimodal projection.
|
| 820 |
+
|
| 821 |
+
Args:
|
| 822 |
+
pixel_values (`torch.FloatTensor]` of shape `(batch_size, num_patches, channels, height, width)`)
|
| 823 |
+
The tensors corresponding to the input images.
|
| 824 |
+
image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
|
| 825 |
+
Actual image size of each images (H, W).
|
| 826 |
+
vision_feature_layer (`Union[int, List[int]]`, *optional*):
|
| 827 |
+
The index of the layer to select the vision feature. If multiple indices are provided,
|
| 828 |
+
the vision feature of the corresponding indices will be concatenated to form the
|
| 829 |
+
vision features.
|
| 830 |
+
vision_feature_select_strategy (`str`, *optional*):
|
| 831 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
| 832 |
+
Can be one of `"default"` or `"full"`
|
| 833 |
+
Returns:
|
| 834 |
+
image_features (List[`torch.Tensor`]): List of image feature tensor, each contains all the visual feature of all patches
|
| 835 |
+
and are of shape `(num_patches, image_length, embed_dim)`).
|
| 836 |
+
"""
|
| 837 |
+
vision_feature_layer = (
|
| 838 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
| 839 |
+
)
|
| 840 |
+
vision_feature_select_strategy = (
|
| 841 |
+
vision_feature_select_strategy
|
| 842 |
+
if vision_feature_select_strategy is not None
|
| 843 |
+
else self.config.vision_feature_select_strategy
|
| 844 |
+
)
|
| 845 |
+
|
| 846 |
+
# ! infer image_num_patches from image_sizes
|
| 847 |
+
image_num_patches = [
|
| 848 |
+
image_size_to_num_patches(
|
| 849 |
+
image_size=imsize,
|
| 850 |
+
grid_pinpoints=self.config.image_grid_pinpoints,
|
| 851 |
+
patch_size=self.config.vision_config.image_size,
|
| 852 |
+
)
|
| 853 |
+
for imsize in image_sizes
|
| 854 |
+
]
|
| 855 |
+
if pixel_values.dim() == 5:
|
| 856 |
+
# stacked if input is (batch_size, num_patches, num_channels, height, width)
|
| 857 |
+
_pixel_values_list = [pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)]
|
| 858 |
+
pixel_values = torch.cat(_pixel_values_list, dim=0)
|
| 859 |
+
elif pixel_values.dim() != 4:
|
| 860 |
+
# otherwise has to be stacked from list of (num_patches, num_channels, height, width)
|
| 861 |
+
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
|
| 862 |
+
|
| 863 |
+
image_features = self.vision_tower(pixel_values, output_hidden_states=True)
|
| 864 |
+
# If we have one vision feature layer, return the corresponding hidden states,
|
| 865 |
+
# otherwise, select the hidden states of each feature layer and concatenate them
|
| 866 |
+
if isinstance(vision_feature_layer, int):
|
| 867 |
+
selected_image_feature = image_features.hidden_states[vision_feature_layer]
|
| 868 |
+
else:
|
| 869 |
+
hs_pool = [image_features.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
|
| 870 |
+
selected_image_feature = torch.cat(hs_pool, dim=-1)
|
| 871 |
+
|
| 872 |
+
if vision_feature_select_strategy == "default":
|
| 873 |
+
selected_image_feature = selected_image_feature[:, 1:]
|
| 874 |
+
elif vision_feature_select_strategy == "full":
|
| 875 |
+
selected_image_feature = selected_image_feature
|
| 876 |
+
image_features = self.multi_modal_projector(selected_image_feature)
|
| 877 |
+
image_features = torch.split(image_features, image_num_patches, dim=0)
|
| 878 |
+
return image_features
|
| 879 |
+
|
| 880 |
+
def _get_mask_embedding(self):
|
| 881 |
+
device = self.get_input_embeddings().weight.device
|
| 882 |
+
mask_token_tensor = torch.tensor(self.config.text_config.mask_token_id, device=device)
|
| 883 |
+
return self.get_input_embeddings()(mask_token_tensor)
|
| 884 |
+
|
| 885 |
+
def prepare_for_bd_training(self, inputs_embeds, position_ids, prompt_mask):
|
| 886 |
+
bsz, seq_len, _ = inputs_embeds.shape
|
| 887 |
+
num_tokens = calculate_token_nums(position_ids) # List[torch.Tensor]
|
| 888 |
+
noisy_inputs_embeds, logits_to_keep_half, p_mask = forward_add_noise_packed(
|
| 889 |
+
inputs_embeds=inputs_embeds,
|
| 890 |
+
num_tokens_list=num_tokens,
|
| 891 |
+
prompt_mask=prompt_mask,
|
| 892 |
+
mask_embed=self._get_mask_embedding(),
|
| 893 |
+
)
|
| 894 |
+
router_noisy_part_list = []
|
| 895 |
+
for i in range(bsz):
|
| 896 |
+
cur_router_noisy_part = (torch.arange(num_tokens[i].shape[0] *2) % 2 == 0).to(inputs_embeds.device)
|
| 897 |
+
cur_router_noisy_part = cur_router_noisy_part.repeat_interleave(num_tokens[i].repeat_interleave(2))
|
| 898 |
+
router_noisy_part_list.append(cur_router_noisy_part)
|
| 899 |
+
router_noisy_part = torch.stack(router_noisy_part_list, dim=0)
|
| 900 |
+
|
| 901 |
+
# concated inputs_embeds: (bzs, seq_len x 2, dim)
|
| 902 |
+
concat_inputs_embeds = inputs_embeds.repeat(1, 2, 1)
|
| 903 |
+
# concated logits_to_keep: (bsz, seq_len x 2)
|
| 904 |
+
logits_to_keep = torch.zeros(
|
| 905 |
+
bsz, 2 * seq_len, dtype=torch.bool, device=inputs_embeds.device)
|
| 906 |
+
# concated position_ids: (bsz, seq_len x 2)
|
| 907 |
+
concat_position_ids = torch.zeros(
|
| 908 |
+
bsz, 2 * seq_len, dtype=position_ids.dtype, device=position_ids.device)
|
| 909 |
+
for i in range(bsz):
|
| 910 |
+
concat_inputs_embeds[i][router_noisy_part[i]] = noisy_inputs_embeds[i]
|
| 911 |
+
concat_inputs_embeds[i][~router_noisy_part[i]] = inputs_embeds[i]
|
| 912 |
+
|
| 913 |
+
logits_to_keep[i][router_noisy_part[i]] = logits_to_keep_half[i]
|
| 914 |
+
|
| 915 |
+
concat_position_ids[i][router_noisy_part[i]] = position_ids[i]
|
| 916 |
+
concat_position_ids[i][~router_noisy_part[i]] = position_ids[i]
|
| 917 |
+
|
| 918 |
+
# create flex_attention mask
|
| 919 |
+
attention_mask = block_attn_mask(num_tokens, self.config.text_config.block_size, inputs_embeds.device)
|
| 920 |
+
flex_attention_mask_3d = create_block_mask(
|
| 921 |
+
lambda b, h, q_idx, kv_idx: attention_mask[b, q_idx, kv_idx],
|
| 922 |
+
B=attention_mask.size(0), H=None,
|
| 923 |
+
Q_LEN=attention_mask.size(1), KV_LEN=attention_mask.size(2),
|
| 924 |
+
)
|
| 925 |
+
|
| 926 |
+
return concat_inputs_embeds, concat_position_ids, flex_attention_mask_3d, logits_to_keep_half, logits_to_keep, p_mask
|
| 927 |
+
|
| 928 |
+
|
| 929 |
+
@can_return_tuple
|
| 930 |
+
@auto_docstring
|
| 931 |
+
def forward(
|
| 932 |
+
self,
|
| 933 |
+
input_ids: torch.LongTensor = None,
|
| 934 |
+
pixel_values: torch.FloatTensor = None,
|
| 935 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
| 936 |
+
pixel_values_videos: torch.FloatTensor = None,
|
| 937 |
+
image_sizes_videos: Optional[torch.LongTensor] = None,
|
| 938 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 939 |
+
prompt_mask: Optional[torch.Tensor] = None,
|
| 940 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 941 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 942 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 943 |
+
vision_feature_layer: Optional[Union[int, List[int]]] = None,
|
| 944 |
+
vision_feature_select_strategy: Optional[str] = None,
|
| 945 |
+
vision_aspect_ratio: Optional[str] = None,
|
| 946 |
+
use_cache: Optional[bool] = None,
|
| 947 |
+
output_attentions: Optional[bool] = None,
|
| 948 |
+
output_hidden_states: Optional[bool] = None,
|
| 949 |
+
return_dict: Optional[bool] = None,
|
| 950 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 951 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 952 |
+
) -> Union[Tuple, LlavaOnevisionModelOutputWithPast]:
|
| 953 |
+
r"""
|
| 954 |
+
pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, frames, num_channels, image_size, image_size)):
|
| 955 |
+
The tensors corresponding to the input videos. Pixel values can be obtained using
|
| 956 |
+
[`LlavaNextVideoProcessor`]. See [`LlavaNextVideoProcessor.__call__`] for details. [`LlavaProcessor`] uses
|
| 957 |
+
[`LlavaNextVideoProcessor`] for processing videos.
|
| 958 |
+
image_sizes_videos (`torch.LongTensor` of shape `(batch_size, frames, 2)`, *optional*):
|
| 959 |
+
The sizes of the videos in the batch, being (height, width) for each frame in the video.
|
| 960 |
+
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
|
| 961 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
| 962 |
+
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
|
| 963 |
+
If `"full"`, the full vision features are used.
|
| 964 |
+
vision_aspect_ratio (`str`, *optional*, defaults to `"anyres_max_9"`):
|
| 965 |
+
Aspect ratio used when processong image features. The default value is "anyres_max_9".
|
| 966 |
+
"""
|
| 967 |
+
|
| 968 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 969 |
+
output_hidden_states = (
|
| 970 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 971 |
+
)
|
| 972 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 973 |
+
vision_feature_layer = (
|
| 974 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
| 975 |
+
)
|
| 976 |
+
vision_feature_select_strategy = (
|
| 977 |
+
vision_feature_select_strategy
|
| 978 |
+
if vision_feature_select_strategy is not None
|
| 979 |
+
else self.config.vision_feature_select_strategy
|
| 980 |
+
)
|
| 981 |
+
vision_aspect_ratio = (
|
| 982 |
+
vision_aspect_ratio if vision_aspect_ratio is not None else self.config.vision_aspect_ratio
|
| 983 |
+
)
|
| 984 |
+
|
| 985 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 986 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 987 |
+
|
| 988 |
+
if (pixel_values is not None or pixel_values_videos is not None) and inputs_embeds is not None:
|
| 989 |
+
raise ValueError(
|
| 990 |
+
"You cannot specify both `pixel_values`/`pixel_values_videos` and `inputs_embeds` at the same time, "
|
| 991 |
+
"and must specify either one"
|
| 992 |
+
)
|
| 993 |
+
|
| 994 |
+
if inputs_embeds is None:
|
| 995 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
| 996 |
+
|
| 997 |
+
# Images are processed with Anyres
|
| 998 |
+
if pixel_values is not None:
|
| 999 |
+
image_features = self.get_image_features(
|
| 1000 |
+
pixel_values,
|
| 1001 |
+
image_sizes,
|
| 1002 |
+
vision_feature_layer=vision_feature_layer,
|
| 1003 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
| 1004 |
+
)
|
| 1005 |
+
image_features, feature_lens = self.pack_image_features(
|
| 1006 |
+
image_features,
|
| 1007 |
+
image_sizes,
|
| 1008 |
+
image_newline=self.image_newline,
|
| 1009 |
+
vision_aspect_ratio=vision_aspect_ratio,
|
| 1010 |
+
)
|
| 1011 |
+
|
| 1012 |
+
special_image_mask = (input_ids == self.config.image_token_id).unsqueeze(-1)
|
| 1013 |
+
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
| 1014 |
+
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
|
| 1015 |
+
n_image_tokens = (input_ids == self.config.image_token_id).sum()
|
| 1016 |
+
n_image_features = image_features.shape[0]
|
| 1017 |
+
raise ValueError(
|
| 1018 |
+
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
| 1019 |
+
)
|
| 1020 |
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
| 1021 |
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
| 1022 |
+
|
| 1023 |
+
# Video are simply embedded and further pooled to decrease seq len
|
| 1024 |
+
if pixel_values_videos is not None:
|
| 1025 |
+
video_features = self.get_video_features(
|
| 1026 |
+
pixel_values_videos,
|
| 1027 |
+
vision_feature_layer=vision_feature_layer,
|
| 1028 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
| 1029 |
+
)
|
| 1030 |
+
if isinstance(video_features, tuple):
|
| 1031 |
+
image_newline = self.image_newline[None, :].to(video_features[0].device)
|
| 1032 |
+
video_features = [torch.cat((single_video_feature, image_newline), dim=0) for single_video_feature in video_features]
|
| 1033 |
+
video_features = torch.cat(video_features, dim=0)
|
| 1034 |
+
else:
|
| 1035 |
+
image_newline = (
|
| 1036 |
+
self.image_newline[None, None, :].repeat(video_features.shape[0], 1, 1).to(video_features.device)
|
| 1037 |
+
)
|
| 1038 |
+
video_features = torch.cat((video_features, image_newline), dim=1)
|
| 1039 |
+
video_features = video_features.flatten(0, 1)
|
| 1040 |
+
|
| 1041 |
+
special_video_mask = (input_ids == self.config.video_token_id).unsqueeze(-1)
|
| 1042 |
+
special_video_mask = special_video_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
| 1043 |
+
if not is_torchdynamo_compiling() and inputs_embeds[special_video_mask].numel() != video_features.numel():
|
| 1044 |
+
n_video_tokens = (input_ids == self.config.video_token_id).sum()
|
| 1045 |
+
n_video_features = video_features.shape[0]
|
| 1046 |
+
raise ValueError(
|
| 1047 |
+
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
|
| 1048 |
+
)
|
| 1049 |
+
video_features = video_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
| 1050 |
+
inputs_embeds = inputs_embeds.masked_scatter(special_video_mask, video_features)
|
| 1051 |
+
|
| 1052 |
+
if self.training:
|
| 1053 |
+
position_ids = modify_padded_position_ids_2d(position_ids)
|
| 1054 |
+
concat_inputs_embeds, concat_position_ids, flex_attention_mask_3d, logits_to_keep_half, logits_to_keep, p_mask = self.prepare_for_bd_training(inputs_embeds, position_ids, prompt_mask)
|
| 1055 |
+
outputs = self.language_model(
|
| 1056 |
+
attention_mask=flex_attention_mask_3d,
|
| 1057 |
+
position_ids=concat_position_ids,
|
| 1058 |
+
inputs_embeds=concat_inputs_embeds,
|
| 1059 |
+
output_attentions=output_attentions,
|
| 1060 |
+
output_hidden_states=output_hidden_states,
|
| 1061 |
+
return_dict=True,
|
| 1062 |
+
cache_position=cache_position,
|
| 1063 |
+
**kwargs,
|
| 1064 |
+
)
|
| 1065 |
+
else:
|
| 1066 |
+
# raise NotImplementedError("Currently only support training.")
|
| 1067 |
+
outputs = self.language_model(
|
| 1068 |
+
attention_mask=attention_mask,
|
| 1069 |
+
position_ids=position_ids,
|
| 1070 |
+
past_key_values=past_key_values,
|
| 1071 |
+
inputs_embeds=inputs_embeds,
|
| 1072 |
+
use_cache=use_cache,
|
| 1073 |
+
output_attentions=output_attentions,
|
| 1074 |
+
output_hidden_states=output_hidden_states,
|
| 1075 |
+
return_dict=True,
|
| 1076 |
+
cache_position=cache_position,
|
| 1077 |
+
**kwargs,
|
| 1078 |
+
)
|
| 1079 |
+
|
| 1080 |
+
return LlavaOnevisionModelOutputWithPast(
|
| 1081 |
+
last_hidden_state=outputs.last_hidden_state,
|
| 1082 |
+
logits_to_keep_half=logits_to_keep_half if self.training else None,
|
| 1083 |
+
logits_to_keep=logits_to_keep if self.training else None,
|
| 1084 |
+
p_mask=p_mask if self.training else None,
|
| 1085 |
+
past_key_values=outputs.past_key_values,
|
| 1086 |
+
hidden_states=outputs.hidden_states,
|
| 1087 |
+
attentions=outputs.attentions,
|
| 1088 |
+
image_hidden_states=image_features if pixel_values is not None else None,
|
| 1089 |
+
video_hidden_states=video_features if pixel_values_videos is not None else None,
|
| 1090 |
+
)
|
| 1091 |
+
|
| 1092 |
+
def get_video_features(
|
| 1093 |
+
self,
|
| 1094 |
+
pixel_values: torch.FloatTensor,
|
| 1095 |
+
vision_feature_layer: Union[int, List[int]],
|
| 1096 |
+
vision_feature_select_strategy: str,
|
| 1097 |
+
):
|
| 1098 |
+
"""
|
| 1099 |
+
Obtains video last hidden states from the vision tower, apply multimodal projection and pooling.
|
| 1100 |
+
|
| 1101 |
+
Args:
|
| 1102 |
+
pixel_values (`torch.FloatTensor]` of shape `(batch_size, num_frames, channels, height, width)`)
|
| 1103 |
+
The tensors corresponding to the input video.
|
| 1104 |
+
vision_feature_layer (`Union[int, List[int]], *optional*, defaults to -2`):
|
| 1105 |
+
The index of the layer to select the vision feature. If multiple indices are provided,
|
| 1106 |
+
the vision feature of the corresponding indices will be concatenated to form the
|
| 1107 |
+
vision features.
|
| 1108 |
+
vision_feature_select_strategy (`str`):
|
| 1109 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
| 1110 |
+
Can be one of `"default"` or `"full"`
|
| 1111 |
+
Returns:
|
| 1112 |
+
video_features (List[`torch.Tensor`]): List of video feature tensor, each contains all the visual feature of all patches
|
| 1113 |
+
and are of shape `(num_videos, video_length, embed_dim)`).
|
| 1114 |
+
"""
|
| 1115 |
+
has_variable_frames = isinstance(pixel_values, List)
|
| 1116 |
+
if has_variable_frames:
|
| 1117 |
+
frame_nums = [video.size(0) for video in pixel_values]
|
| 1118 |
+
pixel_values = torch.cat(pixel_values, dim=0) # Shape: (total_frames, C, H, W)
|
| 1119 |
+
else:
|
| 1120 |
+
# 每个视频帧数相同
|
| 1121 |
+
batch_size, frames, channels, height, width = pixel_values.shape
|
| 1122 |
+
pixel_values = pixel_values.view(batch_size * frames, channels, height, width)
|
| 1123 |
+
video_features = self.vision_tower(pixel_values, output_hidden_states=True)
|
| 1124 |
+
# If we have one vision feature layer, return the corresponding hidden states,
|
| 1125 |
+
# otherwise, select the hidden states of each feature layer and concatenate them
|
| 1126 |
+
if isinstance(vision_feature_layer, int):
|
| 1127 |
+
selected_video_feature = video_features.hidden_states[vision_feature_layer]
|
| 1128 |
+
else:
|
| 1129 |
+
hs_pool = [video_features.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
|
| 1130 |
+
selected_video_feature = torch.cat(hs_pool, dim=-1)
|
| 1131 |
+
|
| 1132 |
+
if vision_feature_select_strategy == "default":
|
| 1133 |
+
selected_video_feature = selected_video_feature[:, 1:]
|
| 1134 |
+
elif vision_feature_select_strategy == "full":
|
| 1135 |
+
selected_video_feature = selected_video_feature
|
| 1136 |
+
video_features = self.multi_modal_projector(selected_video_feature)
|
| 1137 |
+
|
| 1138 |
+
video_features = self.apply_pooling(video_features)
|
| 1139 |
+
|
| 1140 |
+
if has_variable_frames:
|
| 1141 |
+
tokens_per_frame = video_features.shape[1]
|
| 1142 |
+
video_features = video_features.flatten(0, 1)
|
| 1143 |
+
video_tokens_lengths = [num_frames * tokens_per_frame for num_frames in frame_nums]
|
| 1144 |
+
video_features = torch.split(video_features, video_tokens_lengths, dim=0)
|
| 1145 |
+
else:
|
| 1146 |
+
video_features = video_features.reshape(batch_size, frames * video_features.shape[1], -1)
|
| 1147 |
+
|
| 1148 |
+
return video_features
|
| 1149 |
+
|
| 1150 |
+
def apply_pooling(self, image_features):
|
| 1151 |
+
height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
|
| 1152 |
+
batch_frames, seq_len, dim = image_features.shape
|
| 1153 |
+
image_features = image_features.view(batch_frames, height, width, -1)
|
| 1154 |
+
image_features = image_features.permute(0, 3, 1, 2).contiguous()
|
| 1155 |
+
|
| 1156 |
+
height, width = image_features.shape[2:]
|
| 1157 |
+
scaled_shape = [math.ceil(height / 2), math.ceil(width / 2)]
|
| 1158 |
+
image_features = nn.functional.interpolate(image_features, size=scaled_shape, mode="bilinear")
|
| 1159 |
+
|
| 1160 |
+
image_features = image_features.permute(0, 2, 3, 1)
|
| 1161 |
+
image_features = image_features.view(batch_frames, -1, dim)
|
| 1162 |
+
return image_features
|
| 1163 |
+
|
| 1164 |
+
|
| 1165 |
+
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
| 1166 |
+
|
| 1167 |
+
|
| 1168 |
+
@auto_docstring(
|
| 1169 |
+
custom_intro="""
|
| 1170 |
+
The LLAVA-NeXT model which consists of a vision backbone and a language model.
|
| 1171 |
+
"""
|
| 1172 |
+
)
|
| 1173 |
+
class LlavaOnevisionForConditionalGeneration(LlavaOnevisionPreTrainedModel, GenerationMixin):
|
| 1174 |
+
_checkpoint_conversion_mapping = {
|
| 1175 |
+
"^language_model.model": "model.language_model",
|
| 1176 |
+
"^vision_tower": "model.vision_tower",
|
| 1177 |
+
"^multi_modal_projector": "model.multi_modal_projector",
|
| 1178 |
+
"^image_newline": "model.image_newline",
|
| 1179 |
+
"^language_model.lm_head": "lm_head",
|
| 1180 |
+
}
|
| 1181 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1182 |
+
|
| 1183 |
+
def __init__(self, config: LlavaOnevisionConfig):
|
| 1184 |
+
super().__init__(config)
|
| 1185 |
+
self.model = LlavaOnevisionModel(config)
|
| 1186 |
+
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
|
| 1187 |
+
self.post_init()
|
| 1188 |
+
|
| 1189 |
+
def get_input_embeddings(self):
|
| 1190 |
+
return self.model.get_input_embeddings()
|
| 1191 |
+
|
| 1192 |
+
def set_input_embeddings(self, value):
|
| 1193 |
+
self.model.set_input_embeddings(value)
|
| 1194 |
+
|
| 1195 |
+
def get_output_embeddings(self) -> nn.Module:
|
| 1196 |
+
return self.lm_head
|
| 1197 |
+
|
| 1198 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1199 |
+
self.lm_head = new_embeddings
|
| 1200 |
+
|
| 1201 |
+
# Make modules available throught conditional class for BC
|
| 1202 |
+
@property
|
| 1203 |
+
def language_model(self):
|
| 1204 |
+
return self.model.language_model
|
| 1205 |
+
|
| 1206 |
+
@property
|
| 1207 |
+
def vision_tower(self):
|
| 1208 |
+
return self.model.vision_tower
|
| 1209 |
+
|
| 1210 |
+
@property
|
| 1211 |
+
def multi_modal_projector(self):
|
| 1212 |
+
return self.model.multi_modal_projector
|
| 1213 |
+
|
| 1214 |
+
@can_return_tuple
|
| 1215 |
+
@auto_docstring
|
| 1216 |
+
def forward(
|
| 1217 |
+
self,
|
| 1218 |
+
input_ids: torch.LongTensor = None,
|
| 1219 |
+
pixel_values: torch.FloatTensor = None,
|
| 1220 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
| 1221 |
+
pixel_values_videos: torch.FloatTensor = None,
|
| 1222 |
+
image_sizes_videos: Optional[torch.LongTensor] = None,
|
| 1223 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1224 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1225 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1226 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1227 |
+
vision_feature_layer: Optional[Union[int, List[int]]] = None,
|
| 1228 |
+
vision_feature_select_strategy: Optional[str] = None,
|
| 1229 |
+
vision_aspect_ratio: Optional[str] = None,
|
| 1230 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1231 |
+
use_cache: Optional[bool] = None,
|
| 1232 |
+
output_attentions: Optional[bool] = None,
|
| 1233 |
+
output_hidden_states: Optional[bool] = None,
|
| 1234 |
+
return_dict: Optional[bool] = None,
|
| 1235 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1236 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 1237 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
| 1238 |
+
) -> Union[Tuple, LlavaOnevisionCausalLMOutputWithPast]:
|
| 1239 |
+
r"""
|
| 1240 |
+
pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, frames, num_channels, image_size, image_size)):
|
| 1241 |
+
The tensors corresponding to the input videos. Pixel values can be obtained using
|
| 1242 |
+
[`LlavaNextVideoProcessor`]. See [`LlavaNextVideoProcessor.__call__`] for details. [`LlavaProcessor`] uses
|
| 1243 |
+
[`LlavaNextVideoProcessor`] for processing videos.
|
| 1244 |
+
image_sizes_videos (`torch.LongTensor` of shape `(batch_size, frames, 2)`, *optional*):
|
| 1245 |
+
The sizes of the videos in the batch, being (height, width) for each frame in the video.
|
| 1246 |
+
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
|
| 1247 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
| 1248 |
+
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
|
| 1249 |
+
If `"full"`, the full vision features are used.
|
| 1250 |
+
vision_aspect_ratio (`str`, *optional*, defaults to `"anyres_max_9"`):
|
| 1251 |
+
Aspect ratio used when processong image features. The default value is "anyres_max_9".
|
| 1252 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1253 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1254 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1255 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1256 |
+
|
| 1257 |
+
Example:
|
| 1258 |
+
|
| 1259 |
+
```python
|
| 1260 |
+
>>> from PIL import Image
|
| 1261 |
+
>>> import requests
|
| 1262 |
+
>>> import torch
|
| 1263 |
+
>>> from transformers import LlavaOnevisionProcessor, LlavaOnevisionForConditionalGeneration
|
| 1264 |
+
|
| 1265 |
+
>>> model = LlavaOnevisionForConditionalGeneration.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf", torch_dtype="float16", device_map="cuda:0")
|
| 1266 |
+
>>> processor = LlavaOnevisionProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf")
|
| 1267 |
+
|
| 1268 |
+
>>> conversation = [
|
| 1269 |
+
... {
|
| 1270 |
+
... "role": "user",
|
| 1271 |
+
... "content": [
|
| 1272 |
+
... {"type": "text", "text": "What is shown in this image?"},
|
| 1273 |
+
... {"type": "image"},
|
| 1274 |
+
... ],
|
| 1275 |
+
... },
|
| 1276 |
+
... ]
|
| 1277 |
+
>>> prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
| 1278 |
+
|
| 1279 |
+
>>> image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 1280 |
+
>>> raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
| 1281 |
+
>>> inputs = processor(text=prompt, images=raw_image, return_tensors='pt').to(0, torch.float16)
|
| 1282 |
+
|
| 1283 |
+
>>> output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
| 1284 |
+
>>> processor.batch_decode(output, skip_special_tokens=True)[0]
|
| 1285 |
+
"user\n\nWhat is shown in this image?\nassistant\ncat"
|
| 1286 |
+
```"""
|
| 1287 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1288 |
+
output_hidden_states = (
|
| 1289 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1290 |
+
)
|
| 1291 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1292 |
+
vision_feature_layer = (
|
| 1293 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
| 1294 |
+
)
|
| 1295 |
+
vision_feature_select_strategy = (
|
| 1296 |
+
vision_feature_select_strategy
|
| 1297 |
+
if vision_feature_select_strategy is not None
|
| 1298 |
+
else self.config.vision_feature_select_strategy
|
| 1299 |
+
)
|
| 1300 |
+
vision_aspect_ratio = (
|
| 1301 |
+
vision_aspect_ratio if vision_aspect_ratio is not None else self.config.vision_aspect_ratio
|
| 1302 |
+
)
|
| 1303 |
+
prompt_mask = (labels == -100) if labels is not None else None
|
| 1304 |
+
outputs = self.model(
|
| 1305 |
+
input_ids=input_ids,
|
| 1306 |
+
pixel_values=pixel_values,
|
| 1307 |
+
pixel_values_videos=pixel_values_videos,
|
| 1308 |
+
image_sizes=image_sizes,
|
| 1309 |
+
image_sizes_videos=image_sizes_videos,
|
| 1310 |
+
vision_aspect_ratio=vision_aspect_ratio,
|
| 1311 |
+
vision_feature_layer=vision_feature_layer,
|
| 1312 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
| 1313 |
+
attention_mask=attention_mask,
|
| 1314 |
+
prompt_mask=prompt_mask,
|
| 1315 |
+
position_ids=position_ids,
|
| 1316 |
+
past_key_values=past_key_values,
|
| 1317 |
+
inputs_embeds=inputs_embeds,
|
| 1318 |
+
use_cache=use_cache,
|
| 1319 |
+
output_attentions=output_attentions,
|
| 1320 |
+
output_hidden_states=output_hidden_states,
|
| 1321 |
+
return_dict=True,
|
| 1322 |
+
cache_position=cache_position,
|
| 1323 |
+
logits_to_keep=logits_to_keep,
|
| 1324 |
+
**kwargs,
|
| 1325 |
+
)
|
| 1326 |
+
|
| 1327 |
+
hidden_states = outputs[0]
|
| 1328 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 1329 |
+
|
| 1330 |
+
loss = None
|
| 1331 |
+
if self.training:
|
| 1332 |
+
assert labels is not None, "Labels must be provided for training."
|
| 1333 |
+
hidden_states = hidden_states[outputs.logits_to_keep].contiguous()
|
| 1334 |
+
labels = labels[outputs.logits_to_keep_half].contiguous()
|
| 1335 |
+
loss_fct = FusedLinearDiffusionCrossEntropyLoss(reduction='sum')
|
| 1336 |
+
loss = loss_fct( # it will return (sum_loss, unreduced_loss)
|
| 1337 |
+
# conduct `view(-1, V)` inside the function
|
| 1338 |
+
x=hidden_states,
|
| 1339 |
+
target=labels,
|
| 1340 |
+
weight=self.lm_head.weight,
|
| 1341 |
+
bias=self.lm_head.bias,
|
| 1342 |
+
p_mask=outputs.p_mask,
|
| 1343 |
+
)
|
| 1344 |
+
loss = loss / labels.numel()
|
| 1345 |
+
logits = None
|
| 1346 |
+
else:
|
| 1347 |
+
logits = self.lm_head(hidden_states)
|
| 1348 |
+
|
| 1349 |
+
return LlavaOnevisionCausalLMOutputWithPast(
|
| 1350 |
+
loss=loss,
|
| 1351 |
+
logits=logits,
|
| 1352 |
+
past_key_values=outputs.past_key_values,
|
| 1353 |
+
hidden_states=outputs.hidden_states,
|
| 1354 |
+
attentions=outputs.attentions,
|
| 1355 |
+
image_hidden_states=outputs.image_hidden_states,
|
| 1356 |
+
video_hidden_states=outputs.video_hidden_states,
|
| 1357 |
+
)
|
| 1358 |
+
|
| 1359 |
+
def prepare_inputs_for_generation(
|
| 1360 |
+
self,
|
| 1361 |
+
input_ids,
|
| 1362 |
+
past_key_values=None,
|
| 1363 |
+
inputs_embeds=None,
|
| 1364 |
+
pixel_values=None,
|
| 1365 |
+
image_sizes=None,
|
| 1366 |
+
pixel_values_videos=None,
|
| 1367 |
+
image_sizes_videos=None,
|
| 1368 |
+
attention_mask=None,
|
| 1369 |
+
cache_position=None,
|
| 1370 |
+
logits_to_keep=None,
|
| 1371 |
+
**kwargs,
|
| 1372 |
+
):
|
| 1373 |
+
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
| 1374 |
+
|
| 1375 |
+
model_inputs = super().prepare_inputs_for_generation(
|
| 1376 |
+
input_ids,
|
| 1377 |
+
past_key_values=past_key_values,
|
| 1378 |
+
inputs_embeds=inputs_embeds,
|
| 1379 |
+
attention_mask=attention_mask,
|
| 1380 |
+
cache_position=cache_position,
|
| 1381 |
+
logits_to_keep=logits_to_keep,
|
| 1382 |
+
**kwargs,
|
| 1383 |
+
)
|
| 1384 |
+
|
| 1385 |
+
if cache_position[0] == 0:
|
| 1386 |
+
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
| 1387 |
+
# Otherwise we need pixel values to be passed to model
|
| 1388 |
+
model_inputs["pixel_values"] = pixel_values
|
| 1389 |
+
model_inputs["image_sizes"] = image_sizes
|
| 1390 |
+
model_inputs["pixel_values_videos"] = pixel_values_videos
|
| 1391 |
+
model_inputs["image_sizes_videos"] = image_sizes_videos
|
| 1392 |
+
|
| 1393 |
+
return model_inputs
|
| 1394 |
+
|
| 1395 |
+
@staticmethod
|
| 1396 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1397 |
+
attention_mask: torch.Tensor,
|
| 1398 |
+
sequence_length: int,
|
| 1399 |
+
target_length: int,
|
| 1400 |
+
dtype: torch.dtype,
|
| 1401 |
+
cache_position: torch.Tensor,
|
| 1402 |
+
batch_size: int,
|
| 1403 |
+
**kwargs,
|
| 1404 |
+
):
|
| 1405 |
+
"""
|
| 1406 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 1407 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 1408 |
+
|
| 1409 |
+
Args:
|
| 1410 |
+
attention_mask (`torch.Tensor`):
|
| 1411 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
| 1412 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
| 1413 |
+
sequence_length (`int`):
|
| 1414 |
+
The sequence length being processed.
|
| 1415 |
+
target_length (`int`):
|
| 1416 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
| 1417 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
| 1418 |
+
dtype (`torch.dtype`):
|
| 1419 |
+
The dtype to use for the 4D attention mask.
|
| 1420 |
+
cache_position (`torch.Tensor`):
|
| 1421 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 1422 |
+
batch_size (`torch.Tensor`):
|
| 1423 |
+
Batch size.
|
| 1424 |
+
"""
|
| 1425 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 1426 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 1427 |
+
causal_mask = attention_mask
|
| 1428 |
+
else:
|
| 1429 |
+
min_dtype = torch.finfo(dtype).min
|
| 1430 |
+
causal_mask = torch.full(
|
| 1431 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
| 1432 |
+
)
|
| 1433 |
+
if sequence_length != 1:
|
| 1434 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 1435 |
+
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
| 1436 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 1437 |
+
if attention_mask is not None:
|
| 1438 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 1439 |
+
mask_length = attention_mask.shape[-1]
|
| 1440 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
| 1441 |
+
causal_mask.device
|
| 1442 |
+
)
|
| 1443 |
+
padding_mask = padding_mask == 0
|
| 1444 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 1445 |
+
padding_mask, min_dtype
|
| 1446 |
+
)
|
| 1447 |
+
|
| 1448 |
+
return causal_mask
|
| 1449 |
+
|
| 1450 |
+
|
| 1451 |
+
__all__ = ["LlavaOnevisionModel", "LlavaOnevisionForConditionalGeneration", "LlavaOnevisionPreTrainedModel"]
|
modeling_sdar.py
ADDED
|
@@ -0,0 +1,909 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This file is modified based on https://github.com/huggingface/transformers/blob/v4.52.4/src/transformers/models/qwen3/modeling_qwen3.py.
|
| 2 |
+
#
|
| 3 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 4 |
+
# This file was automatically generated from src/transformers/models/qwen3/modular_qwen3.py.
|
| 5 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
| 6 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
| 7 |
+
# modular_qwen3.py file directly. One of our CI enforces this.
|
| 8 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 9 |
+
# coding=utf-8
|
| 10 |
+
# Copyright 2025 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
| 11 |
+
#
|
| 12 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 13 |
+
# you may not use this file except in compliance with the License.
|
| 14 |
+
# You may obtain a copy of the License at
|
| 15 |
+
#
|
| 16 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 17 |
+
#
|
| 18 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 19 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 20 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 21 |
+
# See the License for the specific language governing permissions and
|
| 22 |
+
# limitations under the License.
|
| 23 |
+
|
| 24 |
+
from typing import Callable, Optional, Tuple, Union
|
| 25 |
+
|
| 26 |
+
import torch
|
| 27 |
+
from torch import nn
|
| 28 |
+
from einops import rearrange
|
| 29 |
+
|
| 30 |
+
from transformers.activations import ACT2FN
|
| 31 |
+
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
|
| 32 |
+
from transformers.generation import GenerationMixin
|
| 33 |
+
from transformers.integrations import use_kernel_forward_from_hub
|
| 34 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 35 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 36 |
+
from transformers.modeling_layers import GradientCheckpointingLayer
|
| 37 |
+
from transformers.modeling_outputs import (
|
| 38 |
+
BaseModelOutputWithPast,
|
| 39 |
+
CausalLMOutputWithPast,
|
| 40 |
+
QuestionAnsweringModelOutput,
|
| 41 |
+
SequenceClassifierOutputWithPast,
|
| 42 |
+
TokenClassifierOutput,
|
| 43 |
+
)
|
| 44 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
| 45 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
| 46 |
+
from transformers.processing_utils import Unpack
|
| 47 |
+
from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging
|
| 48 |
+
from .configuration_sdar import SDARConfig
|
| 49 |
+
|
| 50 |
+
from flash_attn.ops.triton.layer_norm import rms_norm_fn as flash_rms_norm
|
| 51 |
+
|
| 52 |
+
import torch.nn.functional as F
|
| 53 |
+
try:
|
| 54 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 55 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
| 56 |
+
except:
|
| 57 |
+
pass
|
| 58 |
+
|
| 59 |
+
try:
|
| 60 |
+
from liger_kernel.ops.swiglu import LigerSiLUMulFunction # noqa: F401
|
| 61 |
+
liger_kernel_is_available = True
|
| 62 |
+
except ImportError:
|
| 63 |
+
liger_kernel_is_available = False
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
from torch.nn.attention.flex_attention import BlockMask, create_block_mask, flex_attention
|
| 68 |
+
from transformers.integrations.flex_attention import make_flex_block_causal_mask
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
@torch.compile(fullgraph=True, mode="max-autotune-no-cudagraphs")
|
| 72 |
+
def fused_flex_attention(query, key, value, attention_mask, **kwargs):
|
| 73 |
+
return flex_attention(query, key, value, block_mask=attention_mask, **kwargs)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
logger = logging.get_logger(__name__)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
| 80 |
+
class SDARRMSNorm(nn.Module):
|
| 81 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 82 |
+
"""
|
| 83 |
+
SDARRMSNorm is equivalent to T5LayerNorm
|
| 84 |
+
"""
|
| 85 |
+
super().__init__()
|
| 86 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 87 |
+
self.variance_epsilon = eps
|
| 88 |
+
|
| 89 |
+
def forward(self, hidden_states):
|
| 90 |
+
return flash_rms_norm(
|
| 91 |
+
hidden_states, weight=self.weight, bias=None, eps=self.variance_epsilon)
|
| 92 |
+
'''
|
| 93 |
+
input_dtype = hidden_states.dtype
|
| 94 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 95 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 96 |
+
hidden_states = hidden_states * \
|
| 97 |
+
torch.rsqrt(variance + self.variance_epsilon)
|
| 98 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 99 |
+
'''
|
| 100 |
+
|
| 101 |
+
def extra_repr(self):
|
| 102 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
class SDARMLP(nn.Module):
|
| 106 |
+
def __init__(self, config):
|
| 107 |
+
super().__init__()
|
| 108 |
+
self.config = config
|
| 109 |
+
self.hidden_size = config.hidden_size
|
| 110 |
+
self.intermediate_size = config.intermediate_size
|
| 111 |
+
self.gate_proj = nn.Linear(
|
| 112 |
+
self.hidden_size, self.intermediate_size, bias=False)
|
| 113 |
+
self.up_proj = nn.Linear(
|
| 114 |
+
self.hidden_size, self.intermediate_size, bias=False)
|
| 115 |
+
self.down_proj = nn.Linear(
|
| 116 |
+
self.intermediate_size, self.hidden_size, bias=False)
|
| 117 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 118 |
+
|
| 119 |
+
def forward(self, x):
|
| 120 |
+
if liger_kernel_is_available:
|
| 121 |
+
return self.down_proj(LigerSiLUMulFunction.apply(self.gate_proj(x), self.up_proj(x)))
|
| 122 |
+
else:
|
| 123 |
+
down_proj = self.down_proj(self.act_fn(
|
| 124 |
+
self.gate_proj(x)) * self.up_proj(x))
|
| 125 |
+
return down_proj
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def rotate_half(x):
|
| 129 |
+
"""Rotates half the hidden dims of the input."""
|
| 130 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 131 |
+
x2 = x[..., x.shape[-1] // 2:]
|
| 132 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 136 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 137 |
+
|
| 138 |
+
Args:
|
| 139 |
+
q (`torch.Tensor`): The query tensor.
|
| 140 |
+
k (`torch.Tensor`): The key tensor.
|
| 141 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 142 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 143 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 144 |
+
Deprecated and unused.
|
| 145 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 146 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 147 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 148 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 149 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 150 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 151 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 152 |
+
Returns:
|
| 153 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 154 |
+
"""
|
| 155 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 156 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 157 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 158 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 159 |
+
return q_embed, k_embed
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 163 |
+
"""
|
| 164 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 165 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 166 |
+
"""
|
| 167 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 168 |
+
if n_rep == 1:
|
| 169 |
+
return hidden_states
|
| 170 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
| 171 |
+
batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 172 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def eager_attention_forward(
|
| 176 |
+
module: nn.Module,
|
| 177 |
+
query: torch.Tensor,
|
| 178 |
+
key: torch.Tensor,
|
| 179 |
+
value: torch.Tensor,
|
| 180 |
+
attention_mask: Optional[torch.Tensor],
|
| 181 |
+
scaling: float,
|
| 182 |
+
dropout: float = 0.0,
|
| 183 |
+
**kwargs,
|
| 184 |
+
):
|
| 185 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 186 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 187 |
+
|
| 188 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 189 |
+
if attention_mask is not None:
|
| 190 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 191 |
+
attn_weights = attn_weights + causal_mask
|
| 192 |
+
|
| 193 |
+
attn_weights = nn.functional.softmax(
|
| 194 |
+
attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 195 |
+
attn_weights = nn.functional.dropout(
|
| 196 |
+
attn_weights, p=dropout, training=module.training)
|
| 197 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 198 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 199 |
+
|
| 200 |
+
return attn_output, attn_weights
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
class SDARAttention(nn.Module):
|
| 204 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 205 |
+
|
| 206 |
+
def __init__(self, config: SDARConfig, layer_idx: int):
|
| 207 |
+
super().__init__()
|
| 208 |
+
self.config = config
|
| 209 |
+
self.layer_idx = layer_idx
|
| 210 |
+
self.head_dim = getattr(
|
| 211 |
+
config, "head_dim", config.hidden_size // config.num_attention_heads)
|
| 212 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
| 213 |
+
self.scaling = self.head_dim**-0.5
|
| 214 |
+
self.attention_dropout = config.attention_dropout
|
| 215 |
+
self.is_causal = True
|
| 216 |
+
|
| 217 |
+
self.hidden_size = config.hidden_size
|
| 218 |
+
self.num_attention_heads = config.num_attention_heads
|
| 219 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 220 |
+
|
| 221 |
+
self.q_proj = nn.Linear(
|
| 222 |
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
| 223 |
+
)
|
| 224 |
+
self.k_proj = nn.Linear(
|
| 225 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
| 226 |
+
)
|
| 227 |
+
self.v_proj = nn.Linear(
|
| 228 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
| 229 |
+
)
|
| 230 |
+
self.o_proj = nn.Linear(
|
| 231 |
+
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
| 232 |
+
)
|
| 233 |
+
# unlike olmo, only on the head dim!
|
| 234 |
+
self.q_norm = SDARRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 235 |
+
# thus post q_norm does not need reshape
|
| 236 |
+
self.k_norm = SDARRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 237 |
+
self.sliding_window = config.sliding_window
|
| 238 |
+
if not (
|
| 239 |
+
self.config.use_sliding_window
|
| 240 |
+
and getattr(self.config, "sliding_window", None) is not None
|
| 241 |
+
and self.layer_idx >= self.config.max_window_layers
|
| 242 |
+
):
|
| 243 |
+
self.sliding_window = None
|
| 244 |
+
|
| 245 |
+
def forward(
|
| 246 |
+
self,
|
| 247 |
+
hidden_states: torch.Tensor,
|
| 248 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 249 |
+
attention_mask: Optional[torch.Tensor],
|
| 250 |
+
past_key_value: Optional[Cache] = None,
|
| 251 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 252 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 253 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 254 |
+
input_shape = hidden_states.shape[:-1]
|
| 255 |
+
bsz, q_len = input_shape
|
| 256 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 257 |
+
|
| 258 |
+
query_states = self.q_norm(self.q_proj(
|
| 259 |
+
hidden_states).view(hidden_shape)).transpose(1, 2)
|
| 260 |
+
key_states = self.k_norm(self.k_proj(
|
| 261 |
+
hidden_states).view(hidden_shape)).transpose(1, 2)
|
| 262 |
+
value_states = self.v_proj(hidden_states).view(
|
| 263 |
+
hidden_shape).transpose(1, 2)
|
| 264 |
+
|
| 265 |
+
cos, sin = position_embeddings
|
| 266 |
+
query_states, key_states = apply_rotary_pos_emb(
|
| 267 |
+
query_states, key_states, cos, sin)
|
| 268 |
+
|
| 269 |
+
if past_key_value is not None and kwargs.get("store_kv", False):
|
| 270 |
+
key_states, value_states = past_key_value.update(
|
| 271 |
+
key_states, value_states, self.layer_idx)
|
| 272 |
+
elif past_key_value is not None and not kwargs.get("store_kv", False) and len(past_key_value) > self.layer_idx:
|
| 273 |
+
past_key_states, past_value_states = past_key_value[self.layer_idx]
|
| 274 |
+
key_states = torch.cat(
|
| 275 |
+
[past_key_states, key_states], dim=-2)
|
| 276 |
+
value_states = torch.cat(
|
| 277 |
+
[past_value_states, value_states], dim=-2)
|
| 278 |
+
|
| 279 |
+
if self.training:
|
| 280 |
+
attn_output, attn_weights = fused_flex_attention(
|
| 281 |
+
query=query_states,
|
| 282 |
+
key=key_states,
|
| 283 |
+
value=value_states,
|
| 284 |
+
attention_mask=attention_mask,
|
| 285 |
+
enable_gqa=True,
|
| 286 |
+
scale=self.scaling,
|
| 287 |
+
return_lse=True
|
| 288 |
+
)
|
| 289 |
+
attn_weights = attn_weights.to(
|
| 290 |
+
value_states.dtype) if attn_weights is not None else None
|
| 291 |
+
attn_output = rearrange(attn_output, 'b h l d -> b l (h d)')
|
| 292 |
+
else:
|
| 293 |
+
attention_mask = attention_mask.bool() if attention_mask is not None else None
|
| 294 |
+
attn_weights = None
|
| 295 |
+
if torch.all(attention_mask): # decoding
|
| 296 |
+
query_states = query_states.transpose(1, 2)
|
| 297 |
+
key_states = key_states.transpose(1, 2)
|
| 298 |
+
value_states = value_states.transpose(1, 2)
|
| 299 |
+
attn_output = flash_attn_func(
|
| 300 |
+
query_states,
|
| 301 |
+
key_states,
|
| 302 |
+
value_states,
|
| 303 |
+
causal=False,
|
| 304 |
+
softmax_scale=self.scaling)
|
| 305 |
+
attn_output = rearrange(attn_output, 'b l h d -> b l (h d)')
|
| 306 |
+
else: # prefilling
|
| 307 |
+
# attn_output = F.scaled_dot_product_attention(
|
| 308 |
+
# query=query_states,
|
| 309 |
+
# key=key_states,
|
| 310 |
+
# value=value_states,
|
| 311 |
+
# attn_mask=attention_mask,
|
| 312 |
+
# is_causal=False,
|
| 313 |
+
# scale=self.scaling,
|
| 314 |
+
# enable_gqa=True)
|
| 315 |
+
# attn_output = rearrange(attn_output, 'b h l d -> b l (h d)')
|
| 316 |
+
|
| 317 |
+
query_chunk_size = 4096 # 可根据显存调整的超参数
|
| 318 |
+
q_len = query_states.size(2)
|
| 319 |
+
output_chunks = []
|
| 320 |
+
# 沿着序列长度 q_len 对 query 和 mask 进行分块
|
| 321 |
+
for i in range(0, q_len, query_chunk_size):
|
| 322 |
+
# 获取当前 query chunk
|
| 323 |
+
query_chunk = query_states[:, :, i:i + query_chunk_size, :]
|
| 324 |
+
|
| 325 |
+
# 获取对应的 attention mask chunk
|
| 326 |
+
# 注意,mask 的 slicing 维度要和 query 对应
|
| 327 |
+
attention_mask_chunk = attention_mask[:, i:i + query_chunk_size, :]
|
| 328 |
+
# 使用分块后的 query 和 mask 进行计算
|
| 329 |
+
# key 和 value 保持不变,始终是完整的
|
| 330 |
+
attn_output_chunk = F.scaled_dot_product_attention(
|
| 331 |
+
query=query_chunk,
|
| 332 |
+
key=key_states,
|
| 333 |
+
value=value_states,
|
| 334 |
+
attn_mask=attention_mask_chunk,
|
| 335 |
+
is_causal=False,
|
| 336 |
+
scale=self.scaling,
|
| 337 |
+
enable_gqa=True # 如果使用GQA,保持这个参数
|
| 338 |
+
)
|
| 339 |
+
output_chunks.append(attn_output_chunk)
|
| 340 |
+
# 将所有 chunk 的结果沿着序列长度维度拼接起来
|
| 341 |
+
attn_output = torch.cat(output_chunks, dim=2) # dim=2 是序列长度维度
|
| 342 |
+
attn_output = rearrange(attn_output, 'b h l d -> b l (h d)')
|
| 343 |
+
|
| 344 |
+
attn_output = self.o_proj(attn_output)
|
| 345 |
+
|
| 346 |
+
return attn_output, attn_weights
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
class SDARDecoderLayer(GradientCheckpointingLayer):
|
| 350 |
+
def __init__(self, config: SDARConfig, layer_idx: int):
|
| 351 |
+
super().__init__()
|
| 352 |
+
self.hidden_size = config.hidden_size
|
| 353 |
+
self.self_attn = SDARAttention(config=config, layer_idx=layer_idx)
|
| 354 |
+
self.mlp = SDARMLP(config)
|
| 355 |
+
self.input_layernorm = SDARRMSNorm(
|
| 356 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
| 357 |
+
self.post_attention_layernorm = SDARRMSNorm(
|
| 358 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
| 359 |
+
if (
|
| 360 |
+
config.sliding_window and config._attn_implementation != "flash_attention_2"
|
| 361 |
+
): # diff with Llama is this warning
|
| 362 |
+
logger.warning_once(
|
| 363 |
+
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
| 364 |
+
"unexpected results may be encountered."
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
def forward(
|
| 368 |
+
self,
|
| 369 |
+
hidden_states: torch.Tensor,
|
| 370 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 371 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 372 |
+
past_key_value: Optional[Cache] = None,
|
| 373 |
+
output_attentions: Optional[bool] = False,
|
| 374 |
+
use_cache: Optional[bool] = False,
|
| 375 |
+
store_kv: Optional[bool] = False,
|
| 376 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 377 |
+
# necessary, but kept here for BC
|
| 378 |
+
position_embeddings: Optional[Tuple[torch.Tensor,
|
| 379 |
+
torch.Tensor]] = None,
|
| 380 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 381 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 382 |
+
residual = hidden_states
|
| 383 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 384 |
+
|
| 385 |
+
# Self Attention
|
| 386 |
+
hidden_states, self_attn_weights = self.self_attn(
|
| 387 |
+
hidden_states=hidden_states,
|
| 388 |
+
attention_mask=attention_mask,
|
| 389 |
+
position_ids=position_ids,
|
| 390 |
+
past_key_value=past_key_value,
|
| 391 |
+
output_attentions=output_attentions,
|
| 392 |
+
use_cache=use_cache,
|
| 393 |
+
store_kv=store_kv,
|
| 394 |
+
cache_position=cache_position,
|
| 395 |
+
position_embeddings=position_embeddings,
|
| 396 |
+
**kwargs,
|
| 397 |
+
)
|
| 398 |
+
hidden_states = residual + hidden_states
|
| 399 |
+
|
| 400 |
+
# Fully Connected
|
| 401 |
+
residual = hidden_states
|
| 402 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 403 |
+
hidden_states = self.mlp(hidden_states)
|
| 404 |
+
hidden_states = residual + hidden_states
|
| 405 |
+
|
| 406 |
+
outputs = (hidden_states,)
|
| 407 |
+
if output_attentions:
|
| 408 |
+
outputs += (self_attn_weights,)
|
| 409 |
+
|
| 410 |
+
return outputs
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
@auto_docstring
|
| 414 |
+
class SDARPreTrainedModel(PreTrainedModel):
|
| 415 |
+
config_class = SDARConfig
|
| 416 |
+
base_model_prefix = "model"
|
| 417 |
+
supports_gradient_checkpointing = True
|
| 418 |
+
_no_split_modules = ["SDARDecoderLayer"]
|
| 419 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 420 |
+
_supports_flash_attn_2 = True
|
| 421 |
+
_supports_sdpa = True
|
| 422 |
+
_supports_flex_attn = True
|
| 423 |
+
_supports_cache_class = True
|
| 424 |
+
_supports_quantized_cache = True
|
| 425 |
+
_supports_static_cache = True
|
| 426 |
+
_supports_attention_backend = True
|
| 427 |
+
|
| 428 |
+
def _init_weights(self, module):
|
| 429 |
+
std = self.config.initializer_range
|
| 430 |
+
if isinstance(module, nn.Linear):
|
| 431 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 432 |
+
if module.bias is not None:
|
| 433 |
+
module.bias.data.zero_()
|
| 434 |
+
elif isinstance(module, nn.Embedding):
|
| 435 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 436 |
+
if module.padding_idx is not None:
|
| 437 |
+
module.weight.data[module.padding_idx].zero_()
|
| 438 |
+
elif isinstance(module, SDARRMSNorm):
|
| 439 |
+
module.weight.data.fill_(1.0)
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
class SDARRotaryEmbedding(nn.Module):
|
| 443 |
+
def __init__(self, config: SDARConfig, device=None):
|
| 444 |
+
super().__init__()
|
| 445 |
+
# BC: "rope_type" was originally "type"
|
| 446 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
| 447 |
+
self.rope_type = config.rope_scaling.get(
|
| 448 |
+
"rope_type", config.rope_scaling.get("type"))
|
| 449 |
+
else:
|
| 450 |
+
self.rope_type = "default"
|
| 451 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 452 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 453 |
+
|
| 454 |
+
self.config = config
|
| 455 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 456 |
+
|
| 457 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
| 458 |
+
self.config, device)
|
| 459 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 460 |
+
self.original_inv_freq = self.inv_freq
|
| 461 |
+
|
| 462 |
+
@torch.no_grad()
|
| 463 |
+
# power user: used with advanced RoPE types (e.g. dynamic rope)
|
| 464 |
+
@dynamic_rope_update
|
| 465 |
+
def forward(self, x, position_ids):
|
| 466 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(
|
| 467 |
+
position_ids.shape[0], -1, 1).to(x.device)
|
| 468 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 469 |
+
|
| 470 |
+
device_type = x.device.type if isinstance(
|
| 471 |
+
x.device.type, str) and x.device.type != "mps" else "cpu"
|
| 472 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
| 473 |
+
freqs = (inv_freq_expanded.float() @
|
| 474 |
+
position_ids_expanded.float()).transpose(1, 2)
|
| 475 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 476 |
+
cos = emb.cos() * self.attention_scaling
|
| 477 |
+
sin = emb.sin() * self.attention_scaling
|
| 478 |
+
|
| 479 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 480 |
+
|
| 481 |
+
|
| 482 |
+
@auto_docstring
|
| 483 |
+
class SDARModel(SDARPreTrainedModel):
|
| 484 |
+
def __init__(self, config: SDARConfig):
|
| 485 |
+
super().__init__(config)
|
| 486 |
+
self.padding_idx = config.pad_token_id
|
| 487 |
+
self.vocab_size = config.vocab_size
|
| 488 |
+
|
| 489 |
+
self.embed_tokens = nn.Embedding(
|
| 490 |
+
config.vocab_size, config.hidden_size, self.padding_idx)
|
| 491 |
+
self.layers = nn.ModuleList(
|
| 492 |
+
[SDARDecoderLayer(config, layer_idx)
|
| 493 |
+
for layer_idx in range(config.num_hidden_layers)]
|
| 494 |
+
)
|
| 495 |
+
self.norm = SDARRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 496 |
+
self.rotary_emb = SDARRotaryEmbedding(config=config)
|
| 497 |
+
self.gradient_checkpointing = False
|
| 498 |
+
|
| 499 |
+
# Initialize weights and apply final processing
|
| 500 |
+
self.post_init()
|
| 501 |
+
|
| 502 |
+
def get_input_embeddings(self):
|
| 503 |
+
return self.embed_tokens
|
| 504 |
+
|
| 505 |
+
def set_input_embeddings(self, value):
|
| 506 |
+
self.embed_tokens = value
|
| 507 |
+
|
| 508 |
+
@can_return_tuple
|
| 509 |
+
@auto_docstring
|
| 510 |
+
def forward(
|
| 511 |
+
self,
|
| 512 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 513 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 514 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 515 |
+
past_key_values: Optional[Cache] = None,
|
| 516 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 517 |
+
use_cache: Optional[bool] = None,
|
| 518 |
+
store_kv: Optional[bool] = None,
|
| 519 |
+
output_attentions: Optional[bool] = None,
|
| 520 |
+
output_hidden_states: Optional[bool] = None,
|
| 521 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 522 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
| 523 |
+
) -> BaseModelOutputWithPast:
|
| 524 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 525 |
+
output_hidden_states = (
|
| 526 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 527 |
+
)
|
| 528 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 529 |
+
|
| 530 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 531 |
+
raise ValueError(
|
| 532 |
+
"You must specify exactly one of input_ids or inputs_embeds")
|
| 533 |
+
|
| 534 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 535 |
+
logger.warning_once(
|
| 536 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
| 537 |
+
)
|
| 538 |
+
use_cache = False
|
| 539 |
+
|
| 540 |
+
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
|
| 541 |
+
if not isinstance(past_key_values, (type(None), Cache)):
|
| 542 |
+
raise ValueError(
|
| 543 |
+
"The `past_key_values` should be either a `Cache` object or `None`.")
|
| 544 |
+
|
| 545 |
+
if inputs_embeds is None:
|
| 546 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 547 |
+
|
| 548 |
+
if use_cache and past_key_values is None:
|
| 549 |
+
past_key_values = DynamicCache()
|
| 550 |
+
|
| 551 |
+
if cache_position is None:
|
| 552 |
+
past_seen_tokens = past_key_values.get_seq_length(
|
| 553 |
+
) if past_key_values is not None else 0
|
| 554 |
+
cache_position = torch.arange(
|
| 555 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 556 |
+
)
|
| 557 |
+
|
| 558 |
+
if position_ids is None:
|
| 559 |
+
position_ids = cache_position.unsqueeze(0)
|
| 560 |
+
|
| 561 |
+
# causal_mask = self._update_causal_mask(
|
| 562 |
+
# attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 563 |
+
# )
|
| 564 |
+
|
| 565 |
+
hidden_states = inputs_embeds
|
| 566 |
+
|
| 567 |
+
# create position embeddings to be shared across the decoder layers
|
| 568 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 569 |
+
|
| 570 |
+
# decoder layers
|
| 571 |
+
all_hidden_states = () if output_hidden_states else None
|
| 572 |
+
all_self_attns = () if output_attentions else None
|
| 573 |
+
|
| 574 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 575 |
+
if output_hidden_states:
|
| 576 |
+
all_hidden_states += (hidden_states,)
|
| 577 |
+
|
| 578 |
+
layer_outputs = decoder_layer(
|
| 579 |
+
hidden_states,
|
| 580 |
+
attention_mask=attention_mask,
|
| 581 |
+
position_ids=position_ids,
|
| 582 |
+
past_key_value=past_key_values,
|
| 583 |
+
output_attentions=output_attentions,
|
| 584 |
+
use_cache=use_cache,
|
| 585 |
+
store_kv=store_kv,
|
| 586 |
+
cache_position=cache_position,
|
| 587 |
+
position_embeddings=position_embeddings,
|
| 588 |
+
**flash_attn_kwargs,
|
| 589 |
+
)
|
| 590 |
+
|
| 591 |
+
hidden_states = layer_outputs[0]
|
| 592 |
+
|
| 593 |
+
if output_attentions:
|
| 594 |
+
all_self_attns += (layer_outputs[1],)
|
| 595 |
+
|
| 596 |
+
hidden_states = self.norm(hidden_states)
|
| 597 |
+
|
| 598 |
+
# add hidden states from the last decoder layer
|
| 599 |
+
if output_hidden_states:
|
| 600 |
+
all_hidden_states += (hidden_states,)
|
| 601 |
+
|
| 602 |
+
return BaseModelOutputWithPast(
|
| 603 |
+
last_hidden_state=hidden_states,
|
| 604 |
+
past_key_values=past_key_values if use_cache else None,
|
| 605 |
+
hidden_states=all_hidden_states,
|
| 606 |
+
attentions=all_self_attns,
|
| 607 |
+
)
|
| 608 |
+
|
| 609 |
+
def _update_causal_mask(
|
| 610 |
+
self,
|
| 611 |
+
attention_mask: Union[torch.Tensor, "BlockMask"],
|
| 612 |
+
input_tensor: torch.Tensor,
|
| 613 |
+
cache_position: torch.Tensor,
|
| 614 |
+
past_key_values: Cache,
|
| 615 |
+
output_attentions: bool = False,
|
| 616 |
+
):
|
| 617 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 618 |
+
if attention_mask is not None and past_key_values is not None:
|
| 619 |
+
is_padding_right = attention_mask[:, -
|
| 620 |
+
1].sum().item() != input_tensor.size()[0]
|
| 621 |
+
if is_padding_right:
|
| 622 |
+
raise ValueError(
|
| 623 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
| 624 |
+
" this may lead to unexpected behaviour for Flash Attention version of Qwen3. Make sure to "
|
| 625 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
| 626 |
+
)
|
| 627 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
| 628 |
+
return attention_mask
|
| 629 |
+
return None
|
| 630 |
+
if self.config._attn_implementation == "flex_attention":
|
| 631 |
+
if isinstance(attention_mask, torch.Tensor):
|
| 632 |
+
seq_len_q, seq_len_kv = attention_mask.shape
|
| 633 |
+
assert seq_len_q == seq_len_kv, f"got {attention_mask.shape=}"
|
| 634 |
+
attention_mask = create_block_mask(
|
| 635 |
+
# 2d bool tensor, shape: [2*seqlen, 2*seqlen]
|
| 636 |
+
lambda b, h, q_idx, kv_idx: attention_mask[q_idx, kv_idx],
|
| 637 |
+
B=None, H=None, Q_LEN=seq_len_q, KV_LEN=seq_len_kv,
|
| 638 |
+
)
|
| 639 |
+
else:
|
| 640 |
+
# Here we pass in flex mask computed externally
|
| 641 |
+
assert isinstance(attention_mask, BlockMask)
|
| 642 |
+
return attention_mask
|
| 643 |
+
|
| 644 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 645 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 646 |
+
# to infer the attention mask.
|
| 647 |
+
past_seen_tokens = past_key_values.get_seq_length(
|
| 648 |
+
) if past_key_values is not None else 0
|
| 649 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 650 |
+
using_sliding_window_cache = isinstance(
|
| 651 |
+
past_key_values, SlidingWindowCache)
|
| 652 |
+
|
| 653 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 654 |
+
if (
|
| 655 |
+
self.config._attn_implementation == "sdpa"
|
| 656 |
+
and not (using_static_cache or using_sliding_window_cache)
|
| 657 |
+
and not output_attentions
|
| 658 |
+
):
|
| 659 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 660 |
+
attention_mask,
|
| 661 |
+
inputs_embeds=input_tensor,
|
| 662 |
+
past_key_values_length=past_seen_tokens,
|
| 663 |
+
sliding_window=self.config.sliding_window,
|
| 664 |
+
is_training=self.training,
|
| 665 |
+
):
|
| 666 |
+
return None
|
| 667 |
+
|
| 668 |
+
dtype = input_tensor.dtype
|
| 669 |
+
min_dtype = torch.finfo(dtype).min
|
| 670 |
+
sequence_length = input_tensor.shape[1]
|
| 671 |
+
# SlidingWindowCache or StaticCache
|
| 672 |
+
if using_sliding_window_cache or using_static_cache:
|
| 673 |
+
target_length = past_key_values.get_max_cache_shape()
|
| 674 |
+
# DynamicCache or no cache
|
| 675 |
+
else:
|
| 676 |
+
target_length = (
|
| 677 |
+
attention_mask.shape[-1]
|
| 678 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 679 |
+
else past_seen_tokens + sequence_length + 1
|
| 680 |
+
)
|
| 681 |
+
|
| 682 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 683 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
| 684 |
+
attention_mask,
|
| 685 |
+
sequence_length=sequence_length,
|
| 686 |
+
target_length=target_length,
|
| 687 |
+
dtype=dtype,
|
| 688 |
+
cache_position=cache_position,
|
| 689 |
+
batch_size=input_tensor.shape[0],
|
| 690 |
+
config=self.config,
|
| 691 |
+
past_key_values=past_key_values,
|
| 692 |
+
)
|
| 693 |
+
|
| 694 |
+
if (
|
| 695 |
+
self.config._attn_implementation == "sdpa"
|
| 696 |
+
and attention_mask is not None
|
| 697 |
+
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
| 698 |
+
and not output_attentions
|
| 699 |
+
):
|
| 700 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 701 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 702 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 703 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(
|
| 704 |
+
causal_mask, min_dtype)
|
| 705 |
+
|
| 706 |
+
return causal_mask
|
| 707 |
+
|
| 708 |
+
@staticmethod
|
| 709 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 710 |
+
attention_mask: torch.Tensor,
|
| 711 |
+
sequence_length: int,
|
| 712 |
+
target_length: int,
|
| 713 |
+
dtype: torch.dtype,
|
| 714 |
+
cache_position: torch.Tensor,
|
| 715 |
+
batch_size: int,
|
| 716 |
+
config: SDARConfig,
|
| 717 |
+
past_key_values: Cache,
|
| 718 |
+
):
|
| 719 |
+
"""
|
| 720 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 721 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 722 |
+
|
| 723 |
+
Args:
|
| 724 |
+
attention_mask (`torch.Tensor`):
|
| 725 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
| 726 |
+
sequence_length (`int`):
|
| 727 |
+
The sequence length being processed.
|
| 728 |
+
target_length (`int`):
|
| 729 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
| 730 |
+
dtype (`torch.dtype`):
|
| 731 |
+
The dtype to use for the 4D attention mask.
|
| 732 |
+
cache_position (`torch.Tensor`):
|
| 733 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 734 |
+
batch_size (`torch.Tensor`):
|
| 735 |
+
Batch size.
|
| 736 |
+
config (`SDARConfig`):
|
| 737 |
+
The model's configuration class
|
| 738 |
+
past_key_values (`Cache`):
|
| 739 |
+
The cache class that is being used currently to generate
|
| 740 |
+
"""
|
| 741 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 742 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 743 |
+
causal_mask = attention_mask
|
| 744 |
+
else:
|
| 745 |
+
min_dtype = torch.finfo(dtype).min
|
| 746 |
+
causal_mask = torch.full(
|
| 747 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
| 748 |
+
)
|
| 749 |
+
diagonal_attend_mask = torch.arange(target_length, device=cache_position.device) > cache_position.reshape(
|
| 750 |
+
-1, 1
|
| 751 |
+
)
|
| 752 |
+
text_config = config.get_text_config()
|
| 753 |
+
if getattr(text_config, "use_sliding_window", True) and text_config.sliding_window is not None:
|
| 754 |
+
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
|
| 755 |
+
# the check is needed to verify is current checkpoint was trained with sliding window or not
|
| 756 |
+
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
|
| 757 |
+
sliding_attend_mask = torch.arange(target_length, device=cache_position.device) <= (
|
| 758 |
+
cache_position.reshape(-1, 1) -
|
| 759 |
+
text_config.sliding_window
|
| 760 |
+
)
|
| 761 |
+
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
|
| 762 |
+
causal_mask *= diagonal_attend_mask
|
| 763 |
+
causal_mask = causal_mask[None, None,
|
| 764 |
+
:, :].expand(batch_size, 1, -1, -1)
|
| 765 |
+
if attention_mask is not None:
|
| 766 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 767 |
+
if attention_mask.shape[-1] > target_length:
|
| 768 |
+
attention_mask = attention_mask[:, :target_length]
|
| 769 |
+
mask_length = attention_mask.shape[-1]
|
| 770 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
| 771 |
+
causal_mask.device
|
| 772 |
+
)
|
| 773 |
+
padding_mask = padding_mask == 0
|
| 774 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 775 |
+
padding_mask, min_dtype
|
| 776 |
+
)
|
| 777 |
+
return causal_mask
|
| 778 |
+
|
| 779 |
+
|
| 780 |
+
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs):
|
| 781 |
+
...
|
| 782 |
+
|
| 783 |
+
|
| 784 |
+
@auto_docstring
|
| 785 |
+
class SDARForCausalLM(SDARPreTrainedModel, GenerationMixin):
|
| 786 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 787 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
| 788 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
| 789 |
+
|
| 790 |
+
def __init__(self, config):
|
| 791 |
+
super().__init__(config)
|
| 792 |
+
self.model = SDARModel(config)
|
| 793 |
+
self.vocab_size = config.vocab_size
|
| 794 |
+
self.lm_head = nn.Linear(
|
| 795 |
+
config.hidden_size, config.vocab_size, bias=False)
|
| 796 |
+
|
| 797 |
+
# Initialize weights and apply final processing
|
| 798 |
+
self.post_init()
|
| 799 |
+
|
| 800 |
+
def get_input_embeddings(self):
|
| 801 |
+
return self.model.embed_tokens
|
| 802 |
+
|
| 803 |
+
def set_input_embeddings(self, value):
|
| 804 |
+
self.model.embed_tokens = value
|
| 805 |
+
|
| 806 |
+
def get_output_embeddings(self):
|
| 807 |
+
return self.lm_head
|
| 808 |
+
|
| 809 |
+
def set_output_embeddings(self, new_embeddings):
|
| 810 |
+
self.lm_head = new_embeddings
|
| 811 |
+
|
| 812 |
+
def set_decoder(self, decoder):
|
| 813 |
+
self.model = decoder
|
| 814 |
+
|
| 815 |
+
def get_decoder(self):
|
| 816 |
+
return self.model
|
| 817 |
+
|
| 818 |
+
@can_return_tuple
|
| 819 |
+
@auto_docstring
|
| 820 |
+
def forward(
|
| 821 |
+
self,
|
| 822 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 823 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 824 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 825 |
+
past_key_values: Optional[Cache] = None,
|
| 826 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 827 |
+
labels: Optional[torch.LongTensor] = None,
|
| 828 |
+
use_cache: Optional[bool] = None,
|
| 829 |
+
output_attentions: Optional[bool] = None,
|
| 830 |
+
output_hidden_states: Optional[bool] = None,
|
| 831 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 832 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 833 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
| 834 |
+
) -> CausalLMOutputWithPast:
|
| 835 |
+
r"""
|
| 836 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 837 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 838 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 839 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 840 |
+
|
| 841 |
+
Example:
|
| 842 |
+
|
| 843 |
+
```python
|
| 844 |
+
>>> from transformers import AutoTokenizer, SDARForCausalLM
|
| 845 |
+
|
| 846 |
+
>>> model = SDARForCausalLM.from_pretrained("DiffuOpen/SDAR-1.7B-Chat")
|
| 847 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("DiffuOpen/SDAR-1.7B-Chat")
|
| 848 |
+
|
| 849 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 850 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 851 |
+
|
| 852 |
+
>>> # Generate
|
| 853 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 854 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 855 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 856 |
+
```"""
|
| 857 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 858 |
+
output_hidden_states = (
|
| 859 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 860 |
+
)
|
| 861 |
+
|
| 862 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 863 |
+
outputs: BaseModelOutputWithPast = self.model(
|
| 864 |
+
input_ids=input_ids,
|
| 865 |
+
attention_mask=attention_mask,
|
| 866 |
+
position_ids=position_ids,
|
| 867 |
+
past_key_values=past_key_values,
|
| 868 |
+
inputs_embeds=inputs_embeds,
|
| 869 |
+
use_cache=use_cache,
|
| 870 |
+
output_attentions=output_attentions,
|
| 871 |
+
output_hidden_states=output_hidden_states,
|
| 872 |
+
cache_position=cache_position,
|
| 873 |
+
**kwargs,
|
| 874 |
+
)
|
| 875 |
+
|
| 876 |
+
hidden_states = outputs.last_hidden_state
|
| 877 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 878 |
+
slice_indices = slice(-logits_to_keep,
|
| 879 |
+
None) if isinstance(logits_to_keep, int) else logits_to_keep
|
| 880 |
+
hidden_states = hidden_states[:, slice_indices, :].contiguous()
|
| 881 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
| 882 |
+
if fuse_linear_and_cross_entropy:
|
| 883 |
+
# When using fused_linear_ce_loss, we do not compute the whole logits on HBM
|
| 884 |
+
logits = None
|
| 885 |
+
else:
|
| 886 |
+
logits = self.lm_head(hidden_states)
|
| 887 |
+
|
| 888 |
+
loss = None
|
| 889 |
+
if labels is not None:
|
| 890 |
+
# FusedLinearCrossEntropyLoss will be implemented by monkey patch when training
|
| 891 |
+
# We don't use it when inferencing
|
| 892 |
+
loss_fct = nn.CrossEntropyLoss() # nn.CE
|
| 893 |
+
loss = loss_fct(
|
| 894 |
+
logits.view(-1, self.config.vocab_size), labels.view(-1))
|
| 895 |
+
|
| 896 |
+
return CausalLMOutputWithPast(
|
| 897 |
+
loss=loss,
|
| 898 |
+
logits=logits,
|
| 899 |
+
past_key_values=outputs.past_key_values,
|
| 900 |
+
hidden_states=outputs.hidden_states,
|
| 901 |
+
attentions=outputs.attentions,
|
| 902 |
+
)
|
| 903 |
+
|
| 904 |
+
|
| 905 |
+
__all__ = [
|
| 906 |
+
"SDARForCausalLM",
|
| 907 |
+
"SDARModel",
|
| 908 |
+
"SDARPreTrainedModel",
|
| 909 |
+
]
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": null,
|
| 3 |
+
"data_format": "channels_first",
|
| 4 |
+
"default_to_square": false,
|
| 5 |
+
"device": null,
|
| 6 |
+
"do_center_crop": null,
|
| 7 |
+
"do_convert_rgb": true,
|
| 8 |
+
"do_normalize": true,
|
| 9 |
+
"do_pad": true,
|
| 10 |
+
"do_rescale": true,
|
| 11 |
+
"do_resize": true,
|
| 12 |
+
"image_grid_pinpoints": [
|
| 13 |
+
[
|
| 14 |
+
384,
|
| 15 |
+
384
|
| 16 |
+
],
|
| 17 |
+
[
|
| 18 |
+
384,
|
| 19 |
+
768
|
| 20 |
+
],
|
| 21 |
+
[
|
| 22 |
+
384,
|
| 23 |
+
1152
|
| 24 |
+
],
|
| 25 |
+
[
|
| 26 |
+
384,
|
| 27 |
+
1536
|
| 28 |
+
],
|
| 29 |
+
[
|
| 30 |
+
384,
|
| 31 |
+
1920
|
| 32 |
+
],
|
| 33 |
+
[
|
| 34 |
+
384,
|
| 35 |
+
2304
|
| 36 |
+
],
|
| 37 |
+
[
|
| 38 |
+
768,
|
| 39 |
+
384
|
| 40 |
+
],
|
| 41 |
+
[
|
| 42 |
+
768,
|
| 43 |
+
768
|
| 44 |
+
],
|
| 45 |
+
[
|
| 46 |
+
768,
|
| 47 |
+
1152
|
| 48 |
+
],
|
| 49 |
+
[
|
| 50 |
+
768,
|
| 51 |
+
1536
|
| 52 |
+
],
|
| 53 |
+
[
|
| 54 |
+
768,
|
| 55 |
+
1920
|
| 56 |
+
],
|
| 57 |
+
[
|
| 58 |
+
768,
|
| 59 |
+
2304
|
| 60 |
+
],
|
| 61 |
+
[
|
| 62 |
+
1152,
|
| 63 |
+
384
|
| 64 |
+
],
|
| 65 |
+
[
|
| 66 |
+
1152,
|
| 67 |
+
768
|
| 68 |
+
],
|
| 69 |
+
[
|
| 70 |
+
1152,
|
| 71 |
+
1152
|
| 72 |
+
],
|
| 73 |
+
[
|
| 74 |
+
1152,
|
| 75 |
+
1536
|
| 76 |
+
],
|
| 77 |
+
[
|
| 78 |
+
1152,
|
| 79 |
+
1920
|
| 80 |
+
],
|
| 81 |
+
[
|
| 82 |
+
1152,
|
| 83 |
+
2304
|
| 84 |
+
],
|
| 85 |
+
[
|
| 86 |
+
1536,
|
| 87 |
+
384
|
| 88 |
+
],
|
| 89 |
+
[
|
| 90 |
+
1536,
|
| 91 |
+
768
|
| 92 |
+
],
|
| 93 |
+
[
|
| 94 |
+
1536,
|
| 95 |
+
1152
|
| 96 |
+
],
|
| 97 |
+
[
|
| 98 |
+
1536,
|
| 99 |
+
1536
|
| 100 |
+
],
|
| 101 |
+
[
|
| 102 |
+
1536,
|
| 103 |
+
1920
|
| 104 |
+
],
|
| 105 |
+
[
|
| 106 |
+
1536,
|
| 107 |
+
2304
|
| 108 |
+
],
|
| 109 |
+
[
|
| 110 |
+
1920,
|
| 111 |
+
384
|
| 112 |
+
],
|
| 113 |
+
[
|
| 114 |
+
1920,
|
| 115 |
+
768
|
| 116 |
+
],
|
| 117 |
+
[
|
| 118 |
+
1920,
|
| 119 |
+
1152
|
| 120 |
+
],
|
| 121 |
+
[
|
| 122 |
+
1920,
|
| 123 |
+
1536
|
| 124 |
+
],
|
| 125 |
+
[
|
| 126 |
+
1920,
|
| 127 |
+
1920
|
| 128 |
+
],
|
| 129 |
+
[
|
| 130 |
+
1920,
|
| 131 |
+
2304
|
| 132 |
+
],
|
| 133 |
+
[
|
| 134 |
+
2304,
|
| 135 |
+
384
|
| 136 |
+
],
|
| 137 |
+
[
|
| 138 |
+
2304,
|
| 139 |
+
768
|
| 140 |
+
],
|
| 141 |
+
[
|
| 142 |
+
2304,
|
| 143 |
+
1152
|
| 144 |
+
],
|
| 145 |
+
[
|
| 146 |
+
2304,
|
| 147 |
+
1536
|
| 148 |
+
],
|
| 149 |
+
[
|
| 150 |
+
2304,
|
| 151 |
+
1920
|
| 152 |
+
],
|
| 153 |
+
[
|
| 154 |
+
2304,
|
| 155 |
+
2304
|
| 156 |
+
]
|
| 157 |
+
],
|
| 158 |
+
"image_mean": [
|
| 159 |
+
0.5,
|
| 160 |
+
0.5,
|
| 161 |
+
0.5
|
| 162 |
+
],
|
| 163 |
+
"image_processor_type": "LlavaOnevisionImageProcessorFast",
|
| 164 |
+
"image_std": [
|
| 165 |
+
0.5,
|
| 166 |
+
0.5,
|
| 167 |
+
0.5
|
| 168 |
+
],
|
| 169 |
+
"input_data_format": null,
|
| 170 |
+
"processor_class": "LlavaOnevisionProcessor",
|
| 171 |
+
"resample": 3,
|
| 172 |
+
"rescale_factor": 0.00392156862745098,
|
| 173 |
+
"return_tensors": null,
|
| 174 |
+
"size": {
|
| 175 |
+
"height": 384,
|
| 176 |
+
"width": 384
|
| 177 |
+
}
|
| 178 |
+
}
|
processor_config.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"image_token": "<|image_pad|>",
|
| 3 |
+
"num_image_tokens": 729,
|
| 4 |
+
"processor_class": "LlavaOnevisionProcessor",
|
| 5 |
+
"video_token": "<|video_pad|>",
|
| 6 |
+
"vision_aspect_ratio": "anyres_max_9",
|
| 7 |
+
"vision_feature_select_strategy": "full"
|
| 8 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>",
|
| 16 |
+
"<|MASK|>"
|
| 17 |
+
],
|
| 18 |
+
"eos_token": {
|
| 19 |
+
"content": "<|im_end|>",
|
| 20 |
+
"lstrip": false,
|
| 21 |
+
"normalized": false,
|
| 22 |
+
"rstrip": false,
|
| 23 |
+
"single_word": false
|
| 24 |
+
},
|
| 25 |
+
"mask_token": {
|
| 26 |
+
"content": "<|MASK|>",
|
| 27 |
+
"lstrip": false,
|
| 28 |
+
"normalized": false,
|
| 29 |
+
"rstrip": false,
|
| 30 |
+
"single_word": false
|
| 31 |
+
},
|
| 32 |
+
"pad_token": {
|
| 33 |
+
"content": "<|endoftext|>",
|
| 34 |
+
"lstrip": false,
|
| 35 |
+
"normalized": false,
|
| 36 |
+
"rstrip": false,
|
| 37 |
+
"single_word": false
|
| 38 |
+
}
|
| 39 |
+
}
|
tokenization_qwen2.py
ADDED
|
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""Tokenization classes for Qwen2."""
|
| 16 |
+
|
| 17 |
+
import json
|
| 18 |
+
import os
|
| 19 |
+
import unicodedata
|
| 20 |
+
from functools import lru_cache
|
| 21 |
+
from typing import Optional, Tuple
|
| 22 |
+
|
| 23 |
+
import regex as re
|
| 24 |
+
|
| 25 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 26 |
+
from transformers.utils import logging
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
logger = logging.get_logger(__name__)
|
| 30 |
+
|
| 31 |
+
VOCAB_FILES_NAMES = {
|
| 32 |
+
"vocab_file": "vocab.json",
|
| 33 |
+
"merges_file": "merges.txt",
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768}
|
| 38 |
+
|
| 39 |
+
PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
@lru_cache()
|
| 43 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
|
| 44 |
+
def bytes_to_unicode():
|
| 45 |
+
"""
|
| 46 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
| 47 |
+
characters the bpe code barfs on.
|
| 48 |
+
|
| 49 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
| 50 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
| 51 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
| 52 |
+
tables between utf-8 bytes and unicode strings.
|
| 53 |
+
"""
|
| 54 |
+
bs = (
|
| 55 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
| 56 |
+
)
|
| 57 |
+
cs = bs[:]
|
| 58 |
+
n = 0
|
| 59 |
+
for b in range(2**8):
|
| 60 |
+
if b not in bs:
|
| 61 |
+
bs.append(b)
|
| 62 |
+
cs.append(2**8 + n)
|
| 63 |
+
n += 1
|
| 64 |
+
cs = [chr(n) for n in cs]
|
| 65 |
+
return dict(zip(bs, cs))
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
|
| 69 |
+
def get_pairs(word):
|
| 70 |
+
"""
|
| 71 |
+
Return set of symbol pairs in a word.
|
| 72 |
+
|
| 73 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
| 74 |
+
"""
|
| 75 |
+
pairs = set()
|
| 76 |
+
prev_char = word[0]
|
| 77 |
+
for char in word[1:]:
|
| 78 |
+
pairs.add((prev_char, char))
|
| 79 |
+
prev_char = char
|
| 80 |
+
return pairs
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class Qwen2Tokenizer(PreTrainedTokenizer):
|
| 84 |
+
"""
|
| 85 |
+
Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
| 86 |
+
|
| 87 |
+
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
|
| 88 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
| 89 |
+
|
| 90 |
+
```python
|
| 91 |
+
>>> from transformers import Qwen2Tokenizer
|
| 92 |
+
|
| 93 |
+
>>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer")
|
| 94 |
+
>>> tokenizer("Hello world")["input_ids"]
|
| 95 |
+
[9707, 1879]
|
| 96 |
+
|
| 97 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
| 98 |
+
[21927, 1879]
|
| 99 |
+
```
|
| 100 |
+
This is expected.
|
| 101 |
+
|
| 102 |
+
You should not use GPT2Tokenizer instead, because of the different pretokenization rules.
|
| 103 |
+
|
| 104 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
| 105 |
+
this superclass for more information regarding those methods.
|
| 106 |
+
|
| 107 |
+
Args:
|
| 108 |
+
vocab_file (`str`):
|
| 109 |
+
Path to the vocabulary file.
|
| 110 |
+
merges_file (`str`):
|
| 111 |
+
Path to the merges file.
|
| 112 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
| 113 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
| 114 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
| 115 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 116 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
| 117 |
+
token instead.
|
| 118 |
+
bos_token (`str`, *optional*):
|
| 119 |
+
The beginning of sequence token. Not applicable for this tokenizer.
|
| 120 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 121 |
+
The end of sequence token.
|
| 122 |
+
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 123 |
+
The token used for padding, for example when batching sequences of different lengths.
|
| 124 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
| 125 |
+
Whether or not the model should cleanup the spaces that were added when splitting the input text during the
|
| 126 |
+
tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces.
|
| 127 |
+
split_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 128 |
+
Whether or not the special tokens should be split during the tokenization process. The default behavior is
|
| 129 |
+
to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") =
|
| 130 |
+
['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<',
|
| 131 |
+
'|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment.
|
| 132 |
+
"""
|
| 133 |
+
|
| 134 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 135 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 136 |
+
|
| 137 |
+
def __init__(
|
| 138 |
+
self,
|
| 139 |
+
vocab_file,
|
| 140 |
+
merges_file,
|
| 141 |
+
errors="replace",
|
| 142 |
+
unk_token="<|endoftext|>",
|
| 143 |
+
bos_token=None,
|
| 144 |
+
eos_token="<|endoftext|>",
|
| 145 |
+
pad_token="<|endoftext|>",
|
| 146 |
+
clean_up_tokenization_spaces=False,
|
| 147 |
+
split_special_tokens=False,
|
| 148 |
+
**kwargs,
|
| 149 |
+
):
|
| 150 |
+
# Qwen vocab does not contain control tokens; added tokens need to be special
|
| 151 |
+
bos_token = (
|
| 152 |
+
AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 153 |
+
if isinstance(bos_token, str)
|
| 154 |
+
else bos_token
|
| 155 |
+
)
|
| 156 |
+
eos_token = (
|
| 157 |
+
AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 158 |
+
if isinstance(eos_token, str)
|
| 159 |
+
else eos_token
|
| 160 |
+
)
|
| 161 |
+
unk_token = (
|
| 162 |
+
AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 163 |
+
if isinstance(unk_token, str)
|
| 164 |
+
else unk_token
|
| 165 |
+
)
|
| 166 |
+
pad_token = (
|
| 167 |
+
AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 168 |
+
if isinstance(pad_token, str)
|
| 169 |
+
else pad_token
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
| 173 |
+
self.encoder = json.load(vocab_handle)
|
| 174 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
| 175 |
+
self.errors = errors # how to handle errors in decoding
|
| 176 |
+
self.byte_encoder = bytes_to_unicode()
|
| 177 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
| 178 |
+
bpe_merges = []
|
| 179 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
| 180 |
+
for i, line in enumerate(merges_handle):
|
| 181 |
+
line = line.strip()
|
| 182 |
+
if (i == 0 and line.startswith("#version:")) or not line:
|
| 183 |
+
continue
|
| 184 |
+
bpe_merges.append(tuple(line.split()))
|
| 185 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
| 186 |
+
# NOTE: the cache can grow without bound and will get really large for long running processes
|
| 187 |
+
# (esp. for texts of language that do not use space between word, e.g. Chinese); technically
|
| 188 |
+
# not a memory leak but appears as one.
|
| 189 |
+
# GPT2Tokenizer has the same problem, so let's be consistent.
|
| 190 |
+
self.cache = {}
|
| 191 |
+
|
| 192 |
+
self.pat = re.compile(PRETOKENIZE_REGEX)
|
| 193 |
+
|
| 194 |
+
if kwargs.get("add_prefix_space", False):
|
| 195 |
+
logger.warning_once(
|
| 196 |
+
f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect."
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
super().__init__(
|
| 200 |
+
errors=errors,
|
| 201 |
+
bos_token=bos_token,
|
| 202 |
+
eos_token=eos_token,
|
| 203 |
+
pad_token=pad_token,
|
| 204 |
+
unk_token=unk_token,
|
| 205 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 206 |
+
split_special_tokens=split_special_tokens,
|
| 207 |
+
**kwargs,
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
@property
|
| 211 |
+
def vocab_size(self) -> int:
|
| 212 |
+
return len(self.encoder)
|
| 213 |
+
|
| 214 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab
|
| 215 |
+
def get_vocab(self):
|
| 216 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
| 217 |
+
|
| 218 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
|
| 219 |
+
def bpe(self, token):
|
| 220 |
+
if token in self.cache:
|
| 221 |
+
return self.cache[token]
|
| 222 |
+
word = tuple(token)
|
| 223 |
+
pairs = get_pairs(word)
|
| 224 |
+
|
| 225 |
+
if not pairs:
|
| 226 |
+
return token
|
| 227 |
+
|
| 228 |
+
while True:
|
| 229 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
| 230 |
+
if bigram not in self.bpe_ranks:
|
| 231 |
+
break
|
| 232 |
+
first, second = bigram
|
| 233 |
+
new_word = []
|
| 234 |
+
i = 0
|
| 235 |
+
while i < len(word):
|
| 236 |
+
try:
|
| 237 |
+
j = word.index(first, i)
|
| 238 |
+
except ValueError:
|
| 239 |
+
new_word.extend(word[i:])
|
| 240 |
+
break
|
| 241 |
+
else:
|
| 242 |
+
new_word.extend(word[i:j])
|
| 243 |
+
i = j
|
| 244 |
+
|
| 245 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
| 246 |
+
new_word.append(first + second)
|
| 247 |
+
i += 2
|
| 248 |
+
else:
|
| 249 |
+
new_word.append(word[i])
|
| 250 |
+
i += 1
|
| 251 |
+
new_word = tuple(new_word)
|
| 252 |
+
word = new_word
|
| 253 |
+
if len(word) == 1:
|
| 254 |
+
break
|
| 255 |
+
else:
|
| 256 |
+
pairs = get_pairs(word)
|
| 257 |
+
word = " ".join(word)
|
| 258 |
+
self.cache[token] = word
|
| 259 |
+
return word
|
| 260 |
+
|
| 261 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize
|
| 262 |
+
def _tokenize(self, text):
|
| 263 |
+
"""Tokenize a string."""
|
| 264 |
+
bpe_tokens = []
|
| 265 |
+
for token in re.findall(self.pat, text):
|
| 266 |
+
token = "".join(
|
| 267 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
| 268 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
| 269 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
| 270 |
+
return bpe_tokens
|
| 271 |
+
|
| 272 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
|
| 273 |
+
def _convert_token_to_id(self, token):
|
| 274 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 275 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
| 276 |
+
|
| 277 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
|
| 278 |
+
def _convert_id_to_token(self, index):
|
| 279 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 280 |
+
return self.decoder.get(index)
|
| 281 |
+
|
| 282 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
|
| 283 |
+
def convert_tokens_to_string(self, tokens):
|
| 284 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
| 285 |
+
text = "".join(tokens)
|
| 286 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
| 287 |
+
return text
|
| 288 |
+
|
| 289 |
+
def decode(
|
| 290 |
+
self,
|
| 291 |
+
token_ids,
|
| 292 |
+
skip_special_tokens: bool = False,
|
| 293 |
+
clean_up_tokenization_spaces: Optional[bool] = False,
|
| 294 |
+
spaces_between_special_tokens: bool = False,
|
| 295 |
+
**kwargs,
|
| 296 |
+
) -> str:
|
| 297 |
+
# `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers
|
| 298 |
+
# and cannot be configured elsewhere, but it should default to False for Qwen2Tokenizer
|
| 299 |
+
return super().decode(
|
| 300 |
+
token_ids,
|
| 301 |
+
skip_special_tokens=skip_special_tokens,
|
| 302 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 303 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
| 304 |
+
**kwargs,
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
|
| 308 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 309 |
+
if not os.path.isdir(save_directory):
|
| 310 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 311 |
+
return
|
| 312 |
+
vocab_file = os.path.join(
|
| 313 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 314 |
+
)
|
| 315 |
+
merge_file = os.path.join(
|
| 316 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
| 320 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
| 321 |
+
|
| 322 |
+
index = 0
|
| 323 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
| 324 |
+
writer.write("#version: 0.2\n")
|
| 325 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
| 326 |
+
if index != token_index:
|
| 327 |
+
logger.warning(
|
| 328 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
| 329 |
+
" Please check that the tokenizer is not corrupted!"
|
| 330 |
+
)
|
| 331 |
+
index = token_index
|
| 332 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
| 333 |
+
index += 1
|
| 334 |
+
|
| 335 |
+
return vocab_file, merge_file
|
| 336 |
+
|
| 337 |
+
def prepare_for_tokenization(self, text, **kwargs):
|
| 338 |
+
text = unicodedata.normalize("NFC", text)
|
| 339 |
+
return (text, kwargs)
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
__all__ = ["Qwen2Tokenizer"]
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "<tool_response>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "</tool_response>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"151667": {
|
| 198 |
+
"content": "<think>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"151668": {
|
| 206 |
+
"content": "</think>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
},
|
| 213 |
+
"151669": {
|
| 214 |
+
"content": "<|MASK|>",
|
| 215 |
+
"lstrip": false,
|
| 216 |
+
"normalized": false,
|
| 217 |
+
"rstrip": false,
|
| 218 |
+
"single_word": false,
|
| 219 |
+
"special": true
|
| 220 |
+
}
|
| 221 |
+
},
|
| 222 |
+
"additional_special_tokens": [
|
| 223 |
+
"<|im_start|>",
|
| 224 |
+
"<|im_end|>",
|
| 225 |
+
"<|object_ref_start|>",
|
| 226 |
+
"<|object_ref_end|>",
|
| 227 |
+
"<|box_start|>",
|
| 228 |
+
"<|box_end|>",
|
| 229 |
+
"<|quad_start|>",
|
| 230 |
+
"<|quad_end|>",
|
| 231 |
+
"<|vision_start|>",
|
| 232 |
+
"<|vision_end|>",
|
| 233 |
+
"<|vision_pad|>",
|
| 234 |
+
"<|image_pad|>",
|
| 235 |
+
"<|video_pad|>",
|
| 236 |
+
"<|MASK|>"
|
| 237 |
+
],
|
| 238 |
+
"auto_map": {
|
| 239 |
+
"AutoTokenizer": [
|
| 240 |
+
"tokenization_qwen2.Qwen2Tokenizer",
|
| 241 |
+
null
|
| 242 |
+
]
|
| 243 |
+
},
|
| 244 |
+
"bos_token": null,
|
| 245 |
+
"clean_up_tokenization_spaces": false,
|
| 246 |
+
"eos_token": "<|im_end|>",
|
| 247 |
+
"errors": "replace",
|
| 248 |
+
"extra_special_tokens": {},
|
| 249 |
+
"mask_token": "<|MASK|>",
|
| 250 |
+
"model_max_length": 131072,
|
| 251 |
+
"pad_token": "<|endoftext|>",
|
| 252 |
+
"padding_side": "right",
|
| 253 |
+
"processor_class": "LlavaOnevisionProcessor",
|
| 254 |
+
"split_special_tokens": false,
|
| 255 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 256 |
+
"unk_token": null
|
| 257 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 1.0,
|
| 3 |
+
"total_flos": 2.964601169621549e+20,
|
| 4 |
+
"train_loss": 0.849951366135661,
|
| 5 |
+
"train_runtime": 90359.1865,
|
| 6 |
+
"train_samples_per_second": 7.51,
|
| 7 |
+
"train_steps_per_second": 0.117
|
| 8 |
+
}
|
video_preprocessor_config.json
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_valid_kwargs_names": [
|
| 3 |
+
"do_convert_rgb",
|
| 4 |
+
"do_resize",
|
| 5 |
+
"size",
|
| 6 |
+
"size_divisor",
|
| 7 |
+
"default_to_square",
|
| 8 |
+
"resample",
|
| 9 |
+
"do_rescale",
|
| 10 |
+
"rescale_factor",
|
| 11 |
+
"do_normalize",
|
| 12 |
+
"image_mean",
|
| 13 |
+
"image_std",
|
| 14 |
+
"do_pad",
|
| 15 |
+
"do_center_crop",
|
| 16 |
+
"crop_size",
|
| 17 |
+
"data_format",
|
| 18 |
+
"input_data_format",
|
| 19 |
+
"device"
|
| 20 |
+
],
|
| 21 |
+
"crop_size": null,
|
| 22 |
+
"data_format": "channels_first",
|
| 23 |
+
"default_to_square": false,
|
| 24 |
+
"device": null,
|
| 25 |
+
"do_center_crop": null,
|
| 26 |
+
"do_convert_rgb": true,
|
| 27 |
+
"do_normalize": true,
|
| 28 |
+
"do_pad": true,
|
| 29 |
+
"do_rescale": true,
|
| 30 |
+
"do_resize": true,
|
| 31 |
+
"do_sample_frames": false,
|
| 32 |
+
"fps": null,
|
| 33 |
+
"image_mean": [
|
| 34 |
+
0.5,
|
| 35 |
+
0.5,
|
| 36 |
+
0.5
|
| 37 |
+
],
|
| 38 |
+
"image_std": [
|
| 39 |
+
0.5,
|
| 40 |
+
0.5,
|
| 41 |
+
0.5
|
| 42 |
+
],
|
| 43 |
+
"input_data_format": null,
|
| 44 |
+
"model_valid_processing_keys": [
|
| 45 |
+
"do_convert_rgb",
|
| 46 |
+
"do_resize",
|
| 47 |
+
"size",
|
| 48 |
+
"size_divisor",
|
| 49 |
+
"default_to_square",
|
| 50 |
+
"resample",
|
| 51 |
+
"do_rescale",
|
| 52 |
+
"rescale_factor",
|
| 53 |
+
"do_normalize",
|
| 54 |
+
"image_mean",
|
| 55 |
+
"image_std",
|
| 56 |
+
"do_pad",
|
| 57 |
+
"do_center_crop",
|
| 58 |
+
"crop_size",
|
| 59 |
+
"data_format",
|
| 60 |
+
"input_data_format",
|
| 61 |
+
"device"
|
| 62 |
+
],
|
| 63 |
+
"num_frames": null,
|
| 64 |
+
"processor_class": "LlavaOnevisionProcessor",
|
| 65 |
+
"resample": 3,
|
| 66 |
+
"rescale_factor": 0.00392156862745098,
|
| 67 |
+
"size": {
|
| 68 |
+
"height": 384,
|
| 69 |
+
"width": 384
|
| 70 |
+
},
|
| 71 |
+
"size_divisor": null,
|
| 72 |
+
"video_metadata": null,
|
| 73 |
+
"video_processor_type": "LlavaOnevisionVideoProcessor"
|
| 74 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|