Create pca.py
Browse files
pca.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
from sklearn.decomposition import PCA
|
| 4 |
+
import joblib # ✅ import directly
|
| 5 |
+
from sklearn.preprocessing import StandardScaler
|
| 6 |
+
|
| 7 |
+
# Directory containing your .npz files
|
| 8 |
+
data_dir = "./train_data" # change this to your directory path
|
| 9 |
+
from tqdm.notebook import tqdm
|
| 10 |
+
# Collect all arrays from .npz files
|
| 11 |
+
data_list = []
|
| 12 |
+
for file in tqdm(os.listdir(data_dir)):
|
| 13 |
+
if file.endswith(".npz"):
|
| 14 |
+
hsi_path = os.path.join(data_dir, file)
|
| 15 |
+
with np.load(hsi_path) as npz:
|
| 16 |
+
arr = np.ma.MaskedArray(**npz)
|
| 17 |
+
data_list.append(arr.reshape(150, -1).transpose()) # remove masked values
|
| 18 |
+
|
| 19 |
+
# Stack all into a single dataset
|
| 20 |
+
x = np.vstack(data_list)
|
| 21 |
+
print("\n\n")
|
| 22 |
+
print(x.shape)
|
| 23 |
+
# Fit PCA
|
| 24 |
+
# Apply standard scaling
|
| 25 |
+
scaler = StandardScaler()
|
| 26 |
+
X_scaled = scaler.fit_transform(x)
|
| 27 |
+
|
| 28 |
+
# Fit PCA
|
| 29 |
+
pca = PCA(n_components=16) # change number of components as needed
|
| 30 |
+
pca.fit(X_scaled)
|
| 31 |
+
|
| 32 |
+
# Save both scaler and PCA model
|
| 33 |
+
joblib.dump({"scaler": scaler, "pca": pca}, "pca_pipeline.pkl")
|