Upload breast_density_classification version 0.1.8
Browse files- configs/metadata.json +6 -5
configs/metadata.json
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
{
|
| 2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
|
| 3 |
-
"version": "0.1.
|
| 4 |
"changelog": {
|
|
|
|
| 5 |
"0.1.7": "update to huggingface hosting",
|
| 6 |
"0.1.6": "Remove meta dict usage",
|
| 7 |
"0.1.5": "Fixed duplication of input output format section",
|
|
@@ -19,12 +20,12 @@
|
|
| 19 |
},
|
| 20 |
"supported_apps": {},
|
| 21 |
"name": "Breast density classification",
|
| 22 |
-
"task": "Breast Density Classification",
|
| 23 |
-
"description": "A
|
| 24 |
"authors": "Center for Augmented Intelligence in Imaging, Mayo Clinic Florida",
|
| 25 |
"copyright": "Copyright (c) Mayo Clinic",
|
| 26 |
-
"data_source": "Mayo Clinic
|
| 27 |
-
"data_type": "
|
| 28 |
"image_classes": "three channel data, intensity scaled to [0, 1]. A single grayscale is copied to 3 channels",
|
| 29 |
"label_classes": "four classes marked as [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1] for the classes A, B, C and D respectively.",
|
| 30 |
"pred_classes": "One hot data",
|
|
|
|
| 1 |
{
|
| 2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
|
| 3 |
+
"version": "0.1.8",
|
| 4 |
"changelog": {
|
| 5 |
+
"0.1.8": "enhance metadata with improved descriptions and task specification",
|
| 6 |
"0.1.7": "update to huggingface hosting",
|
| 7 |
"0.1.6": "Remove meta dict usage",
|
| 8 |
"0.1.5": "Fixed duplication of input output format section",
|
|
|
|
| 20 |
},
|
| 21 |
"supported_apps": {},
|
| 22 |
"name": "Breast density classification",
|
| 23 |
+
"task": "Mammographic Breast Density Classification (BI-RADS)",
|
| 24 |
+
"description": "A deep learning model for automated classification of breast tissue density in mammograms according to the BI-RADS density categories (A through D). The model processes 299x299 pixel images and classifies breast tissue into four categories: fatty, scattered fibroglandular, heterogeneously dense, and extremely dense.",
|
| 25 |
"authors": "Center for Augmented Intelligence in Imaging, Mayo Clinic Florida",
|
| 26 |
"copyright": "Copyright (c) Mayo Clinic",
|
| 27 |
+
"data_source": "Mayo Clinic",
|
| 28 |
+
"data_type": "jpeg",
|
| 29 |
"image_classes": "three channel data, intensity scaled to [0, 1]. A single grayscale is copied to 3 channels",
|
| 30 |
"label_classes": "four classes marked as [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1] for the classes A, B, C and D respectively.",
|
| 31 |
"pred_classes": "One hot data",
|