project-monai commited on
Commit
eb746b7
·
verified ·
1 Parent(s): 23065a1

Upload breast_density_classification version 0.1.8

Browse files
Files changed (1) hide show
  1. configs/metadata.json +6 -5
configs/metadata.json CHANGED
@@ -1,7 +1,8 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
3
- "version": "0.1.7",
4
  "changelog": {
 
5
  "0.1.7": "update to huggingface hosting",
6
  "0.1.6": "Remove meta dict usage",
7
  "0.1.5": "Fixed duplication of input output format section",
@@ -19,12 +20,12 @@
19
  },
20
  "supported_apps": {},
21
  "name": "Breast density classification",
22
- "task": "Breast Density Classification",
23
- "description": "A pre-trained model for classifying breast images (mammograms) ",
24
  "authors": "Center for Augmented Intelligence in Imaging, Mayo Clinic Florida",
25
  "copyright": "Copyright (c) Mayo Clinic",
26
- "data_source": "Mayo Clinic ",
27
- "data_type": "Jpeg",
28
  "image_classes": "three channel data, intensity scaled to [0, 1]. A single grayscale is copied to 3 channels",
29
  "label_classes": "four classes marked as [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1] for the classes A, B, C and D respectively.",
30
  "pred_classes": "One hot data",
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
3
+ "version": "0.1.8",
4
  "changelog": {
5
+ "0.1.8": "enhance metadata with improved descriptions and task specification",
6
  "0.1.7": "update to huggingface hosting",
7
  "0.1.6": "Remove meta dict usage",
8
  "0.1.5": "Fixed duplication of input output format section",
 
20
  },
21
  "supported_apps": {},
22
  "name": "Breast density classification",
23
+ "task": "Mammographic Breast Density Classification (BI-RADS)",
24
+ "description": "A deep learning model for automated classification of breast tissue density in mammograms according to the BI-RADS density categories (A through D). The model processes 299x299 pixel images and classifies breast tissue into four categories: fatty, scattered fibroglandular, heterogeneously dense, and extremely dense.",
25
  "authors": "Center for Augmented Intelligence in Imaging, Mayo Clinic Florida",
26
  "copyright": "Copyright (c) Mayo Clinic",
27
+ "data_source": "Mayo Clinic",
28
+ "data_type": "jpeg",
29
  "image_classes": "three channel data, intensity scaled to [0, 1]. A single grayscale is copied to 3 channels",
30
  "label_classes": "four classes marked as [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1] for the classes A, B, C and D respectively.",
31
  "pred_classes": "One hot data",