Marijke commited on
Commit
e784ab7
·
verified ·
1 Parent(s): d435017

upload custom README

Browse files
Files changed (1) hide show
  1. README.md +19 -24
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
 
2
  base_model:
3
  - mercelisw/electra-grc
4
- library_name: transformers
5
  ---
6
 
7
  # Model Card for Model ID
@@ -13,13 +13,13 @@ This model is part of a series of models trained for the ML4AL paper “Gotta ca
13
  ### Model Description
14
 
15
  - **Developed by:** Marijke Beersmans & Alek Keersmaekers
16
- - **Model type:** ElectraForTokenClassification, finetuned for NER (GRP, PERS, LOC entities)
17
- - **Language(s) (NLP):** Ancient Greek (GLAUx normalization)
18
  - **Finetuned from model:** mercelisw/electra-grc
19
 
20
  ### Model Sources
21
 
22
- - **Repository:** [NERAncientGreekML4AL GitHub](https://github.com/NER-AncientLanguages/NERAncientGreekML4AL.git)(for data and training scripts)
23
  - **Paper:** [ML4AL paper](https://aclanthology.org/2024.ml4al-1.16/)
24
 
25
  ## Training Details
@@ -40,31 +40,27 @@ We thank the following projects for providing the training data:
40
  We use Weights & Biases for hyperparameter optimization with a random search strategy (10 folds), aiming to maximize the evaluation F1 score (eval_f1).
41
 
42
  The search space includes:
43
- - Learning Rate: Sampled uniformly between 1e-6 and 1e-4
44
- - Weight Decay: One of [0.1, 0.01, 0.001]
45
- - Number of Training Epochs: One of [3, 4, 5, 6]
46
 
47
  For the final training of this model, the hyperparameters were:
48
- - Learning Rate: 9.889410158465026e-05
49
- - Weight Decay: 0.1
50
- - Number of Training Epochs: 5
51
-
52
 
53
 
54
  ## Evaluation
55
 
56
- This models was evaluation on precision, recall and macro-f1 for its entity classes. See the paper for more information.
57
-
58
- | | precision | recall | f1-score | support |
59
  |:-------------|------------:|---------:|-----------:|----------:|
60
- | GRP | 0.778515 | 0.848266 | 0.811895 | 1384 |
61
- | LOC | 0.708829 | 0.755656 | 0.731494 | 1105 |
62
- | PERS | 0.845869 | 0.888026 | 0.866435 | 3090 |
63
- | micro avg | 0.801518 | 0.851945 | 0.825962 | 5579 |
64
- | macro avg | 0.777737 | 0.830649 | 0.803275 | 5579 |
65
- | weighted avg | 0.802018 | 0.851945 | 0.826178 | 5579 |
66
-
67
-
68
 
69
 
70
  If you use this work, please cite the following paper:
@@ -87,5 +83,4 @@ Beersmans, M., Keersmaekers, A., de Graaf, E., Van de Cruys, T., Depauw, M., & F
87
    year = {2024},
88
    month = aug,
89
    pages = {152--164}
90
- }
91
-
 
1
  ---
2
+ library_name: transformers
3
  base_model:
4
  - mercelisw/electra-grc
 
5
  ---
6
 
7
  # Model Card for Model ID
 
13
  ### Model Description
14
 
15
  - **Developed by:** Marijke Beersmans & Alek Keersmaekers
16
+ - **Model type:** ElectraForTokenClassification, finetuned for NER (PERS, LOC, GRP).
17
+ - **Language(s) (NLP):** Ancient Greek (greek_glaux normalization)
18
  - **Finetuned from model:** mercelisw/electra-grc
19
 
20
  ### Model Sources
21
 
22
+ - **Repository:** [NERAncientGreekML4AL GitHub](https://github.com/NER-AncientLanguages/NERAncientGreekML4AL.git) (for data and training scripts)
23
  - **Paper:** [ML4AL paper](https://aclanthology.org/2024.ml4al-1.16/)
24
 
25
  ## Training Details
 
40
  We use Weights & Biases for hyperparameter optimization with a random search strategy (10 folds), aiming to maximize the evaluation F1 score (eval_f1).
41
 
42
  The search space includes:
43
+ - Learning Rate: Sampled uniformly between 1e-6 and 1e-4
44
+ - Weight Decay: One of [0.1, 0.01, 0.001]
45
+ - Number of Training Epochs: One of [3, 4, 5, 6]
46
 
47
  For the final training of this model, the hyperparameters were:
48
+ - Learning Rate: 9.889410158465026e-05
49
+ - Weight Decay: 0.1
50
+ - Number of Training Epochs: 5
 
51
 
52
 
53
  ## Evaluation
54
 
55
+ This models was evaluated on precision, recall and macro-f1 for its entity classes. See the paper for more information.
56
+ | Label | precision | recall | f1-score | support |
 
57
  |:-------------|------------:|---------:|-----------:|----------:|
58
+ | GRP | 0.8054 | 0.8013 | 0.8033 | 1384 |
59
+ | LOC | 0.7379 | 0.6905 | 0.7134 | 1105 |
60
+ | PERS | 0.853 | 0.866 | 0.8595 | 3090 |
61
+ | micro avg | 0.8198 | 0.8152 | 0.8175 | 5579 |
62
+ | macro avg | 0.7988 | 0.7859 | 0.7921 | 5579 |
63
+ | weighted avg | 0.8184 | 0.8152 | 0.8166 | 5579 |
 
 
64
 
65
 
66
  If you use this work, please cite the following paper:
 
83
    year = {2024},
84
    month = aug,
85
    pages = {152--164}
86
+ }