Update modeling_modernvbert.py
Browse files- modeling_modernvbert.py +214 -60
modeling_modernvbert.py
CHANGED
|
@@ -1,18 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
-
from typing import
|
| 3 |
|
| 4 |
import torch
|
| 5 |
import torch.nn as nn
|
| 6 |
import torch.nn.functional as F
|
| 7 |
from torch.nn import CrossEntropyLoss
|
| 8 |
-
from transformers import AutoConfig, AutoModel, AutoModelForMaskedLM, PreTrainedModel, logging
|
| 9 |
-
from transformers.modeling_outputs import BaseModelOutput
|
| 10 |
-
from transformers.models.bert.modeling_bert import BaseModelOutputWithPoolingAndCrossAttentions, MaskedLMOutput
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
from .configuration_modernvbert import ModernVBertConfig
|
| 13 |
|
| 14 |
-
logger = logging.get_logger(__name__)
|
| 15 |
-
|
| 16 |
|
| 17 |
class DecoupledEmbedding(nn.Embedding):
|
| 18 |
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding
|
|
@@ -97,7 +105,7 @@ class DecoupledEmbedding(nn.Embedding):
|
|
| 97 |
# for successful lookup replace input_ids with 0, the results of these will be discarded anyway
|
| 98 |
input_ids[additional_vocab_indices] = 0
|
| 99 |
full_vector = F.embedding(input_ids, self.weight)
|
| 100 |
-
full_vector[additional_vocab_indices] = additional_embeddings
|
| 101 |
return full_vector
|
| 102 |
|
| 103 |
|
|
@@ -124,10 +132,11 @@ class ModernVBertBaseModelOutput(BaseModelOutput):
|
|
| 124 |
sequence_length, hidden_size)`.
|
| 125 |
image_hidden_states of the model produced by the vision encoder
|
| 126 |
"""
|
|
|
|
| 127 |
last_hidden_state: torch.FloatTensor = None
|
| 128 |
-
hidden_states: Optional[
|
| 129 |
-
attentions: Optional[
|
| 130 |
-
image_hidden_states: Optional[
|
| 131 |
|
| 132 |
|
| 133 |
@dataclass
|
|
@@ -137,7 +146,7 @@ class ModernVBertMaskedLMOutput(MaskedLMOutput):
|
|
| 137 |
Args:
|
| 138 |
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
|
| 139 |
Masked language modeling (MLM) loss.
|
| 140 |
-
logits (`torch.FloatTensor`):
|
| 141 |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 142 |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 143 |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
|
@@ -153,15 +162,17 @@ class ModernVBertMaskedLMOutput(MaskedLMOutput):
|
|
| 153 |
sequence_length, hidden_size)`.
|
| 154 |
image_hidden_states of the model produced by the vision encoder
|
| 155 |
"""
|
|
|
|
| 156 |
loss: Optional[torch.FloatTensor] = None
|
| 157 |
logits: torch.FloatTensor = None
|
| 158 |
-
hidden_states: Optional[
|
| 159 |
-
attentions: Optional[
|
| 160 |
image_hidden_states: Optional[torch.FloatTensor] = None
|
| 161 |
|
| 162 |
|
| 163 |
class ModernVBertSimpleMLP(nn.Module):
|
| 164 |
"""A simple linear projection layer to project the vision hidden states to the text hidden states."""
|
|
|
|
| 165 |
def __init__(self, input_size, output_size):
|
| 166 |
super().__init__()
|
| 167 |
self.proj = nn.Linear(input_size, output_size, bias=False)
|
|
@@ -175,26 +186,32 @@ class ModernVBertConnector(nn.Module):
|
|
| 175 |
Connector module for ModernVBERT. It performs a pixel shuffle operation followed by a linear projection to match the text model's hidden size.
|
| 176 |
Based on https://pytorch.org/docs/stable/generated/torch.nn.PixelShuffle.html
|
| 177 |
"""
|
|
|
|
| 178 |
def __init__(self, config):
|
| 179 |
super().__init__()
|
| 180 |
-
self.
|
| 181 |
self.modality_projection = ModernVBertSimpleMLP(
|
| 182 |
-
input_size=config.vision_config.hidden_size * (config.
|
| 183 |
output_size=config.text_config.hidden_size,
|
| 184 |
)
|
| 185 |
|
| 186 |
-
def pixel_shuffle(self, x,
|
| 187 |
bsz, seq, embed_dim = x.size()
|
| 188 |
height = width = int(seq**0.5)
|
| 189 |
x = x.view(bsz, height, width, embed_dim)
|
| 190 |
-
x = x.view(bsz, height, int(width /
|
| 191 |
x = x.permute(0, 2, 1, 3)
|
| 192 |
-
x = x.reshape(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
x = x.permute(0, 2, 1, 3)
|
| 194 |
-
return x.reshape(bsz, int(seq / (
|
| 195 |
|
| 196 |
def forward(self, image_hidden_states):
|
| 197 |
-
image_hidden_states = self.pixel_shuffle(image_hidden_states, self.
|
| 198 |
return self.modality_projection(image_hidden_states)
|
| 199 |
|
| 200 |
|
|
@@ -217,55 +234,55 @@ class ModernVBertPreTrainedModel(PreTrainedModel):
|
|
| 217 |
module.weight.data[module.padding_idx].zero_()
|
| 218 |
|
| 219 |
|
|
|
|
| 220 |
class ModernVBertModel(ModernVBertPreTrainedModel):
|
| 221 |
def __init__(self, config: ModernVBertConfig):
|
| 222 |
super().__init__(config)
|
|
|
|
|
|
|
| 223 |
self.vision_model = ModernVBertModel.init_vision_model(config)
|
| 224 |
self.connector = ModernVBertConnector(config)
|
| 225 |
self.text_model = ModernVBertModel.init_language_model(config)
|
| 226 |
-
|
| 227 |
-
((config.vision_config.image_size // config.vision_config.patch_size) ** 2) / (config.scale_factor**2)
|
| 228 |
-
)
|
| 229 |
-
self.image_token_id = config.image_token_id
|
| 230 |
-
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
| 231 |
# set the correct dtype for vision and text models
|
| 232 |
self.vision_model.to(self.dtype)
|
| 233 |
self.text_model.to(self.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
self.post_init()
|
| 235 |
|
| 236 |
@staticmethod
|
| 237 |
def init_vision_model(config: ModernVBertConfig):
|
| 238 |
-
vision_model_config =
|
| 239 |
config.vision_config.vision_model_name,
|
| 240 |
_attn_implementation=config._attn_implementation,
|
| 241 |
)
|
| 242 |
-
vision_model =
|
| 243 |
-
|
| 244 |
-
trust_remote_code=True,
|
| 245 |
-
)
|
| 246 |
-
return getattr(vision_model, "vision_model", vision_model)
|
| 247 |
|
| 248 |
@staticmethod
|
| 249 |
def init_language_model(config: ModernVBertConfig):
|
| 250 |
-
text_model_config =
|
| 251 |
config.text_config.text_model_name,
|
| 252 |
_attn_implementation=config._attn_implementation,
|
| 253 |
-
trust_remote_code=True,
|
| 254 |
-
)
|
| 255 |
-
text_model = AutoModel.from_config(
|
| 256 |
-
text_model_config,
|
| 257 |
-
trust_remote_code=True
|
| 258 |
)
|
|
|
|
| 259 |
embed_layer = DecoupledEmbedding(
|
| 260 |
num_embeddings=text_model_config.vocab_size,
|
| 261 |
num_additional_embeddings=config.additional_vocab_size,
|
| 262 |
embedding_dim=config.hidden_size,
|
| 263 |
-
partially_freeze=config
|
| 264 |
padding_idx=config.pad_token_id,
|
| 265 |
)
|
| 266 |
text_model.set_input_embeddings(embed_layer)
|
| 267 |
return text_model
|
| 268 |
-
|
|
|
|
| 269 |
def enable_input_require_grads(self):
|
| 270 |
"""
|
| 271 |
Enables the gradients for the input embeddings.
|
|
@@ -292,12 +309,65 @@ class ModernVBertModel(ModernVBertPreTrainedModel):
|
|
| 292 |
make_inputs_require_grads
|
| 293 |
)
|
| 294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
def get_input_embeddings(self):
|
| 296 |
return self.text_model.get_input_embeddings()
|
| 297 |
|
| 298 |
def set_input_embeddings(self, value):
|
| 299 |
self.text_model.set_input_embeddings(value)
|
| 300 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
def inputs_merger(self, input_ids, inputs_embeds, image_hidden_states):
|
| 302 |
"""Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/smolvlm/modeling_smolvlm.py
|
| 303 |
|
|
@@ -311,21 +381,47 @@ class ModernVBertModel(ModernVBertPreTrainedModel):
|
|
| 311 |
"""
|
| 312 |
|
| 313 |
_, patch_size, _ = image_hidden_states.shape
|
| 314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
num_image_tokens = image_mask.sum(dim=1)
|
| 316 |
if not torch.all(num_image_tokens % patch_size == 0):
|
| 317 |
raise ValueError("Number of <image> tokens not divisible by patch_size.")
|
|
|
|
| 318 |
blocks_per_sample = num_image_tokens // patch_size
|
|
|
|
| 319 |
offsets = torch.nn.functional.pad(blocks_per_sample.cumsum(dim=0), (1, 0), value=0)
|
| 320 |
block_offset = offsets[:-1]
|
| 321 |
row_cum = image_mask.cumsum(dim=-1)
|
| 322 |
chunk_idx = (row_cum - 1) // patch_size
|
| 323 |
local_idx = (row_cum - 1) % patch_size
|
| 324 |
block_idx = block_offset.unsqueeze(1) + chunk_idx
|
|
|
|
| 325 |
image_embeds = torch.zeros_like(inputs_embeds)
|
| 326 |
image_embeds[image_mask] = image_hidden_states[block_idx[image_mask], local_idx[image_mask], :]
|
|
|
|
| 327 |
return torch.where(image_mask.unsqueeze(-1), image_embeds, inputs_embeds)
|
| 328 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
def forward(
|
| 330 |
self,
|
| 331 |
input_ids: torch.LongTensor = None,
|
|
@@ -338,28 +434,44 @@ class ModernVBertModel(ModernVBertPreTrainedModel):
|
|
| 338 |
output_attentions: Optional[bool] = None,
|
| 339 |
output_hidden_states: Optional[bool] = None,
|
| 340 |
return_dict: Optional[bool] = None,
|
| 341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 343 |
output_hidden_states = (
|
| 344 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 345 |
)
|
| 346 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
| 347 |
if inputs_embeds is None:
|
| 348 |
inputs_embeds = self.text_model.get_input_embeddings()(input_ids).to(input_ids.device)
|
|
|
|
|
|
|
| 349 |
if pixel_values is not None:
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
real_images_inds[0] = True
|
| 356 |
-
pixel_values = pixel_values[real_images_inds].contiguous()
|
| 357 |
-
image_hidden_states = self.vision_model(pixel_values=pixel_values).last_hidden_state
|
| 358 |
image_hidden_states = self.connector(image_hidden_states)
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
if
|
| 362 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
outputs = self.text_model(
|
| 364 |
inputs_embeds=inputs_embeds,
|
| 365 |
attention_mask=attention_mask,
|
|
@@ -367,9 +479,9 @@ class ModernVBertModel(ModernVBertPreTrainedModel):
|
|
| 367 |
output_attentions=output_attentions,
|
| 368 |
output_hidden_states=output_hidden_states,
|
| 369 |
return_dict=return_dict,
|
|
|
|
| 370 |
)
|
| 371 |
-
|
| 372 |
-
return tuple(v for v in [*outputs, image_hidden_states] if v is not None)
|
| 373 |
return ModernVBertBaseModelOutput(
|
| 374 |
last_hidden_state=outputs.last_hidden_state,
|
| 375 |
hidden_states=outputs.hidden_states,
|
|
@@ -377,11 +489,12 @@ class ModernVBertModel(ModernVBertPreTrainedModel):
|
|
| 377 |
image_hidden_states=image_hidden_states,
|
| 378 |
)
|
| 379 |
|
|
|
|
| 380 |
class ModernVBertLMHead(nn.Module):
|
| 381 |
def __init__(self, config):
|
| 382 |
super().__init__()
|
| 383 |
-
pretrained_config =
|
| 384 |
-
pretrained_model =
|
| 385 |
self.head = pretrained_model.head
|
| 386 |
self.decoder = pretrained_model.decoder
|
| 387 |
|
|
@@ -389,10 +502,12 @@ class ModernVBertLMHead(nn.Module):
|
|
| 389 |
return self.decoder(self.head(hidden_states))
|
| 390 |
|
| 391 |
|
|
|
|
| 392 |
class ModernVBertForMaskedLM(ModernVBertPreTrainedModel):
|
|
|
|
|
|
|
| 393 |
def __init__(self, config):
|
| 394 |
super().__init__(config)
|
| 395 |
-
self.image_token_id = config.image_token_id
|
| 396 |
self.in_features = config.hidden_size
|
| 397 |
self.out_additional_features = config.additional_vocab_size
|
| 398 |
self.vocab_size = config.vocab_size
|
|
@@ -403,6 +518,24 @@ class ModernVBertForMaskedLM(ModernVBertPreTrainedModel):
|
|
| 403 |
self.lm_head.to(self.dtype)
|
| 404 |
self.post_init()
|
| 405 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
def forward(
|
| 407 |
self,
|
| 408 |
input_ids: torch.LongTensor = None,
|
|
@@ -416,7 +549,19 @@ class ModernVBertForMaskedLM(ModernVBertPreTrainedModel):
|
|
| 416 |
output_hidden_states: Optional[bool] = None,
|
| 417 |
return_dict: Optional[bool] = None,
|
| 418 |
labels: Optional[torch.LongTensor] = None,
|
| 419 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 421 |
output_hidden_states = (
|
| 422 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
@@ -434,23 +579,32 @@ class ModernVBertForMaskedLM(ModernVBertPreTrainedModel):
|
|
| 434 |
output_attentions=output_attentions,
|
| 435 |
output_hidden_states=output_hidden_states,
|
| 436 |
return_dict=return_dict,
|
|
|
|
| 437 |
)
|
| 438 |
hidden_states = outputs[0]
|
|
|
|
| 439 |
logits = self.lm_head(hidden_states)
|
|
|
|
| 440 |
if self.out_additional_features > 0:
|
| 441 |
proj_states = self.lm_head.head(hidden_states)
|
| 442 |
additional_features = self.additional_fc(proj_states)
|
| 443 |
logits = torch.cat((logits, additional_features), -1)
|
|
|
|
| 444 |
loss = None
|
| 445 |
if labels is not None:
|
| 446 |
loss = CrossEntropyLoss()(logits.view(-1, self.vocab_size + self.out_additional_features), labels.view(-1))
|
|
|
|
| 447 |
if not return_dict:
|
| 448 |
output = (logits,) + outputs[2:]
|
| 449 |
return ((loss,) + output) if loss is not None else output
|
|
|
|
| 450 |
return ModernVBertMaskedLMOutput(
|
| 451 |
loss=loss,
|
| 452 |
logits=logits.float(),
|
| 453 |
hidden_states=outputs.hidden_states,
|
| 454 |
attentions=outputs.attentions,
|
| 455 |
image_hidden_states=outputs.image_hidden_states,
|
| 456 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 2 |
+
# This file was automatically generated from src/transformers/models/modernvbert/modular_modernvbert.py.
|
| 3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
| 4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
| 5 |
+
# modular_modernvbert.py file directly. One of our CI enforces this.
|
| 6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 7 |
from dataclasses import dataclass
|
| 8 |
+
from typing import Optional, Union
|
| 9 |
|
| 10 |
import torch
|
| 11 |
import torch.nn as nn
|
| 12 |
import torch.nn.functional as F
|
| 13 |
from torch.nn import CrossEntropyLoss
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
| 16 |
+
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPoolingAndCrossAttentions, MaskedLMOutput
|
| 17 |
+
from ...modeling_utils import PreTrainedModel
|
| 18 |
+
from ...processing_utils import Unpack
|
| 19 |
+
from ...utils import auto_docstring, can_return_tuple
|
| 20 |
+
from ..modernbert import ModernBertConfig, ModernBertForMaskedLM, ModernBertModel
|
| 21 |
+
from ..siglip import SiglipVisionConfig, SiglipVisionModel
|
| 22 |
from .configuration_modernvbert import ModernVBertConfig
|
| 23 |
|
|
|
|
|
|
|
| 24 |
|
| 25 |
class DecoupledEmbedding(nn.Embedding):
|
| 26 |
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding
|
|
|
|
| 105 |
# for successful lookup replace input_ids with 0, the results of these will be discarded anyway
|
| 106 |
input_ids[additional_vocab_indices] = 0
|
| 107 |
full_vector = F.embedding(input_ids, self.weight)
|
| 108 |
+
full_vector[additional_vocab_indices] = additional_embeddings # overwrite the records with high indices
|
| 109 |
return full_vector
|
| 110 |
|
| 111 |
|
|
|
|
| 132 |
sequence_length, hidden_size)`.
|
| 133 |
image_hidden_states of the model produced by the vision encoder
|
| 134 |
"""
|
| 135 |
+
|
| 136 |
last_hidden_state: torch.FloatTensor = None
|
| 137 |
+
hidden_states: Optional[tuple[torch.FloatTensor]] = None
|
| 138 |
+
attentions: Optional[tuple[torch.FloatTensor]] = None
|
| 139 |
+
image_hidden_states: Optional[tuple[torch.FloatTensor]] = None
|
| 140 |
|
| 141 |
|
| 142 |
@dataclass
|
|
|
|
| 146 |
Args:
|
| 147 |
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
|
| 148 |
Masked language modeling (MLM) loss.
|
| 149 |
+
logits (`torch.FloatTensor`):
|
| 150 |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 151 |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 152 |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
|
|
|
| 162 |
sequence_length, hidden_size)`.
|
| 163 |
image_hidden_states of the model produced by the vision encoder
|
| 164 |
"""
|
| 165 |
+
|
| 166 |
loss: Optional[torch.FloatTensor] = None
|
| 167 |
logits: torch.FloatTensor = None
|
| 168 |
+
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
|
| 169 |
+
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
|
| 170 |
image_hidden_states: Optional[torch.FloatTensor] = None
|
| 171 |
|
| 172 |
|
| 173 |
class ModernVBertSimpleMLP(nn.Module):
|
| 174 |
"""A simple linear projection layer to project the vision hidden states to the text hidden states."""
|
| 175 |
+
|
| 176 |
def __init__(self, input_size, output_size):
|
| 177 |
super().__init__()
|
| 178 |
self.proj = nn.Linear(input_size, output_size, bias=False)
|
|
|
|
| 186 |
Connector module for ModernVBERT. It performs a pixel shuffle operation followed by a linear projection to match the text model's hidden size.
|
| 187 |
Based on https://pytorch.org/docs/stable/generated/torch.nn.PixelShuffle.html
|
| 188 |
"""
|
| 189 |
+
|
| 190 |
def __init__(self, config):
|
| 191 |
super().__init__()
|
| 192 |
+
self.pixel_shuffle_factor = config.pixel_shuffle_factor
|
| 193 |
self.modality_projection = ModernVBertSimpleMLP(
|
| 194 |
+
input_size=config.vision_config.hidden_size * (config.pixel_shuffle_factor**2),
|
| 195 |
output_size=config.text_config.hidden_size,
|
| 196 |
)
|
| 197 |
|
| 198 |
+
def pixel_shuffle(self, x, pixel_shuffle_factor):
|
| 199 |
bsz, seq, embed_dim = x.size()
|
| 200 |
height = width = int(seq**0.5)
|
| 201 |
x = x.view(bsz, height, width, embed_dim)
|
| 202 |
+
x = x.view(bsz, height, int(width / pixel_shuffle_factor), embed_dim * pixel_shuffle_factor)
|
| 203 |
x = x.permute(0, 2, 1, 3)
|
| 204 |
+
x = x.reshape(
|
| 205 |
+
bsz,
|
| 206 |
+
int(width / pixel_shuffle_factor),
|
| 207 |
+
int(height / pixel_shuffle_factor),
|
| 208 |
+
embed_dim * (pixel_shuffle_factor**2),
|
| 209 |
+
)
|
| 210 |
x = x.permute(0, 2, 1, 3)
|
| 211 |
+
return x.reshape(bsz, int(seq / (pixel_shuffle_factor**2)), embed_dim * (pixel_shuffle_factor**2))
|
| 212 |
|
| 213 |
def forward(self, image_hidden_states):
|
| 214 |
+
image_hidden_states = self.pixel_shuffle(image_hidden_states, self.pixel_shuffle_factor)
|
| 215 |
return self.modality_projection(image_hidden_states)
|
| 216 |
|
| 217 |
|
|
|
|
| 234 |
module.weight.data[module.padding_idx].zero_()
|
| 235 |
|
| 236 |
|
| 237 |
+
@auto_docstring
|
| 238 |
class ModernVBertModel(ModernVBertPreTrainedModel):
|
| 239 |
def __init__(self, config: ModernVBertConfig):
|
| 240 |
super().__init__(config)
|
| 241 |
+
|
| 242 |
+
# init components
|
| 243 |
self.vision_model = ModernVBertModel.init_vision_model(config)
|
| 244 |
self.connector = ModernVBertConnector(config)
|
| 245 |
self.text_model = ModernVBertModel.init_language_model(config)
|
| 246 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
# set the correct dtype for vision and text models
|
| 248 |
self.vision_model.to(self.dtype)
|
| 249 |
self.text_model.to(self.dtype)
|
| 250 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
| 251 |
+
|
| 252 |
+
self.image_seq_len = int(
|
| 253 |
+
((config.vision_config.image_size // config.vision_config.patch_size) ** 2)
|
| 254 |
+
/ (config.pixel_shuffle_factor**2)
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
self.post_init()
|
| 258 |
|
| 259 |
@staticmethod
|
| 260 |
def init_vision_model(config: ModernVBertConfig):
|
| 261 |
+
vision_model_config = SiglipVisionConfig.from_pretrained(
|
| 262 |
config.vision_config.vision_model_name,
|
| 263 |
_attn_implementation=config._attn_implementation,
|
| 264 |
)
|
| 265 |
+
vision_model = SiglipVisionModel(vision_model_config).vision_model
|
| 266 |
+
return vision_model
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
@staticmethod
|
| 269 |
def init_language_model(config: ModernVBertConfig):
|
| 270 |
+
text_model_config = ModernBertConfig.from_pretrained(
|
| 271 |
config.text_config.text_model_name,
|
| 272 |
_attn_implementation=config._attn_implementation,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
)
|
| 274 |
+
text_model = ModernBertModel(text_model_config)
|
| 275 |
embed_layer = DecoupledEmbedding(
|
| 276 |
num_embeddings=text_model_config.vocab_size,
|
| 277 |
num_additional_embeddings=config.additional_vocab_size,
|
| 278 |
embedding_dim=config.hidden_size,
|
| 279 |
+
partially_freeze=getattr(config, "freeze_config", {"freeze_text_layers": False})["freeze_text_layers"],
|
| 280 |
padding_idx=config.pad_token_id,
|
| 281 |
)
|
| 282 |
text_model.set_input_embeddings(embed_layer)
|
| 283 |
return text_model
|
| 284 |
+
|
| 285 |
+
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2Model.enable_input_require_grads
|
| 286 |
def enable_input_require_grads(self):
|
| 287 |
"""
|
| 288 |
Enables the gradients for the input embeddings.
|
|
|
|
| 309 |
make_inputs_require_grads
|
| 310 |
)
|
| 311 |
|
| 312 |
+
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2Model.disable_input_require_grads
|
| 313 |
+
def disable_input_require_grads(self):
|
| 314 |
+
self._text_require_grads_hook.remove()
|
| 315 |
+
self._vision_require_grads_hook.remove()
|
| 316 |
+
|
| 317 |
def get_input_embeddings(self):
|
| 318 |
return self.text_model.get_input_embeddings()
|
| 319 |
|
| 320 |
def set_input_embeddings(self, value):
|
| 321 |
self.text_model.set_input_embeddings(value)
|
| 322 |
|
| 323 |
+
def get_image_features(
|
| 324 |
+
self, pixel_values: torch.FloatTensor, pixel_attention_mask: Optional[torch.LongTensor] = None
|
| 325 |
+
):
|
| 326 |
+
"""
|
| 327 |
+
Derived from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/smolvlm/modeling_smolvlm.py
|
| 328 |
+
Encodes images into continuous embeddings that can be forwarded to the language model.
|
| 329 |
+
|
| 330 |
+
Args:
|
| 331 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
| 332 |
+
The tensors corresponding to the input images.
|
| 333 |
+
pixel_attention_mask (`torch.LongTensor`, *optional*):
|
| 334 |
+
The attention mask indicating padded regions in the image.
|
| 335 |
+
"""
|
| 336 |
+
batch_size, num_images, num_channels, height, width = pixel_values.shape
|
| 337 |
+
pixel_values = pixel_values.to(dtype=self.dtype) # fp16 compatibility
|
| 338 |
+
pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:])
|
| 339 |
+
|
| 340 |
+
# Remove padding images - padding images are full 0.
|
| 341 |
+
nb_values_per_image = pixel_values.shape[1:].numel()
|
| 342 |
+
real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image
|
| 343 |
+
|
| 344 |
+
if not any(real_images_inds):
|
| 345 |
+
real_images_inds[0] = True
|
| 346 |
+
|
| 347 |
+
pixel_values = pixel_values[real_images_inds].contiguous()
|
| 348 |
+
# Handle the vision attention mask
|
| 349 |
+
if pixel_attention_mask is None:
|
| 350 |
+
pixel_attention_mask = torch.ones(
|
| 351 |
+
size=[pixel_values.shape[i] for i in (0, 2, 3)],
|
| 352 |
+
dtype=torch.bool,
|
| 353 |
+
device=pixel_values.device,
|
| 354 |
+
)
|
| 355 |
+
else:
|
| 356 |
+
# Remove padding images from the mask
|
| 357 |
+
pixel_attention_mask = pixel_attention_mask.view(batch_size * num_images, *pixel_attention_mask.shape[2:])
|
| 358 |
+
pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous()
|
| 359 |
+
|
| 360 |
+
patch_size = self.config.vision_config.patch_size
|
| 361 |
+
patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size)
|
| 362 |
+
patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size)
|
| 363 |
+
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
|
| 364 |
+
|
| 365 |
+
# Get sequence from the vision encoder
|
| 366 |
+
image_hidden_states = self.vision_model(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
|
| 367 |
+
image_hidden_states = image_hidden_states.last_hidden_state
|
| 368 |
+
|
| 369 |
+
return image_hidden_states
|
| 370 |
+
|
| 371 |
def inputs_merger(self, input_ids, inputs_embeds, image_hidden_states):
|
| 372 |
"""Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/smolvlm/modeling_smolvlm.py
|
| 373 |
|
|
|
|
| 381 |
"""
|
| 382 |
|
| 383 |
_, patch_size, _ = image_hidden_states.shape
|
| 384 |
+
|
| 385 |
+
if input_ids is None:
|
| 386 |
+
image_mask = inputs_embeds == self.get_input_embeddings()(
|
| 387 |
+
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
|
| 388 |
+
)
|
| 389 |
+
image_mask = image_mask[..., 0] # slice off the hidden dim
|
| 390 |
+
else:
|
| 391 |
+
image_mask = input_ids == self.config.image_token_id
|
| 392 |
+
|
| 393 |
+
# Assert that the input <image> tokens are valid (i.e. multiple of patch_size)
|
| 394 |
num_image_tokens = image_mask.sum(dim=1)
|
| 395 |
if not torch.all(num_image_tokens % patch_size == 0):
|
| 396 |
raise ValueError("Number of <image> tokens not divisible by patch_size.")
|
| 397 |
+
|
| 398 |
blocks_per_sample = num_image_tokens // patch_size
|
| 399 |
+
|
| 400 |
offsets = torch.nn.functional.pad(blocks_per_sample.cumsum(dim=0), (1, 0), value=0)
|
| 401 |
block_offset = offsets[:-1]
|
| 402 |
row_cum = image_mask.cumsum(dim=-1)
|
| 403 |
chunk_idx = (row_cum - 1) // patch_size
|
| 404 |
local_idx = (row_cum - 1) % patch_size
|
| 405 |
block_idx = block_offset.unsqueeze(1) + chunk_idx
|
| 406 |
+
|
| 407 |
image_embeds = torch.zeros_like(inputs_embeds)
|
| 408 |
image_embeds[image_mask] = image_hidden_states[block_idx[image_mask], local_idx[image_mask], :]
|
| 409 |
+
|
| 410 |
return torch.where(image_mask.unsqueeze(-1), image_embeds, inputs_embeds)
|
| 411 |
|
| 412 |
+
@can_return_tuple
|
| 413 |
+
@auto_docstring(
|
| 414 |
+
custom_intro="""
|
| 415 |
+
Inputs fed to the model can have an arbitrary number of images. To account for this, pixel_values fed to
|
| 416 |
+
the model have image padding -> (batch_size, max_num_images, 3, max_heights, max_widths) where
|
| 417 |
+
max_num_images is the maximum number of images among the batch_size samples in the batch.
|
| 418 |
+
Padding images are not needed beyond padding the pixel_values at the entrance of the model.
|
| 419 |
+
For efficiency, we only pass through the vision_model's forward the real images by
|
| 420 |
+
discarding the padding images i.e. pixel_values of size (image_batch_size, 3, height, width) where
|
| 421 |
+
image_batch_size would be 7 when num_images_per_sample=[1, 3, 1, 2] and max_num_images would be 3.
|
| 422 |
+
""",
|
| 423 |
+
checkpoint="modernvbert/ModernVBert",
|
| 424 |
+
)
|
| 425 |
def forward(
|
| 426 |
self,
|
| 427 |
input_ids: torch.LongTensor = None,
|
|
|
|
| 434 |
output_attentions: Optional[bool] = None,
|
| 435 |
output_hidden_states: Optional[bool] = None,
|
| 436 |
return_dict: Optional[bool] = None,
|
| 437 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 438 |
+
) -> Union[tuple, BaseModelOutputWithPoolingAndCrossAttentions]:
|
| 439 |
+
r"""
|
| 440 |
+
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
|
| 441 |
+
Mask to avoid performing attention on padding pixel indices.
|
| 442 |
+
image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
| 443 |
+
The hidden states of the image encoder after modality projection.
|
| 444 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 445 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 446 |
+
config.vocab_size]` or `model.image_token_id`. Tokens with indices set to `model.image_token_id` are
|
| 447 |
+
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 448 |
+
"""
|
| 449 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 450 |
output_hidden_states = (
|
| 451 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 452 |
)
|
| 453 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 454 |
+
|
| 455 |
if inputs_embeds is None:
|
| 456 |
inputs_embeds = self.text_model.get_input_embeddings()(input_ids).to(input_ids.device)
|
| 457 |
+
|
| 458 |
+
# Images processing
|
| 459 |
if pixel_values is not None:
|
| 460 |
+
# Vision encoder pass
|
| 461 |
+
image_hidden_states = self.get_image_features(
|
| 462 |
+
pixel_values=pixel_values, pixel_attention_mask=pixel_attention_mask
|
| 463 |
+
)
|
| 464 |
+
# Modality projection & resampling
|
|
|
|
|
|
|
|
|
|
| 465 |
image_hidden_states = self.connector(image_hidden_states)
|
| 466 |
+
|
| 467 |
+
# Merge image and text embeddings
|
| 468 |
+
if image_hidden_states is not None:
|
| 469 |
+
image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=inputs_embeds.device)
|
| 470 |
+
inputs_embeds = self.inputs_merger(
|
| 471 |
+
input_ids=input_ids, inputs_embeds=inputs_embeds, image_hidden_states=image_hidden_states
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
# Language model pass
|
| 475 |
outputs = self.text_model(
|
| 476 |
inputs_embeds=inputs_embeds,
|
| 477 |
attention_mask=attention_mask,
|
|
|
|
| 479 |
output_attentions=output_attentions,
|
| 480 |
output_hidden_states=output_hidden_states,
|
| 481 |
return_dict=return_dict,
|
| 482 |
+
**kwargs,
|
| 483 |
)
|
| 484 |
+
|
|
|
|
| 485 |
return ModernVBertBaseModelOutput(
|
| 486 |
last_hidden_state=outputs.last_hidden_state,
|
| 487 |
hidden_states=outputs.hidden_states,
|
|
|
|
| 489 |
image_hidden_states=image_hidden_states,
|
| 490 |
)
|
| 491 |
|
| 492 |
+
|
| 493 |
class ModernVBertLMHead(nn.Module):
|
| 494 |
def __init__(self, config):
|
| 495 |
super().__init__()
|
| 496 |
+
pretrained_config = ModernBertConfig.from_pretrained(config.text_config.text_model_name)
|
| 497 |
+
pretrained_model = ModernBertForMaskedLM(pretrained_config)
|
| 498 |
self.head = pretrained_model.head
|
| 499 |
self.decoder = pretrained_model.decoder
|
| 500 |
|
|
|
|
| 502 |
return self.decoder(self.head(hidden_states))
|
| 503 |
|
| 504 |
|
| 505 |
+
@auto_docstring
|
| 506 |
class ModernVBertForMaskedLM(ModernVBertPreTrainedModel):
|
| 507 |
+
_tied_weights_keys = ["lm_head.decoder.weight", "model.text_model.embeddings.word_embeddings.weight"]
|
| 508 |
+
|
| 509 |
def __init__(self, config):
|
| 510 |
super().__init__(config)
|
|
|
|
| 511 |
self.in_features = config.hidden_size
|
| 512 |
self.out_additional_features = config.additional_vocab_size
|
| 513 |
self.vocab_size = config.vocab_size
|
|
|
|
| 518 |
self.lm_head.to(self.dtype)
|
| 519 |
self.post_init()
|
| 520 |
|
| 521 |
+
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2ForConditionalGeneration.disable_input_require_grads
|
| 522 |
+
def disable_input_require_grads(self):
|
| 523 |
+
self._text_require_grads_hook.remove()
|
| 524 |
+
self._vision_require_grads_hook.remove()
|
| 525 |
+
|
| 526 |
+
@can_return_tuple
|
| 527 |
+
@auto_docstring(
|
| 528 |
+
custom_intro="""
|
| 529 |
+
Inputs fed to the model can have an arbitrary number of images. To account for this, pixel_values fed to
|
| 530 |
+
the model have image padding -> (batch_size, max_num_images, 3, max_heights, max_widths) where
|
| 531 |
+
max_num_images is the maximum number of images among the batch_size samples in the batch.
|
| 532 |
+
Padding images are not needed beyond padding the pixel_values at the entrance of the model.
|
| 533 |
+
For efficiency, we only pass through the vision_model's forward the real images by
|
| 534 |
+
discarding the padding images i.e. pixel_values of size (image_batch_size, 3, height, width) where
|
| 535 |
+
image_batch_size would be 7 when num_images_per_sample=[1, 3, 1, 2] and max_num_images would be 3.
|
| 536 |
+
""",
|
| 537 |
+
checkpoint="modernvbert/ModernVBert",
|
| 538 |
+
)
|
| 539 |
def forward(
|
| 540 |
self,
|
| 541 |
input_ids: torch.LongTensor = None,
|
|
|
|
| 549 |
output_hidden_states: Optional[bool] = None,
|
| 550 |
return_dict: Optional[bool] = None,
|
| 551 |
labels: Optional[torch.LongTensor] = None,
|
| 552 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 553 |
+
) -> Union[tuple, ModernVBertMaskedLMOutput]:
|
| 554 |
+
r"""
|
| 555 |
+
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
|
| 556 |
+
Mask to avoid performing attention on padding pixel indices.
|
| 557 |
+
image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
| 558 |
+
The hidden states of the image encoder after modality projection.
|
| 559 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 560 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 561 |
+
config.vocab_size]` or `model.image_token_id`. Tokens with indices set to `model.image_token_id` are
|
| 562 |
+
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 563 |
+
"""
|
| 564 |
+
|
| 565 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 566 |
output_hidden_states = (
|
| 567 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
| 579 |
output_attentions=output_attentions,
|
| 580 |
output_hidden_states=output_hidden_states,
|
| 581 |
return_dict=return_dict,
|
| 582 |
+
**kwargs,
|
| 583 |
)
|
| 584 |
hidden_states = outputs[0]
|
| 585 |
+
|
| 586 |
logits = self.lm_head(hidden_states)
|
| 587 |
+
|
| 588 |
if self.out_additional_features > 0:
|
| 589 |
proj_states = self.lm_head.head(hidden_states)
|
| 590 |
additional_features = self.additional_fc(proj_states)
|
| 591 |
logits = torch.cat((logits, additional_features), -1)
|
| 592 |
+
|
| 593 |
loss = None
|
| 594 |
if labels is not None:
|
| 595 |
loss = CrossEntropyLoss()(logits.view(-1, self.vocab_size + self.out_additional_features), labels.view(-1))
|
| 596 |
+
|
| 597 |
if not return_dict:
|
| 598 |
output = (logits,) + outputs[2:]
|
| 599 |
return ((loss,) + output) if loss is not None else output
|
| 600 |
+
|
| 601 |
return ModernVBertMaskedLMOutput(
|
| 602 |
loss=loss,
|
| 603 |
logits=logits.float(),
|
| 604 |
hidden_states=outputs.hidden_states,
|
| 605 |
attentions=outputs.attentions,
|
| 606 |
image_hidden_states=outputs.image_hidden_states,
|
| 607 |
+
)
|
| 608 |
+
|
| 609 |
+
|
| 610 |
+
__all__ = ["ModernVBertPreTrainedModel", "ModernVBertModel", "ModernVBertForMaskedLM"]
|