--- tags: - language-model - transformer-decoder - tiny-shakespeare license: mit datasets: - tiny_shakespeare model_description: | This is a small autoregressive language model based on the Transformer architecture trained on the Tiny Shakespeare dataset. ## Model Description The model is a custom implementation of a TransformerDecoderModel, which uses a decoder-only architecture similar to GPT-2. It was trained on the Tiny Shakespeare dataset to generate text in the style of William Shakespeare. ## Training Details The model was trained and tracked using [Weights & Biases](https://wandb.ai/honcharova-de-hannover/LanguageModel_Project?nw=nwuserhoncharovade). ## How to Use To generate text with this model, you can load it and the tokenizer as follows: ```python from transformers import AutoTokenizer from transformers import GPT2LMHeadModel # Load the model and tokenizer model = GPT2LMHeadModel.from_pretrained('NataliaH/TransformerDecoderModel') tokenizer = AutoTokenizer.from_pretrained('NataliaH/TransformerDecoderModel') # Provide input text and generate output input_text = 'To be or not to be' inputs = tokenizer(input_text, return_tensors='pt') outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```