diff --git "a/modular_isaac.py" "b/modular_isaac.py" --- "a/modular_isaac.py" +++ "b/modular_isaac.py" @@ -1,173 +1,524 @@ +# Copyright (c) 2024 Perceptron, Inc. All rights reserved. +# Perceptron, Inc. Non-Production License (2024-01-01) + + +### 1. Scope and acceptance + +# **1.1. Scope of the Agreement.** +# This Agreement applies to any use, modification, or Distribution of any Perceptron Model by You, regardless of the source You obtained a copy of such Perceptron Model. +# +# **1.2. Acceptance.** By accessing, using, modifying, Distributing a Perceptron Model, or by creating, using or distributing a Derivative of the Perceptron Model, You agree to be bound by this Agreement. +# +# **1.3. Acceptance on behalf of a third-party.** If You accept this Agreement on behalf of Your employer or another person or entity, You warrant and represent that You have the authority to act and accept this Agreement on their behalf. In such a case, the word “You” in this Agreement will refer to Your employer or such other person or entity. +# +# ## 2. License +# **2.1. Grant of rights.** Subject to Section 3 below, Perceptron, Inc. hereby grants You a non-exclusive, royalty-free, worldwide, non-sublicensable, non-transferable, limited license to use, copy, modify, and Distribute under the conditions provided in Section 2.2 below, the Perceptron Model and any Derivatives made by or for Perceptron, Inc. and to create Derivatives of the Perceptron Model. +# +# **2.2. Distribution of Perceptron Model and Derivatives made by or for Perceptron, Inc..** Subject to Section 3 below, You may Distribute copies of the Perceptron Model and/or Derivatives made by or for Perceptron, Inc., under the following conditions: +# - You must make available a copy of this Agreement to third-party recipients of the Perceptron Models and/or Derivatives made by or for Perceptron, Inc. you Distribute, it being specified that any rights to use the Perceptron Models and/or Derivatives made by or for Perceptron, Inc. shall be directly granted by Perceptron, Inc. to said third-party recipients pursuant to the Perceptron, Inc. Non-Production License agreement executed between these parties; +# - You must retain in all copies of the Perceptron Models the following attribution notice within a “Notice” text file distributed as part of such copies: “Licensed by Perceptron, Inc. under the Perceptron, Inc. Non-Production License”. +# +# **2.3. Distribution of Derivatives made by or for You.** Subject to Section 3 below, You may Distribute any Derivatives made by or for You under additional or different terms and conditions, provided that: +# - In any event, the use and modification of Perceptron Model and/or Derivatives made by or for Perceptron, Inc. shall remain governed by the terms and conditions of this Agreement; +# - You include in any such Derivatives made by or for You prominent notices stating that You modified the concerned Perceptron Model; and +# - Any terms and conditions You impose on any third-party recipients relating to Derivatives made by or for You shall neither limit such third-party recipients’ use of the Perceptron Model or any Derivatives made by or for Perceptron, Inc. in accordance with the Perceptron, Inc. Non-Production License nor conflict with any of its terms and conditions. +# +# ## 3. Limitations +# **3.1. Misrepresentation.** You must not misrepresent or imply, through any means, that the Derivatives made by or for You and/or any modified version of the Perceptron Model You Distribute under your name and responsibility is an official product of Perceptron, Inc. or has been endorsed, approved or validated by Perceptron, Inc., unless You are authorized by Us to do so in writing. +# +# **3.2. Usage Limitation** +# - You shall only use the Perceptron Models and Derivatives (whether or not created by Perceptron, Inc.) for testing, research, Personal, or evaluation purposes in Non-Production Environments; +# - Subject to the foregoing, You shall not supply the Perceptron Models or Derivatives in the course of a commercial activity, whether in return for payment or free of charge, in any medium or form, including but not limited to through a hosted or managed service (e.g. SaaS, cloud instances, etc.), or behind a software layer. +# +# **3.3. Usage not permitted under this Agreement.** If You want to use a Perceptron Model or a Derivative for any purpose that is not expressly authorized under this Agreement, You must request a license from Perceptron, Inc., which Perceptron, Inc. may grant to You in Perceptron, Inc.’s sole discretion. Please contact Perceptron, Inc. at the following e-mail address if You want to discuss such a license: sales@perceptron.inc +# +# ## 4. Intellectual Property +# **4.1. Trademarks.** No trademark licenses are granted under this Agreement, and in connection with the Perceptron Models, You may not use any name or mark owned by or associated with Perceptron, Inc. or any of its affiliates, except (i) as required for reasonable and customary use in describing and Distributing the Perceptron Models and Derivatives made by or for Perceptron, Inc. and (ii) for attribution purposes as required by this Agreement. +# +# **4.2. Outputs.** We claim no ownership rights in and to the Outputs. You are solely responsible for the Outputs You generate and their subsequent uses in accordance with this Agreement. +# +# **4.3. Derivatives.** By entering into this Agreement, You accept that any Derivatives that You may create or that may be created for You shall be subject to the restrictions set out in Section 3 of this Agreement. +# +# # 5. Liability +# **5.1. Limitation of liability.** In no event, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall Perceptron, Inc. be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this Agreement or out of the use or inability to use the Perceptron Models and Derivatives (including but not limited to damages for loss of data, loss of goodwill, loss of expected profit or savings, work stoppage, computer failure or malfunction, or any damage caused by malware or security breaches), even if Perceptron, Inc. has been advised of the possibility of such damages. +# +# **5.2. Indemnification.** You agree to indemnify and hold harmless Perceptron, Inc. from and against any claims, damages, or losses arising out of or related to Your use or Distribution of the Perceptron Models and Derivatives. +# +# ## 6. Warranty +# **6.1. Disclaimer.** Unless required by applicable law or agreed to in writing, Perceptron, Inc. provides the Perceptron Models and Derivatives on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. Perceptron, Inc. does not represent nor warrant that the Perceptron Models and Derivatives will be error-free, meet Your or any third party’s requirements, be secure or will allow You or any third party to achieve any kind of result or generate any kind of content. You are solely responsible for determining the appropriateness of using or Distributing the Perceptron Models and Derivatives and assume any risks associated with Your exercise of rights under this Agreement. +# +# # 7. Termination +# **7.1. Term.** This Agreement is effective as of the date of your acceptance of this Agreement or access to the concerned Perceptron Models or Derivatives and will continue until terminated in accordance with the following terms. +# +# **7.2. Termination.** Perceptron, Inc. may terminate this Agreement at any time if You are in breach of this Agreement. Upon termination of this Agreement, You must cease to use all Perceptron Models and Derivatives and shall permanently delete any copy thereof. Sections 5, 6, 7 and 8 shall survive the termination of this Agreement. +# +# **7.3. Litigation.** If You initiate any legal action or proceedings against Us or any other entity (including a cross-claim or counterclaim in a lawsuit), alleging that the Model or a Derivative, or any part thereof, infringe upon intellectual property or other rights owned or licensable by You, then any licenses granted to You under this Agreement will immediately terminate as of the date such legal action or claim is filed or initiated. +# +# # 8. General provisions +# 8.1. Governing Law. This Agreement will be governed by and construed in accordance with the laws of the State of Washington, without regard to its conflict of law principles. +# +# 8.2. Jurisdiction. The state and federal courts located in King County, Washington shall have exclusive jurisdiction over any dispute arising out of or relating to this Agreement, and You and We consent to personal jurisdiction and venue in such courts. +# +# **8.3. Severability.** If any provision of this Agreement is held to be invalid, illegal or unenforceable, the remaining provisions shall be unaffected thereby and remain valid as if such provision had not been set forth herein. +# +# # 9. Definitions +# **“Agreement”**: means this Perceptron, Inc. Non-Production License agreement governing the access, use, and Distribution of the Perceptron Models and Derivatives. +# +# **“Derivative”**: means any (i) modified version of the Perceptron Model (including but not limited to any customized or fine-tuned version thereof), (ii) work based on the Perceptron Model, or (iii) any other derivative work thereof. For the avoidance of doubt, Outputs are not considered as Derivatives under this Agreement. +# +# **“Distribution”**, **“Distributing”**, **“Distribute”** or **“Distributed”**: means providing or making available, by any means, a copy of the Perceptron Models and/or the Derivatives as the case may be, subject to Section 3 of this Agreement. +# +# **“Perceptron, Inc.”**, **“We”** or **“Us”**: means Perceptron, Inc., a Delaware corporation with its principal place of business at 10900 NE 8th St Suite 613, Bellevue, WA 98004. +# +# **“Perceptron Model”**: means the foundational large language model(s), and its elements which include algorithms, software, instructed checkpoints, parameters, source code (inference code, evaluation code and, if applicable, fine-tuning code) and any other elements associated thereto made available by Perceptron, Inc. under this Agreement, including, if any, the technical documentation, manuals and instructions for the use and operation thereof. +# +# **“Non-Production Environment”**: means any setting, use case, or application of the Perceptron Models or Derivatives that expressly excludes live, real-world conditions, commercial operations, revenue-generating activities, or direct interactions with or impacts on end users (such as, for instance, Your employees or customers). Non-Production Environment may include, but is not limited to, any setting, use case, or application for research, development, testing, quality assurance, training, internal evaluation (other than any internal usage by employees in the context of the company’s business activities), and demonstration purposes. +# +# **“Outputs”**: means any content generated by the operation of the Perceptron Models or the Derivatives from a prompt (i.e., text instructions) provided by users. For the avoidance of doubt, Outputs do not include any components of a Perceptron Models, such as any fine-tuned versions of the Perceptron Models, the weights, or parameters. +# +# **“Personal”**: means any use of a Perceptron Model or a Derivative that is (i) solely for personal, non-profit and non-commercial purposes and (ii) not directly or indirectly connected to any commercial activities, business operations, or employment responsibilities. For illustration purposes, Personal use of a Model or a Derivative does not include any usage by individuals employed in companies in the context of their daily tasks, any activity that is intended to generate revenue, or that is performed on behalf of a commercial entity. +# +# **“You”**: means the individual or entity entering into this Agreement with Perceptron, Inc.. + from __future__ import annotations +import copy +import math +import re from collections import defaultdict -from typing import Any, TypedDict +from typing import Any, Callable, Optional, Sequence, Union -import math -import numpy as np +import PIL.Image import torch import torch.nn as nn import torch.nn.functional as F -import PIL.Image - - from transformers import ( + AutoImageProcessor, + AutoModel, AutoTokenizer, BatchFeature, - Cache, + PretrainedConfig, Qwen3Config, Qwen3ForCausalLM, Qwen3PreTrainedModel, ) -from transformers.cache_utils import SlidingWindowCache, StaticCache +from transformers.configuration_utils import layer_type_validation + +from transformers.cache_utils import DynamicCache, SlidingWindowCache, StaticCache from transformers.generation.utils import GenerationMixin +from transformers.image_processing_utils_fast import ( + BaseImageProcessorFast, + SizeDict, + group_images_by_shape, + reorder_images, +) +from transformers.image_utils import ( + ChannelDimension, + PILImageResampling, +) +from transformers.modeling_attn_mask_utils import AttentionMaskConverter from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast -from transformers.models.qwen3.modeling_qwen3 import Qwen3DecoderLayer, Qwen3Model +from transformers.modeling_rope_utils import rope_config_validation +from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer -from transformers.processing_utils import ProcessorMixin -from transformers.tokenization_utils import TensorType -from transformers.modeling_attn_mask_utils import AttentionMaskConverter -import re - -from transformers.models.siglip2.modeling_siglip2 import ( - Siglip2MLP, -) +from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import Qwen2_5_VLRotaryEmbedding +from transformers.models.qwen2_5_vl import modeling_qwen2_5_vl as qwen2_5_vl_modeling from transformers.models.siglip2.configuration_siglip2 import Siglip2VisionConfig -from perceptron.tensorstream import ( - Event, - Stream, - TensorStream, - TextType, - VisionType, - create_stream, - group_streams, -) -from perceptron.tensorstream.ops import ( - compute_mrope_pos_tensor, - modality_mask, - reconstruct_tensor_stream_from_compact_dict, - slice as ts_slice, - tensor_stream_token_view, +from transformers.models.siglip2.modeling_siglip2 import ( + Siglip2Attention, + Siglip2Encoder, + Siglip2EncoderLayer, + Siglip2VisionEmbeddings, ) +from transformers.masking_utils import create_masks_for_generate, eager_mask, packed_sequence_mask_function, sdpa_mask +from transformers.processing_utils import ImagesKwargs, ProcessorMixin, Unpack +from transformers.utils import auto_docstring, TensorType +from transformers.utils.generic import can_return_tuple, check_model_inputs + +# Vision preprocessing constants +from transformers.utils.constants import IMAGENET_STANDARD_MEAN as VISION_MEAN +from transformers.utils.constants import IMAGENET_STANDARD_STD as VISION_STD +from transformers.utils.import_utils import is_torchdynamo_compiling + +try: + from genesis.public.tensorstream.tensor_stream import ( + Event, + Stream, + TensorStream, + TextType, + VisionType, + create_stream, + group_streams, + ) + from genesis.public.tensorstream.tensor_stream_utils import ( + compute_mrope_pos_tensor, + modality_mask, + reconstruct_tensor_stream_from_compact_dict, + tensor_stream_token_view, + ) + from genesis.public.tensorstream.tensor_stream_utils import ( + slice as ts_slice, + ) +except ModuleNotFoundError as exc: # pragma: no cover - import guard + raise ModuleNotFoundError( + "genesis.public.tensorstream is required for the Isaac HuggingFace integration. " + "Ensure the TensorStream package is installed and on PYTHONPATH." + ) from exc + +_ORIGINAL_ATTENTION_FUNCTIONS: dict[str, Callable[..., tuple[torch.Tensor, Optional[torch.Tensor]]]] = {} +for _attn_name in ("flash_attention_2", "sdpa", "eager"): + if _attn_name in ALL_ATTENTION_FUNCTIONS: + _ORIGINAL_ATTENTION_FUNCTIONS[_attn_name] = ALL_ATTENTION_FUNCTIONS[_attn_name] -class PixelShuffleSiglip2VisionConfig(Siglip2VisionConfig): +class IsaacVisionConfig(Siglip2VisionConfig): """Vision configuration for Isaac with Pixel Shuffle support. Extends Siglip2VisionConfig with additional fields for pixel shuffle. + + Args: + pixel_shuffle_scale_factor (`int`, *optional*, defaults to 1): + Spatial factor applied before pixel shuffle reduces the resolution. + num_patches (`int`, *optional*, defaults to 256): + Maximum number of learnable positional embeddings to initialize. """ - model_type = "pixel_shuffle_siglip2" + model_type = "isaac_vision" base_config_key = "vision_config" def __init__( self, - pixel_shuffle_scale_factor: int = 1, - num_patches: int = 256, + hidden_size=768, + intermediate_size=3072, + num_hidden_layers=12, + num_attention_heads=12, + num_channels=3, + num_patches=256, + patch_size=16, + hidden_act="gelu_pytorch_tanh", + layer_norm_eps=1e-6, + attention_dropout=0.0, + pixel_shuffle_scale_factor=1, **kwargs, ): super().__init__(**kwargs) + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.num_channels = num_channels + self.patch_size = patch_size + self.attention_dropout = attention_dropout + self.layer_norm_eps = layer_norm_eps + self.hidden_act = hidden_act + self.num_patches = num_patches + # Add our custom fields self.pixel_shuffle_scale_factor = pixel_shuffle_scale_factor - self.num_patches = num_patches -def create_cumulative_seq_lengths(seq_sizes: torch.Tensor, device: torch.device) -> tuple[torch.Tensor, int]: - """Create cumulative sequence lengths for variable-length attention.""" - cu_seqlens = torch.zeros(len(seq_sizes) + 1, dtype=torch.int32, device=device) - cu_seqlens[1:] = seq_sizes.cumsum(0) - max_seqlen = int(seq_sizes.max().item()) if len(seq_sizes) > 0 else 0 - return cu_seqlens, max_seqlen - - -def _max_from_cu(cu: torch.Tensor | None, fallback: int) -> int: - """Helper to compute max sequence length from cumulative sequence lengths.""" - if cu is None or len(cu) < 2: - return fallback - return int((cu[1:] - cu[:-1]).max().item()) - - -def flash_attention_document_mask_forward( - q_lhd: torch.Tensor, # (L, H, D) - k_lhd: torch.Tensor, # (L, H, D) - v_lhd: torch.Tensor, # (L, H, D) - attention_mask: torch.Tensor | None = None, # unused for FA path - dropout: float = 0.0, - scaling: float | None = None, - cum_seq_q: torch.Tensor | None = None, - cum_seq_k: torch.Tensor | None = None, - max_seqlen: int | None = None, - is_causal: bool = False, - **kwargs, -) -> tuple[torch.Tensor, None]: - """FlashAttention that consumes (L, H, D) directly to avoid layout churn.""" - L, H, D = q_lhd.shape - - # Compute max block length once (honor caller when provided) - if max_seqlen is not None: - max_q = max_k = int(max_seqlen) - else: - max_q = _max_from_cu(cum_seq_q, L) - max_k = _max_from_cu(cum_seq_k, L) - - # Ensure contiguity only if needed - if not q_lhd.is_contiguous(): - q_lhd = q_lhd.contiguous() - if not k_lhd.is_contiguous(): - k_lhd = k_lhd.contiguous() - if not v_lhd.is_contiguous(): - v_lhd = v_lhd.contiguous() - - out_lhd, *_ = torch.ops.aten._flash_attention_forward( - query=q_lhd, # (L, H, D) - key=k_lhd, # (L, H, D) - value=v_lhd, # (L, H, D) - cum_seq_q=cum_seq_q, - cum_seq_k=cum_seq_k, - max_q=max_q, - max_k=max_k, - dropout_p=dropout, - is_causal=is_causal, - return_debug_mask=False, - scale=scaling, - window_size_left=-1, - window_size_right=-1, - alibi_slopes=None, - ) - return out_lhd, None # (L, H, D) +class IsaacImageProcessorKwargs(ImagesKwargs, total=False): + patch_size: Optional[int] + max_num_patches: Optional[int] + min_num_patches: Optional[int] + pixel_shuffle_scale: Optional[int] + + +@auto_docstring +class IsaacImageProcessorFast(BaseImageProcessorFast): + MAX_PIXELS = 60_000_000 # 60‑megapixel ceiling ≈ 8200 × 7300 px + r"""Fast torch-based image processor for Isaac vision inputs.""" + + resample = PILImageResampling.BILINEAR + model_input_names = ["patches", "token_grids"] + valid_kwargs = IsaacImageProcessorKwargs + unused_kwargs = ["size", "do_center_crop", "crop_size"] + + do_resize = True + size: Optional[SizeDict] = None + default_to_square: Optional[bool] = None + do_center_crop = False + crop_size: Optional[SizeDict] = None + patch_size: Optional[int] = 16 + max_num_patches: Optional[int] = 256 + min_num_patches: Optional[int] = None + pixel_shuffle_scale: Optional[int] = 1 + do_pad = False + pad_size: Optional[SizeDict] = None + do_rescale = True + rescale_factor = 1 / 255 + do_normalize = True + image_mean = list(VISION_MEAN) + image_std = list(VISION_STD) + do_convert_rgb = True + return_tensors = None + data_format = ChannelDimension.FIRST + input_data_format = None + device = None + disable_grouping = False + size_divisor: Optional[int] = None + def __init__( + self, + **kwargs: Unpack[IsaacImageProcessorKwargs], + ) -> None: + super().__init__(**kwargs) -def sdpa_document_mask_forward( - q_lhd: torch.Tensor, # (L, H, D) - k_lhd: torch.Tensor, # (L, H, D) - v_lhd: torch.Tensor, # (L, H, D) - dropout: float, - scaling: float | None, - cu_seqlens: torch.Tensor | None, -) -> torch.Tensor: - """SDPA with block-diagonal masking for variable-length sequences.""" - L, H, D = q_lhd.shape + pixel_shuffle_scale = 1 if self.pixel_shuffle_scale is None else int(self.pixel_shuffle_scale) + if pixel_shuffle_scale < 1: + raise ValueError("`pixel_shuffle_scale` must be >= 1") + self.pixel_shuffle_scale = pixel_shuffle_scale + + def _validate_preprocess_kwargs(self, **kwargs): + # Allow callers to omit resize-related placeholders that BaseImageProcessorFast checks for. + kwargs.pop("do_resize", None) + kwargs.pop("size", None) + kwargs.pop("do_center_crop", None) + kwargs.pop("crop_size", None) + kwargs.pop("disable_grouping", None) + return super()._validate_preprocess_kwargs(**kwargs) + + def resize( + self, + image: torch.Tensor, + size: SizeDict, + interpolation: Optional[Any] = None, + antialias: bool = True, + **kwargs, + ) -> torch.Tensor: + if size.height is None or size.width is None: + raise ValueError("IsaacImageProcessorFast requires explicit `height` and `width` when resizing.") + + resize_mode: Any = interpolation + if hasattr(resize_mode, "value"): + resize_mode = resize_mode.value + elif hasattr(resize_mode, "name"): + resize_mode = resize_mode.name.lower() + elif resize_mode is None: + resize_mode = "bilinear" + + if isinstance(resize_mode, str): + mode_key = resize_mode.lower() + else: + mode_key = resize_mode + + resize_kwargs: dict[str, Any] = {} + if mode_key in {"linear", "bilinear", "bicubic", "trilinear"}: + resize_kwargs["align_corners"] = False + + return F.interpolate( + image, + size=(size.height, size.width), + mode=resize_mode, + **resize_kwargs, + ) + + def _preprocess( + self, + images: list[torch.Tensor], + do_resize: bool, + size: Optional[SizeDict], + interpolation: Optional[Any], + do_center_crop: bool, + crop_size: Optional[SizeDict], + do_rescale: Optional[bool], + rescale_factor: Optional[float], + do_normalize: Optional[bool], + image_mean: Optional[Union[float, Sequence[float]]], + image_std: Optional[Union[float, Sequence[float]]], + disable_grouping: Optional[bool] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + do_pad: Optional[bool] = None, + pad_size: Optional[SizeDict] = None, + *, + patch_size: Optional[int] = None, + max_num_patches: Optional[int] = None, + min_num_patches: Optional[int] = None, + pixel_shuffle_scale: Optional[int] = None, + **kwargs, + ) -> BatchFeature: + if do_center_crop: + raise ValueError("`do_center_crop` is not supported by IsaacImageProcessorFast.") + if do_pad: + raise ValueError("`do_pad` is not supported by IsaacImageProcessorFast.") + + grouped_images, grouped_images_index = group_images_by_shape(images, disable_grouping=disable_grouping) + processed_patches_grouped: dict[tuple[int, ...], torch.Tensor] = {} + token_grids_grouped: dict[tuple[int, ...], torch.Tensor] = {} + virtual_dims_grouped: dict[tuple[int, ...], torch.Tensor] = {} + real_dims_grouped: dict[tuple[int, ...], torch.Tensor] = {} + + for shape, stacked_images in grouped_images.items(): + if stacked_images.ndim != 4: + raise ValueError("Expected batched channel-first image tensors.") + + batch_size, channels, original_height, original_width = stacked_images.shape + + if bool(self.do_convert_rgb) and channels == 1: + stacked_images = stacked_images.repeat(1, 3, 1, 1) + channels = 3 + + if original_height * original_width > self.MAX_PIXELS: + raise ValueError(f"Image (w={original_width}, h={original_height}) > MAX=`{self.MAX_PIXELS}`") + + target_height, target_width = get_image_size_for_max_num_patches( + original_height, + original_width, + patch_size, + max_num_patches, + min_num_patches=min_num_patches, + pixel_shuffle_scale=pixel_shuffle_scale, + ) + + if do_resize: + resize_size = SizeDict(height=target_height, width=target_width) + image_batch = self.resize( + image=stacked_images, + size=resize_size, + interpolation=interpolation, + ) + else: + if ((original_height % patch_size) != 0) or ((original_width % patch_size) != 0): + raise ValueError("Image dimensions must be divisible by patch_size when resize is disabled.") + image_batch = stacked_images + target_height, target_width = original_height, original_width + + if do_rescale: + image_batch = self.rescale_and_normalize( + image_batch, + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + ) + + nhwc_images = image_batch.permute(0, 2, 3, 1) + nhwc_images = _compute_residual_p_frames(nhwc_images, is_p_frame=[False] * batch_size) + + patches = patchify_vision(nhwc_images, patch_size=patch_size) + _, height_tokens, width_tokens, _ = patches.shape + + token_grid = ( + torch.tensor( + [height_tokens, width_tokens], + dtype=torch.long, + device=patches.device, + ) + .unsqueeze(0) + .repeat(batch_size, 1) + ) + + real_dim = ( + torch.tensor( + [1, height_tokens, width_tokens], + dtype=torch.long, + device=patches.device, + ) + .unsqueeze(0) + .repeat(batch_size, 1) + ) + + if (height_tokens % pixel_shuffle_scale) or (width_tokens % pixel_shuffle_scale): + raise ValueError( + "Spatial dimensions must be divisible by pixel_shuffle_scale when pixel shuffle is enabled." + ) + virtual_height = height_tokens // pixel_shuffle_scale + virtual_width = width_tokens // pixel_shuffle_scale + + virtual_dim = ( + torch.tensor( + [1, virtual_height, virtual_width], + dtype=torch.long, + device=patches.device, + ) + .unsqueeze(0) + .repeat(batch_size, 1) + ) + + processed_patches_grouped[shape] = patches + token_grids_grouped[shape] = token_grid + virtual_dims_grouped[shape] = virtual_dim + real_dims_grouped[shape] = real_dim + + patches_slices = reorder_images(processed_patches_grouped, grouped_images_index) + token_grid_slices = reorder_images(token_grids_grouped, grouped_images_index) + virtual_dim_slices = reorder_images(virtual_dims_grouped, grouped_images_index) + real_dim_slices = reorder_images(real_dims_grouped, grouped_images_index) + + patches_tensor = torch.stack(patches_slices, dim=0) + token_grids_tensor = torch.stack(token_grid_slices, dim=0) + virtual_dims_tensor = torch.stack(virtual_dim_slices, dim=0) + real_dims_tensor = torch.stack(real_dim_slices, dim=0) + + return BatchFeature( + data={ + "patches": patches_tensor, + "token_grids": token_grids_tensor, + "virtual_pixel_size": virtual_dims_tensor, + "real_pixel_size": real_dims_tensor, + }, + tensor_type=return_tensors, + ) + + +def document_mask_function_from_cu_seqlens(cu_seqlens: Optional[torch.Tensor]) -> Optional[Callable]: + """Return a mask function that blocks cross-document attention from packed ``cu_seqlens``. + + The returned callable matches the signature expected by ``masking_utils`` mask factories and + yields ``True`` only when query/key positions belong to the same packed segment. + """ - # Transpose to (1, H, L, D) format for SDPA - Q = q_lhd.permute(1, 0, 2).unsqueeze(0) - K = k_lhd.permute(1, 0, 2).unsqueeze(0) - V = v_lhd.permute(1, 0, 2).unsqueeze(0) + if cu_seqlens is None: + return None - # Build block-diagonal mask for variable-length sequences - attn_mask = None - if cu_seqlens is not None: - seq_sizes = (cu_seqlens[1:] - cu_seqlens[:-1]).long() - seg_ids = torch.repeat_interleave(torch.arange(len(seq_sizes), device=q_lhd.device), seq_sizes) - block_mask = seg_ids[:, None] != seg_ids[None, :] # Cross-document attention blocked - attn_mask = torch.where(block_mask, -torch.inf, 0.0).to(q_lhd.dtype).view(1, 1, L, L) + if cu_seqlens.numel() < 2: + return None - Y = F.scaled_dot_product_attention(Q, K, V, attn_mask=attn_mask, dropout_p=dropout, scale=scaling) - return Y.squeeze(0).permute(1, 0, 2) # Back to (L, H, D) + seq_sizes = (cu_seqlens[1:] - cu_seqlens[:-1]).long() + if seq_sizes.numel() == 0: + return None + total_tokens = int(seq_sizes.sum().item()) + seg_ids = torch.repeat_interleave(torch.arange(seq_sizes.numel(), device=cu_seqlens.device), seq_sizes) + packed_sequence_mask = seg_ids.view(1, total_tokens) + return packed_sequence_mask_function(packed_sequence_mask) -class Siglip2VariableSequenceEmbeddings(nn.Module): - def __init__(self, config: PixelShuffleSiglip2VisionConfig): + +def ensure_document_attention_mask( + attention_mask: Optional[torch.Tensor], + cu_seqlens: Optional[torch.Tensor], + total_tokens: int, + dtype: torch.dtype, + device: torch.device, + *, + return_mask_function: bool = False, +) -> Optional[Union[torch.Tensor, Callable]]: + """Return the provided mask, a callable mask from ``cu_seqlens``, or ``None``. + + ``return_mask_function=True`` yields a callable suitable for ``masking_utils``; otherwise + ``None`` is returned when no explicit ``attention_mask`` is provided. The legacy additive mask + has been removed in favor of the callable-based path. + """ + + if attention_mask is not None: + return attention_mask + + if cu_seqlens is None: + return None + + if return_mask_function: + return document_mask_function_from_cu_seqlens(cu_seqlens) + + return None + + +class IsaacVisionEmbeddings(nn.Module): + """Adapter around SigLIP2 vision embeddings that consumes packed patch sequences.""" + + # Copied from transformers.models.siglip2.modeling_siglip2.Siglip2VisionEmbeddings.__init__ + def __init__(self, config: IsaacVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size @@ -182,81 +533,199 @@ class Siglip2VariableSequenceEmbeddings(nn.Module): self.position_embedding_size = int(self.num_patches**0.5) self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim) - def positional_embeddings( - self, packed_seq_patches: tuple[torch.Tensor, torch.Tensor, torch.Tensor] + def forward(self, seq_patches: torch.Tensor, spatial_shapes: torch.Tensor) -> torch.Tensor: + packed_pixel_values, seq_lengths = self._pack_to_batch(seq_patches, spatial_shapes) + if packed_pixel_values is None: + return seq_patches.new_zeros((0, self.embed_dim)) + + # Copied from transformers.models.siglip2.modeling_siglip2.Siglip2VisionEmbeddings.forward + target_dtype = self.patch_embedding.weight.dtype + patch_embeds = self.patch_embedding(packed_pixel_values.to(dtype=target_dtype)) + + positional_embeddings = self.position_embedding.weight.reshape( + self.position_embedding_size, + self.position_embedding_size, + -1, + ) + resized_positional_embeddings = self.resize_positional_embeddings( + positional_embeddings, spatial_shapes, max_length=packed_pixel_values.shape[1] + ) + + embeddings = patch_embeds + resized_positional_embeddings + return self._unpack_from_batch(embeddings, seq_lengths) + + # Copied from transformers.models.siglip2.modeling_siglip2.Siglip2VisionEmbeddings.resize_positional_embeddings + @staticmethod + def resize_positional_embeddings( + positional_embeddings: torch.Tensor, + spatial_shapes: torch.LongTensor, + max_length: int, ) -> torch.Tensor: - # Prepare positional embeddings grid: (1, embed_dim, h, w) - positional_embeddings = ( - self.position_embedding.weight.reshape(self.position_embedding_size, self.position_embedding_size, -1) - .permute(2, 0, 1) - .unsqueeze(0) + """ + Resize positional embeddings to image-specific size and pad to a fixed size. + + Args: + positional_embeddings (`torch.Tensor`): + Position embeddings of shape (height, width, embed_dim) + spatial_shapes (`torch.LongTensor`): + Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to + max_length (`int`): + Maximum length of the positional embeddings to pad resized positional embeddings to + + Returns: + `torch.Tensor`: Embeddings of shape (batch_size, max_length, embed_dim) + """ + batch_size = spatial_shapes.shape[0] + embed_dim = positional_embeddings.shape[-1] + source_dtype = positional_embeddings.dtype + + resulted_positional_embeddings = torch.empty( + (batch_size, max_length, embed_dim), + device=positional_embeddings.device, + dtype=source_dtype, ) - _seq_patches, _seq_sizes, spatial_shapes = packed_seq_patches - pos_embeds_list = [] - mode = "bilinear" - align_corners = False - antialias = True - for spatial_shape in spatial_shapes: - height, width = spatial_shape - # Guard to ensure height and width are positive for torch.compile - if height > 0 and width > 0: - resized_pos_embed = F.interpolate( - positional_embeddings, - size=(height, width), - mode=mode, - align_corners=align_corners, - antialias=antialias, - ) - # Reshape from (1, embed_dim, height, width) to (height*width, embed_dim) - resized_pos_embed = resized_pos_embed.reshape(self.embed_dim, height * width).transpose(0, 1) - else: - # Fallback - should never happen in practice - resized_pos_embed = positional_embeddings.reshape( - self.embed_dim, self.position_embedding_size * self.position_embedding_size - ).transpose(0, 1)[: height * width] - pos_embeds_list.append(resized_pos_embed) + # (height, width, embed_dim) -> (1, embed_dim, height, width) for interpolation + positional_embeddings = positional_embeddings.permute(2, 0, 1).unsqueeze(0) + + # Upcast to float32 on CPU because antialias is not supported for bfloat16/float16 on CPU + if positional_embeddings.device.type == "cpu": + positional_embeddings = positional_embeddings.to(torch.float32) + + for i in range(batch_size): + # (1, dim, height, width) -> (1, dim, target_height, target_width) + height, width = spatial_shapes[i] + resized_embeddings = F.interpolate( + positional_embeddings, + size=(height, width), + mode="bilinear", + align_corners=False, + antialias=True, + ) - # Concatenate all positional embeddings along the sequence dimension - pos_embeds = torch.cat(pos_embeds_list, dim=0) - return pos_embeds + # (1, dim, target_height, target_width) -> (target_height * target_width, dim) + resized_embeddings = resized_embeddings.reshape(embed_dim, height * width).transpose(0, 1) - def forward(self, packed_seq_patches: tuple[torch.Tensor, torch.Tensor, torch.Tensor]): - seq_patches, _seq_sizes, _spatial_shapes = packed_seq_patches + # Cast to original dtype + resized_embeddings = resized_embeddings.to(source_dtype) - # Apply patch embeddings - target_dtype = self.patch_embedding.weight.dtype - patch_embeds = self.patch_embedding(seq_patches.to(dtype=target_dtype)) - pos_embeds = self.positional_embeddings(packed_seq_patches) + resulted_positional_embeddings[i, : height * width] = resized_embeddings + resulted_positional_embeddings[i, height * width :] = resized_embeddings[0] + + return resulted_positional_embeddings + + def _pack_to_batch( + self, + seq_patches: torch.Tensor, + spatial_shapes: torch.Tensor, + ) -> tuple[Optional[torch.Tensor], torch.Tensor]: + if seq_patches.ndim != 2: + raise ValueError("`seq_patches` is expected to be 2D (total_patches, patch_dim).") + if spatial_shapes.ndim != 2 or spatial_shapes.size(-1) != 2: + raise ValueError("`spatial_shapes` must have shape (num_images, 2) with (height_tokens, width_tokens).") + + seq_lengths = spatial_shapes.long().prod(dim=-1) + total_patches = int(seq_lengths.sum().item()) + if total_patches != seq_patches.size(0): + raise ValueError( + "Mismatch between packed patches and spatial shapes: got " + f"{seq_patches.size(0)} patches but spatial shapes imply {total_patches}." + ) + + batch_size = spatial_shapes.size(0) + if batch_size == 0: + return None, seq_lengths + + max_length = int(seq_lengths.max().item()) + patch_dim = seq_patches.size(-1) + device = seq_patches.device + + packed_pixel_values = seq_patches.new_zeros((batch_size, max_length, patch_dim), device=device) + + start = 0 + for batch_idx, length in enumerate(seq_lengths.tolist()): + if length == 0: + continue + end = start + length + packed_pixel_values[batch_idx, :length] = seq_patches[start:end] + start = end - # Add positional embeddings to patch embeddings - embeddings = patch_embeds + pos_embeds - return embeddings + return packed_pixel_values, seq_lengths + def _unpack_from_batch(self, embeddings: torch.Tensor, seq_lengths: torch.Tensor) -> torch.Tensor: + output_chunks: list[torch.Tensor] = [] + for batch_idx, length in enumerate(seq_lengths.tolist()): + if length == 0: + continue + output_chunks.append(embeddings[batch_idx, :length]) -class Siglip2VariableLengthAttention(nn.Module): + if not output_chunks: + return embeddings.new_zeros((0, embeddings.size(-1))) + + return torch.cat(output_chunks, dim=0) + + +class IsaacVisionAttention(Siglip2Attention): """Custom attention that supports variable-length sequences with flash attention.""" + ATTENTION_KEY_MAP: dict[str, str] = { + "flash_attention_2": "isaac_flash_attention_2", + "flash_attention_3": "isaac_flash_attention_3", + "isaac_flash_attention_2": "isaac_flash_attention_2", + "isaac_flash_attention_3": "isaac_flash_attention_3", + "sdpa": "isaac_sdpa", + "isaac_sdpa": "isaac_sdpa", + "eager": "isaac_eager", + "isaac_eager": "isaac_eager", + } + _FLASH_IMPLS = frozenset(("isaac_flash_attention_2", "isaac_flash_attention_3")) + def __init__(self, config): - super().__init__() + super().__init__(config) self.config = config - self.embed_dim = config.hidden_size - self.num_heads = config.num_attention_heads - self.head_dim = self.embed_dim // self.num_heads - if self.head_dim * self.num_heads != self.embed_dim: - raise ValueError( - f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" - f" {self.num_heads})." - ) - self.scale = self.head_dim**-0.5 - self.dropout = config.attention_dropout + self._variable_length_metadata = None - self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) - self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) - self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) - self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) + def _variable_length_context(self, *, cu_seqlens=None, max_seqlen=None): + """Store packed-sequence metadata for the next forward call.""" + self._variable_length_metadata = (cu_seqlens, max_seqlen) + + def _consume_variable_length_metadata(self): + if self._variable_length_metadata is None: + return None, None + cu_seqlens, max_seqlen = self._variable_length_metadata + self._variable_length_metadata = None + return cu_seqlens, max_seqlen + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + past_key_value: Optional[torch.Tensor] = None, + output_attentions: bool = False, + is_causal: bool = False, + cu_seqlens: Optional[torch.Tensor] = None, + max_seqlen: Optional[int] = None, + **kwargs, + ): + # Unused arguments are accepted for interface compatibility + _ = position_ids + _ = past_key_value + _ = is_causal + _ = output_attentions + + kwargs.pop("output_hidden_states", None) + kwargs.pop("return_dict", None) + if kwargs: + unexpected = ", ".join(sorted(kwargs)) + raise TypeError(f"Unexpected kwargs for IsaacVisionAttention.forward: {unexpected}") + + cached_cu, cached_max = self._consume_variable_length_metadata() + if cu_seqlens is None: + cu_seqlens = cached_cu + if max_seqlen is None: + max_seqlen = cached_max - def forward(self, hidden_states, cu_seqlens=None, max_seqlen=None): # Expect packed sequences with batch_size == 1 batch_size, L, _ = hidden_states.shape if batch_size != 1: @@ -272,109 +741,318 @@ class Siglip2VariableLengthAttention(nn.Module): k = self.k_proj(x).view(L, H, D) v = self.v_proj(x).view(L, H, D) - attn_impl = getattr(self.config, "_attn_implementation", "flash_attention_3") + resolved_key = "isaac_sdpa" + if self.config._attn_implementation != "sdpa": + resolved_key = self.ATTENTION_KEY_MAP.get(self.config._attn_implementation, resolved_key) - if attn_impl in ("flash_attention_2", "flash_attention_3"): - y_lhd, _ = flash_attention_document_mask_forward( - q, - k, - v, - attention_mask=None, - dropout=p_drop, - scaling=self.scale, - cum_seq_q=cu_seqlens, - cum_seq_k=cu_seqlens, + attn_mask = ensure_document_attention_mask( + attention_mask, + cu_seqlens, + L, + q.dtype, + q.device, + return_mask_function=True, + ) + + attn_weights = None + if resolved_key in self._FLASH_IMPLS: + y_lhd = self._flash_attention_forward( + q_lhd=q, + k_lhd=k, + v_lhd=v, + cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, - is_causal=False, + dropout=p_drop, + ) + elif resolved_key == "isaac_sdpa": + y_lhd = self._sdpa_attention_forward( + q_lhd=q, + k_lhd=k, + v_lhd=v, + attention_mask=attn_mask, + cu_seqlens=cu_seqlens, + dropout=p_drop, + ) + elif resolved_key == "isaac_eager": + y_lhd, attn_weights = self._eager_attention_forward( + q_lhd=q, + k_lhd=k, + v_lhd=v, + attention_mask=attn_mask, + dropout=p_drop, ) else: - y_lhd = sdpa_document_mask_forward(q, k, v, dropout=p_drop, scaling=self.scale, cu_seqlens=cu_seqlens) + attention_fn = ALL_ATTENTION_FUNCTIONS.get(resolved_key) + if attention_fn is None: + raise ValueError(f"Attention implementation {attn_impl} not found.") + + query_states = q.transpose(0, 1).unsqueeze(0) + key_states = k.transpose(0, 1).unsqueeze(0) + value_states = v.transpose(0, 1).unsqueeze(0) + + attention_kwargs: dict[str, Any] = { + "dropout": p_drop, + "scaling": self.scale, + "is_causal": False, + } + if cu_seqlens is not None: + attention_kwargs["cu_seq_lens_q"] = cu_seqlens + attention_kwargs["cu_seq_lens_k"] = cu_seqlens + if max_seqlen is not None: + attention_kwargs["max_length_q"] = max_seqlen + attention_kwargs["max_length_k"] = max_seqlen + + attn_output, attn_weights = attention_fn( + self, + query_states, + key_states, + value_states, + attn_mask, + **attention_kwargs, + ) + + y_lhd = attn_output.squeeze(0).permute(1, 0, 2).contiguous() # Merge heads and project y = self.out_proj(y_lhd.reshape(L, self.embed_dim)) - return y.unsqueeze(0), None # (1, L, E) + return y.unsqueeze(0), attn_weights # (1, L, E) + @staticmethod + def _max_from_cu(cu: Optional[torch.Tensor], fallback: int) -> int: + if cu is None or cu.numel() < 2: + return fallback + return int((cu[1:] - cu[:-1]).max().item()) -class IsaacSiglip2EncoderLayer(nn.Module): - """Siglip2 encoder layer with variable-length attention.""" + def _flash_attention_forward( + self, + *, + q_lhd: torch.Tensor, + k_lhd: torch.Tensor, + v_lhd: torch.Tensor, + cu_seqlens: Optional[torch.Tensor], + max_seqlen: Optional[int], + dropout: float, + ) -> torch.Tensor: + L = q_lhd.size(0) + if max_seqlen is not None: + max_q = max_k = int(max_seqlen) + else: + max_q = max_k = self._max_from_cu(cu_seqlens, L) + + if not q_lhd.is_contiguous(): + q_lhd = q_lhd.contiguous() + if not k_lhd.is_contiguous(): + k_lhd = k_lhd.contiguous() + if not v_lhd.is_contiguous(): + v_lhd = v_lhd.contiguous() + + out_lhd, *_ = torch.ops.aten._flash_attention_forward( + query=q_lhd, + key=k_lhd, + value=v_lhd, + cum_seq_q=cu_seqlens, + cum_seq_k=cu_seqlens, + max_q=max_q, + max_k=max_k, + dropout_p=dropout, + is_causal=False, + return_debug_mask=False, + scale=self.scale, + window_size_left=-1, + window_size_right=-1, + alibi_slopes=None, + ) + return out_lhd - def __init__(self, config: PixelShuffleSiglip2VisionConfig): - super().__init__() - self.embed_dim = config.hidden_size - self.self_attn = Siglip2VariableLengthAttention(config) + def _sdpa_attention_forward( + self, + *, + q_lhd: torch.Tensor, + k_lhd: torch.Tensor, + v_lhd: torch.Tensor, + attention_mask: Optional[Union[torch.Tensor, Callable]], + cu_seqlens: Optional[torch.Tensor], + dropout: float, + ) -> torch.Tensor: + L = q_lhd.size(0) + attn_mask = attention_mask + + if callable(attn_mask): + cache_position = torch.arange(L, device=q_lhd.device, dtype=torch.long) + attn_mask = sdpa_mask( + batch_size=1, + cache_position=cache_position, + kv_length=L, + kv_offset=0, + mask_function=attn_mask, + attention_mask=None, + allow_is_causal_skip=False, + allow_is_bidirectional_skip=False, + allow_torch_fix=False, + use_vmap=False, + ) + # sdpa_mask returns True for allowed positions; SDPA expects True to mean "mask out" + if attn_mask is not None and attn_mask.dtype == torch.bool: + attn_mask = ~attn_mask + + q = q_lhd.permute(1, 0, 2).unsqueeze(0) + k = k_lhd.permute(1, 0, 2).unsqueeze(0) + v = v_lhd.permute(1, 0, 2).unsqueeze(0) + + if attn_mask is not None and attn_mask.dtype != q.dtype: + attn_mask = attn_mask.to(q.dtype) + + output = F.scaled_dot_product_attention( + q, + k, + v, + attn_mask=attn_mask, + dropout_p=dropout, + scale=self.scale, + is_causal=False, + ) + return output.squeeze(0).permute(1, 0, 2).contiguous() + + def _eager_attention_forward( + self, + *, + q_lhd: torch.Tensor, + k_lhd: torch.Tensor, + v_lhd: torch.Tensor, + attention_mask: Optional[Union[torch.Tensor, Callable]], + dropout: float, + ) -> tuple[torch.Tensor, torch.Tensor]: + L = q_lhd.size(0) + attn_mask = attention_mask + if callable(attn_mask): + cache_position = torch.arange(L, device=q_lhd.device, dtype=torch.long) + attn_mask = eager_mask( + batch_size=1, + cache_position=cache_position, + kv_length=L, + kv_offset=0, + mask_function=attn_mask, + attention_mask=None, + allow_is_bidirectional_skip=False, + use_vmap=False, + dtype=q_lhd.dtype, + ) + if attn_mask is not None and attn_mask.dim() == 4: + attn_mask = attn_mask.squeeze(0).squeeze(0) - self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) - self.mlp = Siglip2MLP(config) # Use HF's Siglip2MLP - self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + attn_weights = torch.matmul(q_lhd, k_lhd.transpose(1, 2)) * self.scale + if attn_mask is not None: + attn_weights = attn_weights + attn_mask + + attn_weights = torch.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q_lhd.dtype) + if dropout and self.training: + attn_weights = F.dropout(attn_weights, p=dropout, training=True) + + attn_output_lhd = torch.matmul(attn_weights, v_lhd) + return attn_output_lhd, attn_weights + + +class IsaacVisionEncoderLayer(Siglip2EncoderLayer): + """Isaac vision encoder layer with variable-length attention.""" + + def __init__(self, config: IsaacVisionConfig): + super().__init__(config) + self.self_attn = IsaacVisionAttention(config) def forward( self, hidden_states: torch.Tensor, - cu_seqlens: torch.Tensor = None, - max_seqlen: int = None, - ) -> tuple[torch.FloatTensor]: - residual = hidden_states - - hidden_states = self.layer_norm1(hidden_states) + attention_mask: Optional[torch.Tensor] = None, + cu_seqlens: Optional[torch.Tensor] = None, + max_seqlen: Optional[int] = None, + output_attentions: bool = False, + **kwargs: Unpack[TransformersKwargs], + ): + r""" + cu_seqlens (`torch.Tensor`, *optional*): + Prefix-sum tensor whose length equals the number of documents + 1. The difference between successive + entries gives each document's token count and enables block-diagonal attention masking for packed batches. + max_seqlen (`int`, *optional*): + Maximum document length referenced by `cu_seqlens`. Passed to FlashAttention so it can size temporary + buffers for packed variable-length attention. + """ + if cu_seqlens is not None or max_seqlen is not None: + self.self_attn._variable_length_context( + cu_seqlens=cu_seqlens, + max_seqlen=max_seqlen, + ) - hidden_states, attn_weights = self.self_attn( - hidden_states=hidden_states, - cu_seqlens=cu_seqlens, - max_seqlen=max_seqlen, + attention_mask = ensure_document_attention_mask( + attention_mask, + cu_seqlens, + hidden_states.size(1), + hidden_states.dtype, + hidden_states.device, ) - hidden_states = residual + hidden_states + return super().forward( + hidden_states, + attention_mask=attention_mask, + output_attentions=output_attentions, + **kwargs, + ) - residual = hidden_states - hidden_states = self.layer_norm2(hidden_states) - hidden_states = self.mlp(hidden_states) - hidden_states = residual + hidden_states - return (hidden_states,) +class IsaacVisionEncoder(Siglip2Encoder): + """Encoder using Isaac encoder layers with variable-length attention support.""" + def __init__(self, config: IsaacVisionConfig): + super().__init__(config) + self.layers = nn.ModuleList([IsaacVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) -class IsaacEncoder(nn.Module): - """Encoder using Isaac encoder layers with variable-length attention support.""" + def __variable_length_context(self, cu_seqlens, max_seqlen) -> None: + if cu_seqlens is None and max_seqlen is None: + return - def __init__(self, config: PixelShuffleSiglip2VisionConfig): - super().__init__() - self.config = config - self.layers = nn.ModuleList([IsaacSiglip2EncoderLayer(config) for _ in range(config.num_hidden_layers)]) + for layer in self.layers: + if isinstance(layer, IsaacVisionEncoderLayer): + layer.self_attn._variable_length_context( + cu_seqlens=cu_seqlens, + max_seqlen=max_seqlen, + ) + @can_return_tuple def forward( self, inputs_embeds, - cu_seqlens: torch.Tensor | None = None, - max_seqlen: int | None = None, - output_hidden_states: bool = False, + attention_mask: Optional[torch.Tensor] = None, + cu_seqlens: Optional[torch.Tensor] = None, + max_seqlen: Optional[int] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs: Unpack[TransformersKwargs], ): - all_hidden_states = () if output_hidden_states else None + self.__variable_length_context(cu_seqlens, max_seqlen) - hidden_states = inputs_embeds - - for encoder_layer in self.layers: - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) - - layer_outputs = encoder_layer( - hidden_states, - cu_seqlens, - max_seqlen, - ) - - hidden_states = layer_outputs[0] - - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) + attention_mask = ensure_document_attention_mask( + attention_mask, + cu_seqlens, + inputs_embeds.size(1), + inputs_embeds.dtype, + inputs_embeds.device, + ) - return hidden_states, all_hidden_states, None + return super().forward( + inputs_embeds, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + **kwargs, + ) def create_pixel_shuffle_index_map( seq_sizes: torch.Tensor, token_grids: torch.Tensor, scale_factor: int = 1, - device: torch.device | None = None, + device: Optional[torch.device] = None, ) -> torch.Tensor: """ Build a gather-index map that tells us, for every *output* token after @@ -397,16 +1075,17 @@ def create_pixel_shuffle_index_map( if device is None: device = seq_sizes.device - r = int(scale_factor) - if r < 2: + scale_factor = int(scale_factor) + if scale_factor < 2: raise ValueError("`scale_factor` must be ≥ 2") - # Safety: all spatial dims must be divisible by r + # Safety: all spatial dims must be divisible by the scale factor # Cannot run under torch compile fullgraph mode hence - if not torch.compiler.is_compiling(): - if not ((token_grids[:, 0] % r == 0).all() and (token_grids[:, 1] % r == 0).all()): + if not is_torchdynamo_compiling(): + if not ((token_grids[:, 0] % scale_factor == 0).all() and (token_grids[:, 1] % scale_factor == 0).all()): raise AssertionError( - f"Every (H,W) in `token_grids` must be divisible by scale_factor={r}, got {token_grids.tolist()}" + "Every (H,W) in `token_grids` must be divisible by " + f"scale_factor={scale_factor}, got {token_grids.tolist()}" ) gather_chunks: list[torch.Tensor] = [] @@ -418,19 +1097,21 @@ def create_pixel_shuffle_index_map( grid = grid.view(h, w) # (H, W) # -------- identical ordering to your fixed-res routine -------- - # Step 1: split width into blocks of r - grid = grid.view(h, w // r, r) # (H, W/r, r) - # Step 2: now split height into blocks of r - grid = grid.view(h // r, r, w // r, r) # (H/r, r, W/r, r) - # Step 3: final permutation to (H/r, W/r, r, r) - grid = grid.permute(0, 2, 1, 3).contiguous() # (H/r, W/r, r, r) - # Step 4: each (r, r) block forms one output token - gather_chunks.append(grid.reshape(-1, r * r)) # (H*W / r², r²) + # Step 1: split width into blocks of scale_factor + grid = grid.view(h, w // scale_factor, scale_factor) # (H, W/scale_factor, scale_factor) + # Step 2: now split height into blocks of scale_factor + grid = grid.view(h // scale_factor, scale_factor, w // scale_factor, scale_factor) + # (H/scale_factor, scale_factor, W/scale_factor, scale_factor) + # Step 3: final permutation to (H/scale_factor, W/scale_factor, scale_factor, scale_factor) + grid = grid.permute(0, 2, 1, 3).contiguous() # (H/scale_factor, W/scale_factor, scale_factor, scale_factor) + # Step 4: each (scale_factor, scale_factor) block forms one output token + gather_chunks.append(grid.reshape(-1, scale_factor * scale_factor)) + # (H*W / scale_factor**2, scale_factor**2) tok_offset += seq_len # Concatenate over all images in the packed batch - gather_idx = torch.cat(gather_chunks, dim=0) # (Σ_i HᵢWᵢ/r², r²) + gather_idx = torch.cat(gather_chunks, dim=0) # (Σ_i HᵢWᵢ/scale_factor**2, scale_factor**2) return gather_idx @@ -469,7 +1150,7 @@ def pixel_shuffle_varlen( x_ = x # (seq, embed) embed_dim = x_.size(-1) - r = int(scale_factor) + scale_factor = int(scale_factor) # Calculate seq_sizes from token_grids seq_sizes = torch.prod(token_grids, dim=-1) @@ -478,15 +1159,15 @@ def pixel_shuffle_varlen( gather_idx = create_pixel_shuffle_index_map( seq_sizes=seq_sizes, token_grids=token_grids, - scale_factor=r, + scale_factor=scale_factor, device=x_.device, - ) # (new_seq, r²) + ) # (new_seq, scale_factor**2) - # Gather → (new_seq, r², embed_dim) + # Gather → (new_seq, scale_factor**2, embed_dim) gathered = x_[gather_idx] # fancy indexing keeps gradient - # Merge the r² group dimension into channels to finish the shuffle - out = gathered.reshape(gathered.size(0), embed_dim * r * r) + # Merge the scale_factor**2 group dimension into channels to finish the shuffle + out = gathered.reshape(gathered.size(0), embed_dim * scale_factor * scale_factor) # Restore batch dimension if needed if keep_batch_dim: @@ -494,12 +1175,12 @@ def pixel_shuffle_varlen( return out -class Siglip2SequenceVisionTransformer(nn.Module): - def __init__(self, config: PixelShuffleSiglip2VisionConfig): +class IsaacVisionTransformer(nn.Module): + def __init__(self, config: IsaacVisionConfig): super().__init__() self.config = config - self.embeddings = Siglip2VariableSequenceEmbeddings(config) - self.encoder = IsaacEncoder(config) + self.embeddings = IsaacVisionEmbeddings(config) + self.encoder = IsaacVisionEncoder(config) self.post_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pixel_shuffle_scale_factor = config.pixel_shuffle_scale_factor @@ -508,30 +1189,33 @@ class Siglip2SequenceVisionTransformer(nn.Module): seq_sizes = torch.prod(token_grids, dim=-1) # Get embeddings from packed sequence - hidden_states = self.embeddings((seq_patches, seq_sizes, token_grids)) + hidden_states = self.embeddings(seq_patches, token_grids) # Add a pseudo batch dimension for the encoder hidden_states = hidden_states.unsqueeze(0) # Generate cumulative sequence lengths for variable-length attention - cu_seqlens, max_seqlen = create_cumulative_seq_lengths(seq_sizes, hidden_states.device) + cu_seqlens = torch.zeros(seq_sizes.size(0) + 1, dtype=torch.int32, device=hidden_states.device) + cu_seqlens[1:] = seq_sizes.cumsum(0) + max_seqlen = int(seq_sizes.max().item()) if seq_sizes.numel() > 0 else 0 # Pass through encoder with variable-length attention parameters - hidden_states, _, _ = self.encoder( + encoder_outputs = self.encoder( inputs_embeds=hidden_states, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, + return_dict=True, ) + hidden_states = encoder_outputs.last_hidden_state # Apply final layer normalization hidden_states = self.post_layernorm(hidden_states) - if self.pixel_shuffle_scale_factor > 1: - hidden_states = pixel_shuffle_varlen( - x=hidden_states, - token_grids=token_grids, - scale_factor=self.pixel_shuffle_scale_factor, - ) + hidden_states = pixel_shuffle_varlen( + x=hidden_states, + token_grids=token_grids, + scale_factor=self.pixel_shuffle_scale_factor, + ) # Remove the pseudo batch dimension we added earlier hidden_states = hidden_states.squeeze(0) @@ -539,44 +1223,37 @@ class Siglip2SequenceVisionTransformer(nn.Module): return hidden_states -# ============================================================================ -# Configuration -# ============================================================================ - -MAX_PIXELS = 60_000_000 # 60‑megapixel ceiling ≈ 8200 × 7300 px - -# Vision preprocessing constants -VISION_MEAN = (0.5, 0.5, 0.5) -VISION_STD = (0.5, 0.5, 0.5) -VISION_SCALE = 1 / 255 +class IsaacVisionEmbedding(nn.Module): + """Vision embedding wrapper exposing tower and projector.""" + def __init__(self, config: IsaacConfig): + super().__init__() + vision_cfg = config.vision_config + hidden_dim = vision_cfg.hidden_size * (vision_cfg.pixel_shuffle_scale_factor**2) -def _make_writeable(arr: np.ndarray) -> np.ndarray: - """Return *arr* itself if it is already writeable, otherwise try to flip the - write flag in-place and finally fall back to `arr.copy()`. - This guarantees the buffer handed to `torch.from_numpy()` is always - writeable, silencing the PyTorch warning about undefined behaviour. - """ - if arr.flags.writeable: - return arr + self.vision_tower = IsaacVisionTransformer(vision_cfg) + self.multimodal_projector = nn.Sequential( + nn.Linear(hidden_dim, 4 * hidden_dim, bias=False), + nn.SiLU(), + nn.Linear(4 * hidden_dim, config.hidden_size, bias=False), + ) - # First, try the cheap path — in‑place flag toggle (works for mmap'd arrays - # and some shared memory buffers): - try: - arr.setflags(write=True) - return arr # success: no data copy - except ValueError: - # Buffer is inherently read‑only (e.g. backed by PyAV / PIL): make copy - return arr.copy() + def forward(self, vision_tokens: tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor: + hidden_states = self.vision_tower(vision_tokens) + return self.multimodal_projector(hidden_states) -def extract_image_pil(image: PIL.Image.Image) -> torch.Tensor | None: - if image.width * image.height > MAX_PIXELS: - raise ValueError(f"Image (w={image.width}, h={image.height}) > MAX=`{MAX_PIXELS}`") - img = image if image.mode == "RGB" else image.convert("RGB") - arr = np.asarray(img) - arr = _make_writeable(arr) - return torch.from_numpy(arr) +def get_scaled_image_size( + scale: float, + original_size: int, + patch_size: int, + pixel_shuffle_scale: int, +) -> int: + scaled_size = scale * original_size + divisor = patch_size * pixel_shuffle_scale + scaled_size = math.ceil(scaled_size / divisor) * divisor + scaled_size = max(divisor, scaled_size) + return int(scaled_size) def get_image_size_for_max_num_patches( @@ -584,7 +1261,7 @@ def get_image_size_for_max_num_patches( image_width: int, patch_size: int, max_num_patches: int, - min_num_patches: int | None = None, + min_num_patches: Optional[int] = None, eps: float = 1e-5, pixel_shuffle_scale: int = 1, ) -> tuple[int, int]: @@ -611,13 +1288,6 @@ def get_image_size_for_max_num_patches( and respect both the maximum and optional minimum patch-count constraints. """ - def get_scaled_image_size(scale, original_size, patch_size, pixel_shuffle_scale): - scaled_size = scale * original_size - divisor = patch_size * pixel_shuffle_scale - scaled_size = math.ceil(scaled_size / divisor) * divisor - scaled_size = max(divisor, scaled_size) - return int(scaled_size) - # Ensure divisibility divisor = patch_size * pixel_shuffle_scale adjusted_height = math.ceil(image_height / divisor) * divisor @@ -663,37 +1333,6 @@ def get_image_size_for_max_num_patches( return target_height, target_width -_MEAN_TENSOR = torch.tensor(VISION_MEAN, dtype=torch.float32).view(1, 1, 1, -1) -_STD_TENSOR = torch.tensor(VISION_STD, dtype=torch.float32).view(1, 1, 1, -1) - - -def prepare_image_tensor( - image: torch.Tensor, - scale: float = VISION_SCALE, -) -> torch.Tensor: - r"""Standardize RGB images prior to patch extraction via rescaling and whitening. - - Args: - image (`torch.Tensor`): - Tensor with shape `(..., height, width, 3)` containing RGB values. The tensor is converted to floating - point if needed. - scale (`float`, *optional*, defaults to `VISION_SCALE`): - Scalar multiplier applied before normalization. - Returns: - `torch.Tensor`: Normalized tensor with the same shape as the input and dtype `torch.float32`. - """ - if not torch.is_floating_point(image): - image = image.float() - rescaled = image * scale - - # Use precomputed tensors and move to the correct device if needed - mean_tensor = _MEAN_TENSOR.to(image.device) - std_tensor = _STD_TENSOR.to(image.device) - - normalized = (rescaled - mean_tensor) / std_tensor - return normalized - - def patchify_vision(image: torch.Tensor, patch_size: int) -> torch.Tensor: r"""Convert normalized images into flattened ViT-style patches. @@ -719,184 +1358,122 @@ def patchify_vision(image: torch.Tensor, patch_size: int) -> torch.Tensor: return patches -def process_vision_for_patches( - images: torch.Tensor, - patch_size: int, - max_num_patches: int, - min_num_patches: int | None = None, - pixel_shuffle_scale: int = 1, -) -> tuple[torch.Tensor, list[int]]: - r"""Resize, normalize, and patchify RGB images for the vision encoder. - - Args: - images (`torch.Tensor`): - Either `(height, width, channels)` for a single image or `(num_images, height, width, channels)` for a - batch. Channels are expected to be RGB. - patch_size (`int`): - Edge length of square patches; implictly controls resize grid granularity. - max_num_patches (`int`): - Maximum number of patches allowed after resizing. - min_num_patches (`int`, *optional*): - Minimum number of patches. If provided, the routine upsamples images as needed to satisfy the lower bound. - pixel_shuffle_scale (`int`, *optional*, defaults to 1): - pixel shuffle scale factor; influences the target grid that the function produces. - - Returns: - `tuple[torch.Tensor, list[int]]`: A pair `(patches, dims_virtual)` where `patches` has shape - `(num_images, target_h / patch_size, target_w / patch_size, channels * patch_size**2)` and `dims_virtual` - encodes effective `(images, height, width)` dimensions after optional pixel shuffling. - """ - # Add batch dim if single image - if images.dim() == 3: - images = images.unsqueeze(0) - - # Permute to channel first for resize - images = images.permute(0, 3, 1, 2) - - # Get target dimensions - _, _, orig_height, orig_width = images.shape - target_height, target_width = get_image_size_for_max_num_patches( - orig_height, - orig_width, - patch_size, - max_num_patches, - min_num_patches=min_num_patches, - pixel_shuffle_scale=pixel_shuffle_scale, - ) - - # Resize - images = F.interpolate( - images, - size=(target_height, target_width), - mode="bilinear", - align_corners=False, - ) - - # Back to channel last - images = images.permute(0, 2, 3, 1) - - # Normalize - images = prepare_image_tensor(images) +class IsaacConfig(PretrainedConfig): + """Configuration class for Isaac multimodal model. - # Patchify - patches = patchify_vision(images, patch_size=patch_size) - - # Calculate dimensions for the patches - n_images, h_patches, w_patches, _ = patches.shape - dims_virtual = ( - [1, h_patches, w_patches] - if pixel_shuffle_scale == 1 - else [1, h_patches // pixel_shuffle_scale, w_patches // pixel_shuffle_scale] - ) - - return patches, dims_virtual - - -def precompute_inv_freq(theta: float, dim: int) -> torch.Tensor: - """ - Returns shape (dim//2,). - """ - inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) - return inv_freq # type: ignore[return-value] - - -def precompute_cos_sin_3d( - position_ids: torch.Tensor, # shape (3, B, T) - inv_freq: torch.Tensor, # shape (dim//2,) - mrope_half_section: list[int], # sum to dim//2 -) -> tuple[torch.Tensor, torch.Tensor]: - r"""Generate 3D rotary embeddings for multi-axis positions. - - Args: - position_ids (`torch.Tensor`): - Tensor of shape `(3, batch_size, seq_len)` containing positional indices for the x/y/t axes. - inv_freq (`torch.Tensor`): - Precomputed inverse frequency vector used to derive rotary phases. - mrope_half_section (`list[int]`): - Sizes the axis-specific frequency blocks. - - Returns: - `tuple[torch.Tensor, torch.Tensor]`: Cosine and sine tensors, each of shape `(batch_size, seq_len, dim)`, ready - to be passed into rotary attention layers. + This configuration corresponds to checkpoints such as + [Perceptron/isaac-base](https://huggingface.co/Perceptron/isaac-base). """ - B = position_ids.shape[1] - T = position_ids.shape[2] - dim_half = inv_freq.shape[0] - device = position_ids.device - - # Initialize with full dimension (not half) to match LLaMA - cos_3d = torch.zeros((B, T, dim_half * 2), dtype=torch.float32, device=device) - sin_3d = torch.zeros((B, T, dim_half * 2), dtype=torch.float32, device=device) - - offset = 0 - for d in range(3): - block_size = mrope_half_section[d] - freq_slice = inv_freq[offset : offset + block_size] # shape => (block_size,) - # shape => (B, T, block_size) - phase = position_ids[d].unsqueeze(-1).float() * freq_slice - - cos_part = phase.cos() - sin_part = phase.sin() - - # Duplicate values for both halves of the dimension - cos_3d[:, :, offset : offset + block_size] = cos_part - cos_3d[:, :, dim_half + offset : dim_half + offset + block_size] = cos_part - sin_3d[:, :, offset : offset + block_size] = sin_part - sin_3d[:, :, dim_half + offset : dim_half + offset + block_size] = sin_part - - offset += block_size - - return cos_3d, sin_3d - - -class RopeScaling(TypedDict, total=False): - rope_type: str - factor: float - mrope_section: list[int] - mrope_interleaved: bool - low_freq_factor: float - high_freq_factor: float - original_max_position_embeddings: int - - -class IsaacConfig(Qwen3Config): - """Configuration class for Isaac multimodal model.""" model_type = "isaac" - sub_configs = {"vision_config": PixelShuffleSiglip2VisionConfig} + sub_configs = {"vision_config": IsaacVisionConfig, "text_config": Qwen3Config} + image_processor_type = "IsaacImageProcessor" def __init__( self, - vision_config=None, - vision_patch_size: int = 16, - vision_max_num_patches: int = 256, - vision_min_num_patches: int | None = None, - pixel_shuffle_scale: int = 1, + vision_config: Optional[IsaacVisionConfig] = None, + text_config: Optional[Union[Qwen3Config, dict]] = None, + vision_rescale_factor: float = 1 / 255, max_sequence_length: int = 16384, vision_token: str = "", - vision_attn_implementation: str | None = None, **kwargs, ): + self._rope_parameters: Optional[dict[str, Any]] = None + resolved_text_config = kwargs.pop("text_config", text_config) + if isinstance(resolved_text_config, Qwen3Config): + text_config_kwargs = copy.deepcopy(resolved_text_config.to_dict()) + elif isinstance(resolved_text_config, dict): + text_config_kwargs = copy.deepcopy(resolved_text_config) + elif resolved_text_config is None: + text_config_kwargs = {} + else: + raise TypeError("`text_config` must be a mapping or `Qwen3Config` instance when provided.") + + text_config_kwargs.update(kwargs) + + self.text_config = self.sub_configs["text_config"](**text_config_kwargs) + if not hasattr(self.text_config, "rope_theta"): + rope_theta_override = text_config_kwargs.get("rope_theta", kwargs.get("rope_theta")) + if rope_theta_override is None: + rope_theta_override = getattr(Qwen3Config(), "rope_theta", 10000.0) + self.text_config.rope_theta = rope_theta_override + super().__init__(**kwargs) - # Handle vision config - either dict or PixelShuffleSiglip2VisionConfig instance + if self._rope_scaling is None: + self._rope_scaling = getattr(self.text_config, "rope_scaling", None) + else: + self.text_config.rope_scaling = self._rope_scaling + + # Keep rope parameters alias in sync with upstream expectations + self._rope_parameters = self._rope_scaling + + # Mirror frequently accessed Qwen3 attributes at the composite config level for BC. + self.vocab_size = self.text_config.vocab_size + self.hidden_size = self.text_config.hidden_size + self.num_hidden_layers = self.text_config.num_hidden_layers + self.num_attention_heads = self.text_config.num_attention_heads + self.head_dim = self.text_config.head_dim + self.hidden_act = self.text_config.hidden_act + self.use_cache = self.text_config.use_cache + self.rope_theta = self.text_config.rope_theta + + # Validate rotary parameters now that they have been mirrored locally. + rope_config_validation(self) + + self.layer_types = getattr(self.text_config, "layer_types", None) + layer_type_validation(self.layer_types, self.num_hidden_layers) + + # Handle vision config - either dict or IsaacVisionConfig instance if isinstance(vision_config, dict): self.vision_config = self.sub_configs["vision_config"](**vision_config) + elif isinstance(vision_config, IsaacVisionConfig): + self.vision_config = vision_config elif vision_config is None: self.vision_config = self.sub_configs["vision_config"]() - else: - self.vision_config = vision_config - # EventStreamProcessor parameters (for backward compatibility) - self.video_patch_size = vision_patch_size - self.vision_max_num_patches = vision_max_num_patches - self.vision_min_num_patches = vision_min_num_patches - self.pixel_shuffle_scale = pixel_shuffle_scale + # Vision normalization parameters + self.vision_rescale_factor = float(vision_rescale_factor) # Processing parameters self.max_sequence_length = max_sequence_length self.vision_token = vision_token - self.vision_attn_implementation = vision_attn_implementation + + @property + def rope_scaling(self): + if hasattr(self, "text_config") and self.text_config is not None: + return getattr(self.text_config, "rope_scaling", None) + return self._rope_scaling + + @rope_scaling.setter + def rope_scaling(self, value): + self._rope_scaling = value + if hasattr(self, "text_config") and self.text_config is not None: + self.text_config.rope_scaling = value + + @property + def rope_parameters(self) -> dict[str, Any] | None: + """Alias introduced upstream for rope scaling dictionaries.""" + value = self._rope_parameters + if value is None: + value = self.rope_scaling + if value is None: + return {"rope_type": "default"} + return value + + @rope_parameters.setter + def rope_parameters(self, value: dict[str, Any] | None) -> None: + self._rope_parameters = value + self.rope_scaling = value + + def to_dict(self): + output = super().to_dict() + # Ensure nested configs round-trip through dict serialization + if hasattr(self, "text_config") and self.text_config is not None: + output["text_config"] = self.text_config.to_dict() + if hasattr(self, "vision_config") and self.vision_config is not None: + output["vision_config"] = self.vision_config.to_dict() + return output # ============================================================================ @@ -948,48 +1525,52 @@ def create_text_event(tokenizer: AutoTokenizer, text: str, time: float = 0.0) -> class IsaacProcessor(ProcessorMixin): - attributes = ["tokenizer"] + attributes = ["image_processor", "tokenizer"] + image_processor_class = ("IsaacImageProcessorFast",) tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast") def __init__( self, - tokenizer: Qwen2Tokenizer, - config: IsaacConfig | dict, - ): - super().__init__(tokenizer) - self.tokenizer = tokenizer + image_processor, + tokenizer, + *, + vision_token: str = "", + max_sequence_length: int = 16384, + rescale_factor: Optional[float] = None, + config: Optional[Union[IsaacConfig, dict]] = None, + ) -> None: + if tokenizer is None: + raise ValueError("`tokenizer` must be provided to initialize IsaacProcessor.") if isinstance(config, dict): config = IsaacConfig(**config) - self.config = config - # Use vision token from config - self.vision_token = config.vision_token + if config is not None: + max_sequence_length = config.max_sequence_length + vision_token = config.vision_token + rescale_factor = config.vision_rescale_factor - # Processing parameters - self.max_sequence_length = config.max_sequence_length + resolved_rescale_factor = float(rescale_factor) if rescale_factor is not None else float(1 / 255) - # Vision processing parameters - self.patch_size = config.video_patch_size - self.max_num_patches = config.vision_max_num_patches - self.min_num_patches = config.vision_min_num_patches - self.pixel_shuffle_scale = config.pixel_shuffle_scale + if config is not None: + config.vision_rescale_factor = resolved_rescale_factor - def apply_chat_template( - self, - messages: list[dict[str, Any]], - tokenize: bool = False, - add_generation_prompt: bool = False, - **kwargs, - ) -> Any: - return self.tokenizer.apply_chat_template( - messages, tokenize=tokenize, add_generation_prompt=add_generation_prompt, **kwargs - ) + self.image_processor = image_processor + + super().__init__(image_processor, tokenizer) + self.current_processor = self.image_processor + self.config = config + + # Mirror tokenizer chat template so ProcessorMixin.apply_chat_template works. + self.chat_template = getattr(self.tokenizer, "chat_template", None) + + self.vision_token = vision_token + self.max_sequence_length = max_sequence_length def build_event_stream_simple( self, text: str, - images: list[PIL.Image.Image] | None = None, + images: Optional[list[PIL.Image.Image]] = None, ) -> Stream: events = [] # Process text and images @@ -1002,69 +1583,41 @@ class IsaacProcessor(ProcessorMixin): for current_time, part in enumerate(parts): if part == self.vision_token: # Replace vision token with image event - if image_idx < len(images): - # Create vision event from PIL image - image_tensor = extract_image_pil(images[image_idx]) - if image_tensor is not None: - # Create a vision event with the image tensor - vision_event = Event( - data=image_tensor.unsqueeze(0), # HWC format from extract_image_pil - type=VisionType.image, # I-frame - time=(current_time, current_time), - ) - events.append(vision_event) - image_idx += 1 - elif part: # Non-empty text part - # tokens = self.text_processor.tokenize(part, add_special_tokens=False) - text_event = create_text_event(self.tokenizer, part, time=current_time) - events.append(text_event) + if images is None or image_idx >= len(images): + raise ValueError("Encountered vision token without a corresponding image.") - # Process vision events if any - if any(event.type == VisionType.image for event in events): - # Separate text and vision events for processing - text_events = [event for event in events if event.type == TextType.text] - vision_events = [event for event in events if event.type == VisionType.image] - - # Process vision events using functional approach - processed_vision_events = [] - for vision_event in vision_events: - # Process the vision data - patches, dims_virtual = process_vision_for_patches( - vision_event.data.squeeze(0), # Remove the extra dimension - patch_size=self.patch_size, - max_num_patches=self.max_num_patches, - min_num_patches=self.min_num_patches, - pixel_shuffle_scale=self.pixel_shuffle_scale, + features = self.image_processor( + images=images[image_idx], + return_tensors=TensorType.PYTORCH, ) - # Update event with processed data - vision_event.data = patches.unsqueeze(1) # Add back frame dimension - vision_event.dims_virtual = dims_virtual - vision_event.dims_real = ( - dims_virtual - if self.pixel_shuffle_scale == 1 - else [ - dims_virtual[0], - dims_virtual[1] * self.pixel_shuffle_scale, - dims_virtual[2] * self.pixel_shuffle_scale, - ] + patches = features["patches"][0] # (H_tokens, W_tokens, embed) + virtual_dims = features["virtual_pixel_size"][0].tolist() + real_dims = features["real_pixel_size"][0].tolist() + + vision_event = Event( + data=patches.reshape(-1, patches.shape[-1]), + type=VisionType.image, + time=(current_time, current_time), + dims_virtual=virtual_dims, + dims_real=real_dims, + idx_range=(0, math.prod(virtual_dims)), ) - vision_event.idx_range = (0, math.prod(dims_virtual)) - - # Flatten the patches - vision_event.data = vision_event.data.reshape(-1, vision_event.data.shape[-1]) - processed_vision_events.append(vision_event) - - events = text_events + processed_vision_events + events.append(vision_event) + image_idx += 1 + elif part: # Non-empty text part + # tokens = self.text_processor.tokenize(part, add_special_tokens=False) + text_event = create_text_event(self.tokenizer, part, time=current_time) + events.append(text_event) # Create stream without scheduling (events already in order) return create_stream(events, priority=[TextType.text, VisionType.image], schedule=True) def __call__( self, - text: str | list[str], - images: PIL.Image.Image | list[PIL.Image.Image] | None = None, - return_tensors: str | TensorType | None = TensorType.PYTORCH, + text: Union[str, list[str]], + images: Optional[Union[PIL.Image.Image, list[PIL.Image.Image]]] = None, + return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, **kwargs, ) -> BatchFeature: """ @@ -1155,76 +1708,110 @@ def compute_position_ids_input_ids(input_ids: torch.Tensor) -> torch.Tensor: class IsaacRotaryEmbedding(nn.Module): + EXTRA_ROPE_KEYS = {"mrope_section", "mrope_interleaved"} + def __init__(self, config: IsaacConfig, device=None): super().__init__() - # Extract dimensions from config - self.hidden_size = config.hidden_size - self.num_attention_heads = config.num_attention_heads - self.head_dim = config.head_dim + rope_source_cfg = config.get_text_config() if hasattr(config, "get_text_config") else config + rope_scaling = getattr(rope_source_cfg, "rope_scaling", None) or {} - # Get rope_scaling config - use direct access when available - rope_scaling = getattr(config, "rope_scaling", None) or {} + sanitized_scaling = {k: v for k, v in rope_scaling.items() if k not in self.EXTRA_ROPE_KEYS} + config_for_rope = copy.copy(rope_source_cfg) + config_for_rope.rope_scaling = sanitized_scaling if sanitized_scaling else None - # Read RopeScaling parameters - self.rope_type = rope_scaling.get("rope_type", "default") + init_device = device if device is not None and getattr(device, "type", None) != "meta" else None + self._qwen_rotary = qwen2_5_vl_modeling.Qwen2_5_VLRotaryEmbedding(config_for_rope, device=init_device) + + rotary_half_dim = self._qwen_rotary.inv_freq.shape[0] + self.mrope_section = self._resolve_mrope_section(rope_scaling.get("mrope_section"), rotary_half_dim) + self.hidden_size = getattr(rope_source_cfg, "hidden_size", None) or config.hidden_size + + @staticmethod + def _resolve_mrope_section(section: Optional[list[int]], rotary_half_dim: int) -> list[int]: + if section is None: + weights = (2, 1, 1) + base = [rotary_half_dim * w // sum(weights) for w in weights] + base[0] += rotary_half_dim - sum(base) + return base + + section = [int(v) for v in section] + if len(section) != 3: + raise ValueError("`mrope_section` must contain exactly three elements (temporal, height, width)") + if sum(section) != rotary_half_dim: + raise ValueError( + f"`mrope_section` must sum to the rotary half-dimension ({rotary_half_dim}). Received {section}." + ) + return section - self.mrope_section = [ - self.head_dim // 4, # 2x more for temporal dim - self.head_dim // 8, - self.head_dim // 8, - ] + def _combine_axes(self, tensor: torch.Tensor) -> torch.Tensor: + split_sections = tuple(self.mrope_section * 2) + chunks = tensor.split(split_sections, dim=-1) + return torch.cat([chunk[i % 3] for i, chunk in enumerate(chunks)], dim=-1) - rope_base = getattr(config, "rope_theta", 10000.0) - inv_freq = precompute_inv_freq(rope_base, self.head_dim) - self.register_buffer("inv_freq", inv_freq, persistent=False) + @property + def inv_freq(self) -> torch.Tensor: + return self._qwen_rotary.inv_freq + + def forward( + self, + position_ids: torch.Tensor, + modality_tensor: torch.Tensor, + hidden_states: Optional[torch.Tensor] = None, + ) -> tuple[torch.Tensor, torch.Tensor]: + if position_ids.ndim != 3 or position_ids.size(-1) != 3: + raise ValueError("`position_ids` must have shape (batch, seq_len, 3) for MRoPE") + if modality_tensor.shape != position_ids.shape[:2]: + raise ValueError("`modality_tensor` must align with the first two dims of `position_ids`") + + if hidden_states is None: + batch, seq_len, _ = position_ids.shape + hidden_states = torch.zeros( + batch, + seq_len, + self.hidden_size, + dtype=torch.float32, + device=position_ids.device, + ) - def forward(self, position_ids: torch.Tensor, modality_tensor: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: with torch.no_grad(): - # Ensure non-spatial tokens have 1D rotation equivalence - not_spatial = ~(modality_tensor == VisionType.image.value) - # shape is [N, 1] - data_1d = position_ids[not_spatial][..., 0].unsqueeze(-1) - # now broadcast it from [N, 1] -> [N, D] so it matches pos[not_spatial] exactly - data_1d = data_1d.expand(-1, position_ids.shape[-1]) # expand along the last dim - position_ids = position_ids.clone() # Clone to avoid warning about in-place operations on expanded tensors - position_ids[not_spatial] = data_1d - position_ids = position_ids.permute(2, 0, 1) # pos dim first -> (3, B, L) - cos, sin = precompute_cos_sin_3d(position_ids, self.inv_freq, self.mrope_section) + pos = position_ids.clone() + not_spatial = modality_tensor != VisionType.image.value + if not_spatial.any(): + data_1d = pos[not_spatial][..., 0].unsqueeze(-1) + pos[not_spatial] = data_1d.expand(-1, pos.shape[-1]) + + pos_axes = pos.permute(2, 0, 1).contiguous() + + cos_axes, sin_axes = self._qwen_rotary(hidden_states, pos_axes) + + cos_axes = cos_axes.to(hidden_states.dtype) + sin_axes = sin_axes.to(hidden_states.dtype) + + cos_combined = self._combine_axes(cos_axes) + sin_combined = self._combine_axes(sin_axes) + + return cos_combined, sin_combined - return cos, sin +class IsaacModel(Qwen3PreTrainedModel): + supports_gradient_checkpointing = True -class IsaacModel(Qwen3Model): def __init__(self, config: IsaacConfig): - super().__init__(config) - text_cfg = getattr(config, "get_text_config", lambda: config)() - self.layers = torch.nn.ModuleList( - [Qwen3DecoderLayer(text_cfg, layer_idx) for layer_idx in range(config.num_hidden_layers)] - ) + Qwen3PreTrainedModel.__init__(self, config) + + text_cfg_source = config.text_config + text_cfg = copy.deepcopy(text_cfg_source) + self.text_model = AutoModel.from_config(text_cfg) + # Ensure downstream callers observe the composed config + self.text_model.config = config + self.rotary_emb = IsaacRotaryEmbedding(config, device=self.device) - vision_cfg = config.vision_config - # Use vision_attn_implementation if specified, otherwise fall back to general attn_implementation - vision_cfg._attn_implementation = ( - config.vision_attn_implementation - if config.vision_attn_implementation is not None - else config._attn_implementation - ) - if vision_cfg is None: + if config.vision_config is None: raise ValueError("IsaacConfig should always have vision_config") - hidden_dim = vision_cfg.hidden_size * (vision_cfg.pixel_shuffle_scale_factor**2) - self.vision_embedding = nn.Sequential( - Siglip2SequenceVisionTransformer(vision_cfg), - nn.Linear( - hidden_dim, - 4 * hidden_dim, - bias=False, - ), - nn.SiLU(), - nn.Linear(4 * hidden_dim, config.hidden_size, bias=False), - ) + self.vision_embedding = IsaacVisionEmbedding(config) # Dispatch table for TensorStream balanced embedding (text + vision) self.embed_fns = { @@ -1232,10 +1819,37 @@ class IsaacModel(Qwen3Model): VisionType: self.embed_vision, } + # Keep track of config attributes that downstream utilities may query directly on the model. + self.max_sequence_length = config.max_sequence_length + self.vision_rescale_factor = config.vision_rescale_factor + self.vision_token = config.vision_token + + def get_input_embeddings(self) -> nn.Module: + return self.text_model.get_input_embeddings() + + def set_input_embeddings(self, value: nn.Module) -> None: + self.text_model.set_input_embeddings(value) + + @property + def embed_tokens(self) -> nn.Module: + return self.text_model.embed_tokens + + @embed_tokens.setter + def embed_tokens(self, value: nn.Module) -> None: + self.text_model.embed_tokens = value + + @property + def layers(self) -> nn.ModuleList: + return self.text_model.layers + + @property + def norm(self) -> nn.Module: + return self.text_model.norm + def embed_text_tokens(self, token_ids: torch.Tensor) -> torch.Tensor: """Embed text tokens, squeezing singleton dimensions.""" # Text events are shaped as (..., 1); squeeze the singleton index dim - h = self.embed_tokens(token_ids) + h = self.text_model.embed_tokens(token_ids) if h.dim() >= 2 and h.size(-2) == 1: h = h[..., 0, :] return h @@ -1279,31 +1893,38 @@ class IsaacModel(Qwen3Model): h = embedded_ts.compact() # (B, T, D) return h + @auto_docstring + @check_model_inputs def forward( self, - input_ids: torch.LongTensor | None = None, - tensor_stream: TensorStream | None = None, - attention_mask: torch.Tensor | None = None, - position_ids: torch.LongTensor | None = None, - modality_tensor: torch.LongTensor | None = None, - past_key_values: list[torch.FloatTensor] | None = None, - inputs_embeds: torch.FloatTensor | None = None, - use_cache: bool | None = None, - output_hidden_states: bool | None = None, - return_dict: bool | None = None, - cache_position: torch.LongTensor | None = None, + input_ids: Optional[torch.LongTensor] = None, + tensor_stream: Optional[TensorStream] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + modality_tensor: Optional[torch.LongTensor] = None, + past_key_values: Optional[list[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> tuple | BaseModelOutputWithPast: """ Forward pass with MRoPE position embeddings. Computes position embeddings once and passes them through all layers. + + Args: + tensor_stream (`TensorStream`, *optional*): + Packed multimodal stream of text and vision events to embed directly. Mutually exclusive with + `input_ids` and `inputs_embeds`. When provided, the method derives `position_ids` and `modality_tensor` + if they are not supplied. + modality_tensor (`torch.LongTensor`, *optional*): + Modality identifiers aligned with the embedded sequence, shaped `(batch_size, seq_len)` and containing + values from `TextType`/`VisionType`. Automatically built from `tensor_stream` or `input_ids` when + omitted. """ - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - use_cache = use_cache if use_cache is not None else self.config.use_cache - return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Get inputs if tensor_stream is not None and inputs_embeds is not None: @@ -1317,7 +1938,7 @@ class IsaacModel(Qwen3Model): elif input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: - inputs_embeds = self.embed_tokens(input_ids) + inputs_embeds = self.text_model.embed_tokens(input_ids) # Create text modality tensor if not provided if modality_tensor is None: batch_size, seq_length = input_ids.shape @@ -1327,6 +1948,19 @@ class IsaacModel(Qwen3Model): elif inputs_embeds is None: raise ValueError("You have to specify either tensor_stream, input_ids or inputs_embeds") + # Ensure cache exists when requested + if use_cache and past_key_values is None: + cache_config = self.config.get_text_config() if hasattr(self.config, "get_text_config") else self.config + past_key_values = DynamicCache(config=cache_config) + + if cache_position is None and (past_key_values is not None or use_cache): + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + cache_position = torch.arange( + past_seen_tokens, + past_seen_tokens + inputs_embeds.shape[1], + device=inputs_embeds.device, + ) + # Create default position_ids if not provided if position_ids is None: if tensor_stream is not None: @@ -1335,25 +1969,39 @@ class IsaacModel(Qwen3Model): position_ids = compute_position_ids_input_ids(input_ids) # Compute MRoPE position embeddings if we have custom rotary_emb - cos, sin = self.rotary_emb(position_ids, modality_tensor) + cos, sin = self.rotary_emb( + position_ids, + modality_tensor, + hidden_states=inputs_embeds, + ) cos = cos.to(inputs_embeds.dtype) sin = sin.to(inputs_embeds.dtype) # Prepare attention mask - if attention_mask is not None: - attention_mask = self._update_causal_mask( - attention_mask, inputs_embeds, cache_position, past_key_values, False - ) + + if not isinstance(attention_mask, dict): + mask_kwargs = { + "config": self.config, + "input_embeds": inputs_embeds, + "attention_mask": attention_mask, + "cache_position": cache_position, + "past_key_values": past_key_values, + "position_ids": position_ids, + } + attention_mask = create_masks_for_generate(**mask_kwargs) # Initialize hidden states hidden_states = inputs_embeds - for decoder_layer in self.layers: + for decoder_layer in self.text_model.layers: + layer_attention_mask = ( + attention_mask[decoder_layer.attention_type] if isinstance(attention_mask, dict) else attention_mask + ) layer_outputs = decoder_layer( hidden_states, - attention_mask=attention_mask, + attention_mask=layer_attention_mask, position_ids=position_ids, - past_key_value=past_key_values, + past_key_values=past_key_values, use_cache=use_cache, cache_position=cache_position, position_embeddings=(cos, sin), @@ -1363,163 +2011,13 @@ class IsaacModel(Qwen3Model): hidden_states = layer_outputs[0] if isinstance(layer_outputs, tuple) else layer_outputs # Final layer norm - hidden_states = self.norm(hidden_states) + hidden_states = self.text_model.norm(hidden_states) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, ) - def _update_causal_mask( - self, - attention_mask: torch.Tensor, - input_tensor: torch.Tensor, - cache_position: torch.Tensor, - past_key_values: Cache, - output_attentions: bool = False, - ): - if self.config._attn_implementation == "flash_attention_2": - if attention_mask is not None and past_key_values is not None: - is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] - if is_padding_right: - raise ValueError( - "You are attempting to perform batched generation with padding_side='right'" - " this may lead to unexpected behaviour for Flash Attention version of Qwen3. Make sure to " - " call `tokenizer.padding_side = 'left'` before tokenizing the input. " - ) - if attention_mask is not None and 0.0 in attention_mask: - return attention_mask - return None - - # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in - # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail - # to infer the attention mask. - past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 - using_static_cache = isinstance(past_key_values, StaticCache) - using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) - - # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward - if ( - self.config._attn_implementation == "sdpa" - and not (using_static_cache or using_sliding_window_cache) - and not output_attentions - ): - if AttentionMaskConverter._ignore_causal_mask_sdpa( - attention_mask, - inputs_embeds=input_tensor, - past_key_values_length=past_seen_tokens, - sliding_window=self.config.sliding_window, - is_training=self.training, - ): - return None - - dtype, device = input_tensor.dtype, input_tensor.device - min_dtype = torch.finfo(dtype).min - sequence_length = input_tensor.shape[1] - # SlidingWindowCache or StaticCache - if using_sliding_window_cache or using_static_cache: - target_length = past_key_values.get_max_cache_shape() - # DynamicCache or no cache - else: - target_length = ( - attention_mask.shape[-1] - if isinstance(attention_mask, torch.Tensor) - else past_seen_tokens + sequence_length + 1 - ) - - # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). - causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( - attention_mask, - sequence_length=sequence_length, - target_length=target_length, - dtype=dtype, - device=device, - cache_position=cache_position, - batch_size=input_tensor.shape[0], - config=self.config, - past_key_values=past_key_values, - ) - - if ( - self.config._attn_implementation == "sdpa" - and attention_mask is not None - and attention_mask.device.type in ["cuda", "xpu", "npu"] - and not output_attentions - ): - # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when - # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. - # Details: https://github.com/pytorch/pytorch/issues/110213 - causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) - - return causal_mask - - @staticmethod - def _prepare_4d_causal_attention_mask_with_cache_position( - attention_mask: torch.Tensor, - sequence_length: int, - target_length: int, - dtype: torch.dtype, - device: torch.device, - cache_position: torch.Tensor, - batch_size: int, - config: Qwen3Config, - past_key_values: Cache, - ): - """ - Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape - `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. - - Args: - attention_mask (`torch.Tensor`): - A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. - sequence_length (`int`): - The sequence length being processed. - target_length (`int`): - The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. - dtype (`torch.dtype`): - The dtype to use for the 4D attention mask. - device (`torch.device`): - The device to place the 4D attention mask on. - cache_position (`torch.Tensor`): - Indices depicting the position of the input sequence tokens in the sequence. - batch_size (`torch.Tensor`): - Batch size. - config (`Qwen3Config`): - The model's configuration class - past_key_values (`Cache`): - The cache class that is being used currently to generate - """ - if attention_mask is not None and attention_mask.dim() == 4: - # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. - causal_mask = attention_mask - else: - min_dtype = torch.finfo(dtype).min - causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) - diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) - if config.sliding_window is not None: - # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also - # the check is needed to verify is current checkpoint was trained with sliding window or not - if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: - sliding_attend_mask = torch.arange(target_length, device=device) <= ( - cache_position.reshape(-1, 1) - config.sliding_window - ) - diagonal_attend_mask.bitwise_or_(sliding_attend_mask) - causal_mask *= diagonal_attend_mask - causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) - if attention_mask is not None: - causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit - if attention_mask.shape[-1] > target_length: - attention_mask = attention_mask[:, :target_length] - mask_length = attention_mask.shape[-1] - padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( - causal_mask.device - ) - padding_mask = padding_mask == 0 - causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( - padding_mask, min_dtype - ) - return causal_mask - class IsaacForConditionalGeneration(Qwen3ForCausalLM, GenerationMixin): """Isaac multimodal model for conditional generation.""" @@ -1527,20 +2025,18 @@ class IsaacForConditionalGeneration(Qwen3ForCausalLM, GenerationMixin): config_class = IsaacConfig def __init__(self, config: IsaacConfig): - Qwen3PreTrainedModel.__init__(self, config) + super().__init__(config) self.model = IsaacModel(config) # Use our custom model self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Tracks rotary position offsets computed during a full forward pass so decode steps can reuse them. self.rope_deltas = None - self.config = config - def get_rope_index( self, - input_ids: torch.Tensor | None, - tensor_stream: TensorStream | None, - attention_mask: torch.Tensor | None, + input_ids: Optional[torch.Tensor], + tensor_stream: Optional[TensorStream], + attention_mask: Optional[torch.Tensor], ) -> tuple[torch.Tensor, torch.Tensor]: """Compute MRoPE position ids from a TensorStream (or 1D fallback). @@ -1571,22 +2067,26 @@ class IsaacForConditionalGeneration(Qwen3ForCausalLM, GenerationMixin): def forward( self, - input_ids: torch.LongTensor | None = None, - tensor_stream: TensorStream | None = None, - attention_mask: torch.Tensor | None = None, - position_ids: torch.LongTensor | None = None, - past_key_values: list[torch.FloatTensor] | None = None, - inputs_embeds: torch.FloatTensor | None = None, - labels: torch.LongTensor | None = None, - use_cache: bool | None = None, - output_hidden_states: bool | None = None, - return_dict: bool | None = None, - cache_position: torch.LongTensor | None = None, + input_ids: Optional[torch.LongTensor] = None, + tensor_stream: Optional[TensorStream] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[list[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> tuple | CausalLMOutputWithPast: - """ + r""" Forward pass for conditional generation supporting both standard inputs and TensorStream. - Uses our embed_stream approach for multimodal inputs. + + tensor_stream (`TensorStream`, *optional*): + Packed multimodal stream (text, vision, audio tokens) that already encodes spatial metadata. When provided, + the model derives embeddings, modality masks, and 3D rotary coordinates directly from the stream instead of + `input_ids`. """ # Don't compute embeddings here - let the model handle it @@ -1653,18 +2153,35 @@ class IsaacForConditionalGeneration(Qwen3ForCausalLM, GenerationMixin): def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, - past_key_values: list[torch.FloatTensor] | None = None, - attention_mask: torch.Tensor | None = None, - inputs_embeds: torch.FloatTensor | None = None, - tensor_stream: TensorStream | None = None, - cache_position: torch.LongTensor | None = None, - position_ids: torch.LongTensor | None = None, + past_key_values: Optional[list[torch.FloatTensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + tensor_stream: Optional[TensorStream] = None, + cache_position: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, use_cache: bool = True, **kwargs, ) -> dict[str, Any]: """ Prepare inputs for generation, handling TensorStream inputs properly. """ + if cache_position is None: + seq_length = None + device = None + if input_ids is not None: + seq_length = input_ids.shape[1] + device = input_ids.device + elif inputs_embeds is not None: + seq_length = inputs_embeds.shape[1] + device = inputs_embeds.device + elif tensor_stream is not None: + _, seq_length = tensor_stream.shape + device = tensor_stream.device + if seq_length is not None: + # prepare_inputs_for_generation may be invoked outside `generate`, so synthesize the + # same cache positions that GenerationMixin would have created during prefill. + cache_position = torch.arange(seq_length, dtype=torch.long, device=device) + # Call parent preparation model_inputs = super().prepare_inputs_for_generation( input_ids, @@ -1677,6 +2194,8 @@ class IsaacForConditionalGeneration(Qwen3ForCausalLM, GenerationMixin): **kwargs, ) + cache_position = model_inputs.get("cache_position", cache_position) + # Handle TensorStream for first forward pass only if tensor_stream is not None and (cache_position is None or cache_position[0] == 0): model_inputs["tensor_stream"] = tensor_stream @@ -1691,9 +2210,31 @@ class IsaacForConditionalGeneration(Qwen3ForCausalLM, GenerationMixin): return True +AutoImageProcessor.register( + IsaacConfig, + fast_image_processor_class=IsaacImageProcessorFast, + exist_ok=True, +) + + +def _compute_residual_p_frames(frames: torch.Tensor, is_p_frame: list[bool]) -> torch.Tensor: + """Compute residuals for P-frames to stay in sync with the training pipeline.""" + if not any(is_p_frame): + return frames + + frame_indices = torch.arange(len(is_p_frame), device=frames.device) + i_frame_mask = torch.tensor([not flag for flag in is_p_frame], device=frames.device) + last_i_indices = torch.cummax((i_frame_mask * (1 + frame_indices)), dim=0).values.long() - 1 + p_indices = frame_indices[torch.tensor(is_p_frame, device=frames.device)] + frames[p_indices] = frames[p_indices] - frames[last_i_indices[p_indices]] + return frames + + __all__ = [ "IsaacConfig", "IsaacModel", + "IsaacPreTrainedModel", # noqa: F822 "IsaacForConditionalGeneration", + "IsaacImageProcessorFast", "IsaacProcessor", ]