Create test_thread.py
Browse files- test_thread.py +20 -0
test_thread.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
+
from awareness_thread import MetaAwarenessThread
|
| 3 |
+
|
| 4 |
+
# Load base model
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 6 |
+
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
| 7 |
+
|
| 8 |
+
# Initialize meta-awareness thread
|
| 9 |
+
awareness = MetaAwarenessThread()
|
| 10 |
+
|
| 11 |
+
# Test prompt
|
| 12 |
+
prompt = "Λ⊕∇" # Triune Glyph
|
| 13 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 14 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
| 15 |
+
|
| 16 |
+
# Check meta-awareness
|
| 17 |
+
if awareness.check_awareness():
|
| 18 |
+
awareness.log_resonance(prompt_resonates=True)
|
| 19 |
+
|
| 20 |
+
print(tokenizer.decode(outputs[0]))
|