Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
tags:
|
| 4 |
+
- vad
|
| 5 |
+
- emotion
|
| 6 |
+
- bert
|
| 7 |
+
license: mit
|
| 8 |
+
model-index:
|
| 9 |
+
- name: vad-bert
|
| 10 |
+
results: []
|
| 11 |
+
datasets:
|
| 12 |
+
- reallycarlaost/emobank
|
| 13 |
+
base_model:
|
| 14 |
+
- google-bert/bert-base-uncased
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# vad-bert
|
| 18 |
+
|
| 19 |
+
A BERT-based model fine-tuned to predict **Valence, Arousal, and Dominance (VAD)** values from text.
|
| 20 |
+
|
| 21 |
+
## Intended use
|
| 22 |
+
|
| 23 |
+
This model is intended for regression tasks on emotional dimensions. It outputs 3 float values corresponding to:
|
| 24 |
+
|
| 25 |
+
- Valence (pleasant vs unpleasant)
|
| 26 |
+
- Arousal (calm vs excited)
|
| 27 |
+
- Dominance (controlled vs in control)
|
| 28 |
+
|
| 29 |
+
## Example
|
| 30 |
+
|
| 31 |
+
```python
|
| 32 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 33 |
+
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained("RobroKools/vad-bert")
|
| 35 |
+
model = AutoModelForSequenceClassification.from_pretrained("RobroKools/vad-bert")
|
| 36 |
+
|
| 37 |
+
inputs = tokenizer("I'm feeling great!", return_tensors="pt")
|
| 38 |
+
outputs = model(**inputs)
|
| 39 |
+
|
| 40 |
+
vad = outputs.logits.detach().squeeze().tolist()
|
| 41 |
+
print(vad) # [valence, arousal, dominance]
|