Upload AnnoMI BERT model for Motivational Interviewing talk classification
Browse files- README.md +195 -0
- config.json +37 -0
- example_usage.py +67 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: mit
|
| 4 |
+
tags:
|
| 5 |
+
- text-classification
|
| 6 |
+
- motivational-interviewing
|
| 7 |
+
- bert
|
| 8 |
+
- mental-health
|
| 9 |
+
- counseling
|
| 10 |
+
- psychology
|
| 11 |
+
datasets:
|
| 12 |
+
- AnnoMI
|
| 13 |
+
metrics:
|
| 14 |
+
- accuracy
|
| 15 |
+
- f1
|
| 16 |
+
- precision
|
| 17 |
+
- recall
|
| 18 |
+
widget:
|
| 19 |
+
- text: "I really want to quit smoking."
|
| 20 |
+
example_title: "Change Talk"
|
| 21 |
+
- text: "I don't know if I can do this."
|
| 22 |
+
example_title: "Neutral"
|
| 23 |
+
- text: "I like smoking, it helps me relax."
|
| 24 |
+
example_title: "Sustain Talk"
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
# BERT for Motivational Interviewing Client Talk Classification
|
| 28 |
+
|
| 29 |
+
## Model Description
|
| 30 |
+
|
| 31 |
+
This model is a fine-tuned **BERT-base-uncased** model for classifying client utterances in **Motivational Interviewing (MI)** conversations.
|
| 32 |
+
|
| 33 |
+
Motivational Interviewing is a counseling approach used to help individuals overcome ambivalence and make positive behavioral changes. This model identifies different types of client talk that indicate their readiness for change.
|
| 34 |
+
|
| 35 |
+
## Intended Use
|
| 36 |
+
|
| 37 |
+
- **Primary Use**: Classify client statements in motivational interviewing dialogues
|
| 38 |
+
- **Applications**:
|
| 39 |
+
- Counselor training and feedback
|
| 40 |
+
- MI session analysis
|
| 41 |
+
- Automated dialogue systems
|
| 42 |
+
- Mental health research
|
| 43 |
+
|
| 44 |
+
## Training Data
|
| 45 |
+
|
| 46 |
+
The model was trained on the **AnnoMI dataset** (Annotated Motivational Interviewing), which contains expert-annotated counseling dialogues.
|
| 47 |
+
|
| 48 |
+
- **Training samples**: ~2,400 utterances
|
| 49 |
+
- **Validation samples**: ~500 utterances
|
| 50 |
+
- **Test samples**: ~700 utterances
|
| 51 |
+
|
| 52 |
+
## Labels
|
| 53 |
+
|
| 54 |
+
The model classifies client talk into three categories:
|
| 55 |
+
|
| 56 |
+
- **0**: change
|
| 57 |
+
- **1**: neutral
|
| 58 |
+
- **2**: sustain
|
| 59 |
+
|
| 60 |
+
### Label Definitions
|
| 61 |
+
|
| 62 |
+
- **Change Talk**: Client statements expressing desire, ability, reasons, or need for change
|
| 63 |
+
- Example: "I really want to quit smoking" or "I think I can do it"
|
| 64 |
+
|
| 65 |
+
- **Neutral**: General responses without clear indication of change or sustain
|
| 66 |
+
- Example: "I don't know" or "Maybe"
|
| 67 |
+
|
| 68 |
+
- **Sustain Talk**: Client statements expressing reasons for maintaining current behavior
|
| 69 |
+
- Example: "I like smoking, it helps me relax"
|
| 70 |
+
|
| 71 |
+
## Performance
|
| 72 |
+
|
| 73 |
+
### Test Set Metrics
|
| 74 |
+
|
| 75 |
+
- **Accuracy**: 70.1%
|
| 76 |
+
- **Macro F1**: 57.9%
|
| 77 |
+
- **Macro Precision**: 59.3%
|
| 78 |
+
- **Macro Recall**: 57.3%
|
| 79 |
+
|
| 80 |
+
### Confusion Matrix
|
| 81 |
+
|
| 82 |
+
```
|
| 83 |
+
Predicted
|
| 84 |
+
change neutral sustain
|
| 85 |
+
Actual change 75 78 23
|
| 86 |
+
neutral 43 396 27
|
| 87 |
+
sustain 11 34 36
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
**Note**: The model performs best on the "neutral" class (most frequent), and has room for improvement on "change" and "sustain" classes.
|
| 91 |
+
|
| 92 |
+
## Usage
|
| 93 |
+
|
| 94 |
+
### Quick Start
|
| 95 |
+
|
| 96 |
+
```python
|
| 97 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
| 98 |
+
import torch
|
| 99 |
+
|
| 100 |
+
# Load model and tokenizer
|
| 101 |
+
model_name = "RyanDDD/bert-motivational-interviewing"
|
| 102 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
| 103 |
+
model = BertForSequenceClassification.from_pretrained(model_name)
|
| 104 |
+
|
| 105 |
+
# Predict
|
| 106 |
+
text = "I really want to quit smoking. It's been affecting my health."
|
| 107 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
| 108 |
+
|
| 109 |
+
with torch.no_grad():
|
| 110 |
+
outputs = model(**inputs)
|
| 111 |
+
probs = torch.softmax(outputs.logits, dim=1)
|
| 112 |
+
pred = torch.argmax(probs, dim=1)
|
| 113 |
+
|
| 114 |
+
label_map = model.config.id2label
|
| 115 |
+
print(f"Talk type: {label_map[pred.item()]}")
|
| 116 |
+
print(f"Confidence: {probs[0][pred].item():.2%}")
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
### Batch Prediction
|
| 120 |
+
|
| 121 |
+
```python
|
| 122 |
+
texts = [
|
| 123 |
+
"I want to stop drinking.",
|
| 124 |
+
"I don't think I have a problem.",
|
| 125 |
+
"I like drinking with my friends."
|
| 126 |
+
]
|
| 127 |
+
|
| 128 |
+
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
| 129 |
+
|
| 130 |
+
with torch.no_grad():
|
| 131 |
+
outputs = model(**inputs)
|
| 132 |
+
probs = torch.softmax(outputs.logits, dim=1)
|
| 133 |
+
preds = torch.argmax(probs, dim=1)
|
| 134 |
+
|
| 135 |
+
for text, pred, prob in zip(texts, preds, probs):
|
| 136 |
+
label = model.config.id2label[pred.item()]
|
| 137 |
+
confidence = prob[pred].item()
|
| 138 |
+
print(f"Text: {text}")
|
| 139 |
+
print(f"Type: {label} ({confidence:.1%})")
|
| 140 |
+
print()
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
## Training Details
|
| 144 |
+
|
| 145 |
+
### Hyperparameters
|
| 146 |
+
|
| 147 |
+
- **Base model**: `bert-base-uncased`
|
| 148 |
+
- **Max sequence length**: 128 tokens
|
| 149 |
+
- **Batch size**: 16
|
| 150 |
+
- **Learning rate**: 2e-5
|
| 151 |
+
- **Epochs**: 5
|
| 152 |
+
- **Optimizer**: AdamW
|
| 153 |
+
- **Loss**: Cross-entropy
|
| 154 |
+
|
| 155 |
+
### Hardware
|
| 156 |
+
|
| 157 |
+
Trained on a single GPU (NVIDIA GPU recommended).
|
| 158 |
+
|
| 159 |
+
## Limitations
|
| 160 |
+
|
| 161 |
+
1. **Class Imbalance**: The model performs better on "neutral" (majority class) than "change" and "sustain"
|
| 162 |
+
2. **Context**: The model classifies single utterances without conversation context
|
| 163 |
+
3. **Domain**: Trained specifically on MI conversations; may not generalize to other counseling types
|
| 164 |
+
4. **Language**: English only
|
| 165 |
+
|
| 166 |
+
## Ethical Considerations
|
| 167 |
+
|
| 168 |
+
- This model is intended to **assist**, not replace, human counselors
|
| 169 |
+
- Predictions should be reviewed by qualified professionals
|
| 170 |
+
- Privacy and confidentiality must be maintained when processing real counseling data
|
| 171 |
+
- Be aware of potential biases in training data
|
| 172 |
+
|
| 173 |
+
## Citation
|
| 174 |
+
|
| 175 |
+
If you use this model, please cite:
|
| 176 |
+
|
| 177 |
+
```bibtex
|
| 178 |
+
@misc{bert-mi-classifier-2024,
|
| 179 |
+
author = {Ryan},
|
| 180 |
+
title = {BERT for Motivational Interviewing Client Talk Classification},
|
| 181 |
+
year = {2024},
|
| 182 |
+
publisher = {HuggingFace},
|
| 183 |
+
howpublished = {\url{https://huggingface.co/RyanDDD/bert-motivational-interviewing}}
|
| 184 |
+
}
|
| 185 |
+
```
|
| 186 |
+
|
| 187 |
+
## References
|
| 188 |
+
|
| 189 |
+
- **AnnoMI Dataset**: [GitHub](https://github.com/uccollab/AnnoMI)
|
| 190 |
+
- **BERT Paper**: [Devlin et al., 2019](https://arxiv.org/abs/1810.04805)
|
| 191 |
+
- **Motivational Interviewing**: [Miller & Rollnick, 2012](https://motivationalinterviewing.org/)
|
| 192 |
+
|
| 193 |
+
## Model Card Contact
|
| 194 |
+
|
| 195 |
+
For questions or feedback, please open an issue in the model repository.
|
config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "bert-base-uncased",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"id2label": {
|
| 13 |
+
"0": "change",
|
| 14 |
+
"1": "neutral",
|
| 15 |
+
"2": "sustain"
|
| 16 |
+
},
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 3072,
|
| 19 |
+
"label2id": {
|
| 20 |
+
"change": 0,
|
| 21 |
+
"neutral": 1,
|
| 22 |
+
"sustain": 2
|
| 23 |
+
},
|
| 24 |
+
"layer_norm_eps": 1e-12,
|
| 25 |
+
"max_position_embeddings": 512,
|
| 26 |
+
"model_type": "bert",
|
| 27 |
+
"num_attention_heads": 12,
|
| 28 |
+
"num_hidden_layers": 12,
|
| 29 |
+
"pad_token_id": 0,
|
| 30 |
+
"position_embedding_type": "absolute",
|
| 31 |
+
"problem_type": "single_label_classification",
|
| 32 |
+
"torch_dtype": "float32",
|
| 33 |
+
"transformers_version": "4.44.2",
|
| 34 |
+
"type_vocab_size": 2,
|
| 35 |
+
"use_cache": true,
|
| 36 |
+
"vocab_size": 30522
|
| 37 |
+
}
|
example_usage.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Example usage of the Motivational Interviewing BERT classifier
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
def predict_talk_type(text, model, tokenizer):
|
| 9 |
+
"""Predict the talk type for a given text"""
|
| 10 |
+
inputs = tokenizer(
|
| 11 |
+
text,
|
| 12 |
+
return_tensors="pt",
|
| 13 |
+
padding=True,
|
| 14 |
+
truncation=True,
|
| 15 |
+
max_length=128
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
with torch.no_grad():
|
| 19 |
+
outputs = model(**inputs)
|
| 20 |
+
probs = torch.softmax(outputs.logits, dim=1)
|
| 21 |
+
pred = torch.argmax(probs, dim=1)
|
| 22 |
+
|
| 23 |
+
label = model.config.id2label[pred.item()]
|
| 24 |
+
confidence = probs[0][pred].item()
|
| 25 |
+
|
| 26 |
+
return {
|
| 27 |
+
'label': label,
|
| 28 |
+
'confidence': confidence,
|
| 29 |
+
'all_probs': {
|
| 30 |
+
model.config.id2label[i]: probs[0][i].item()
|
| 31 |
+
for i in range(len(probs[0]))
|
| 32 |
+
}
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
def main():
|
| 36 |
+
# Load model and tokenizer
|
| 37 |
+
model_name = "RyanDDD/bert-motivational-interviewing"
|
| 38 |
+
print(f"Loading model: {model_name}")
|
| 39 |
+
|
| 40 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
| 41 |
+
model = BertForSequenceClassification.from_pretrained(model_name)
|
| 42 |
+
|
| 43 |
+
# Example texts
|
| 44 |
+
examples = [
|
| 45 |
+
"I really want to quit smoking for my health.",
|
| 46 |
+
"I'm not sure if I can do this.",
|
| 47 |
+
"Smoking helps me deal with stress.",
|
| 48 |
+
"Maybe I should try cutting down.",
|
| 49 |
+
"I've been thinking about quitting.",
|
| 50 |
+
"I like smoking, it's part of who I am."
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
print("\nPredictions:\n" + "="*60)
|
| 54 |
+
|
| 55 |
+
for text in examples:
|
| 56 |
+
result = predict_talk_type(text, model, tokenizer)
|
| 57 |
+
|
| 58 |
+
print(f"\nText: {text}")
|
| 59 |
+
print(f"Type: {result['label']} ({result['confidence']:.1%} confidence)")
|
| 60 |
+
print(f"All probabilities:")
|
| 61 |
+
for label, prob in result['all_probs'].items():
|
| 62 |
+
print(f" {label:8s}: {prob:.1%}")
|
| 63 |
+
|
| 64 |
+
print("\n" + "="*60)
|
| 65 |
+
|
| 66 |
+
if __name__ == "__main__":
|
| 67 |
+
main()
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:67ca5c56c69fbfdf560aa932f6e6fc29ee86006e81ba2e839e86a28337f36034
|
| 3 |
+
size 437961724
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"never_split": null,
|
| 51 |
+
"pad_token": "[PAD]",
|
| 52 |
+
"sep_token": "[SEP]",
|
| 53 |
+
"strip_accents": null,
|
| 54 |
+
"tokenize_chinese_chars": true,
|
| 55 |
+
"tokenizer_class": "BertTokenizer",
|
| 56 |
+
"unk_token": "[UNK]"
|
| 57 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|