File size: 4,021 Bytes
469beaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5995f53
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from torch import nn, Tensor, tensor
from typing import Union, List, Optional

from transformers import PreTrainedModel
from transformers.modeling_outputs import (
    BaseModelOutputWithPoolingAndNoAttention, 
    ImageClassifierOutputWithNoAttention
)
from timm import create_model

from .configuration_efficientnet import EfficientNetConfig


class EfficientNetModel(PreTrainedModel):
    """

    EfficientNet model wrapper using Hugging Face's PreTrainedModel.



    This class initializes an EfficientNet model from `timm` library 

    and defines a forward method that extracts feature representations.



    Attributes

    ----------

        config:  

            Configuration object containing model parameters.

        model:   

            Instantiated EfficientNet model.

    """
    config_class = EfficientNetConfig

    def __init__(self, config):
        super().__init__(config)
        self.config = config
        self.model = create_model(
            config.model_name, 
            pretrained = config.pretrained, 
            num_classes = config.num_classes, 
            global_pool = config.global_pool,
        )
        
    def forward(self, pixel_values: Tensor) -> BaseModelOutputWithPoolingAndNoAttention:
        """

        Parameters

        ----------

            pixel_values : torch.Tensor

                Input tensor representing image pixel values.



        Returns

        -------

            BaseModelOutputWithPoolingAndNoAttention

                Object containing the `last_hidden_state` and `pooled_output`.

        """
        last_hidden_state = self.model.forward_features(pixel_values)
        pooler_output = self.model.forward_head(last_hidden_state, pre_logits=True)
        
        return BaseModelOutputWithPoolingAndNoAttention(
            last_hidden_state = last_hidden_state,
            pooler_output=pooler_output
        )


class EfficientNetModelForImageClassification(PreTrainedModel):
    """

    EfficientNet model wrapper using Hugging Face's PreTrainedModel.



    This class initializes an EfficientNet model from `timm` library 

    and defines a forward method that return logits.



    It supports training when labels are provided



    Attributes

    ----------

        config :  

            Configuration object containing model parameters.

        model :   

            Instantiated EfficientNet model.

    """
    config_class = EfficientNetConfig

    def __init__(self, config):
        super().__init__(config)
        self.config = config
        self.model = create_model(
            config.model_name, 
            pretrained = config.pretrained, 
            num_classes = config.num_classes, 
            global_pool = config.global_pool,
        )
    
    def forward(

        self, 

        pixel_values: Tensor, 

        labels: Optional[Union[List[int], Tensor]] = None

    ) -> ImageClassifierOutputWithNoAttention:
        """

        Parameters

        ----------

            pixel_values : torch.Tensor

                Input tensor representing image pixel values.

            labels : Optional[Union[List[int], torch.Tensor]]

                Ground truth labels for training and computing loss. 

                List of integers/tensor representing class IDs.



        Returns

        -------

            ImageClassifierOutputWithNoAttention

                Object containing `logits` and `loss`.

        """
        self.model.training = False if labels is None else True

        logits = self.model(pixel_values)

        loss = None
        if self.model.training:
            labels = tensor(labels)
            ce_loss = nn.CrossEntropyLoss()
            loss = ce_loss(logits, labels)

        return ImageClassifierOutputWithNoAttention(
            loss = loss,
            logits = logits,
        )
    
__all__ = [
    "EfficientNetModel",
    "EfficientNetModelForImageClassification"
]