Zery commited on
Commit
0568da4
·
verified ·
1 Parent(s): 99ed77e

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,528 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ pipeline_tag: image-text-to-text
7
+ tags:
8
+ - multimodal
9
+ library_name: transformers
10
+ ---
11
+
12
+ # Qwen2.5-VL-7B-Instruct
13
+ <a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;">
14
+ <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
15
+ </a>
16
+
17
+ ## Introduction
18
+
19
+ In the past five months since Qwen2-VL’s release, numerous developers have built new models on the Qwen2-VL vision-language models, providing us with valuable feedback. During this period, we focused on building more useful vision-language models. Today, we are excited to introduce the latest addition to the Qwen family: Qwen2.5-VL.
20
+
21
+ #### Key Enhancements:
22
+ * **Understand things visually**: Qwen2.5-VL is not only proficient in recognizing common objects such as flowers, birds, fish, and insects, but it is highly capable of analyzing texts, charts, icons, graphics, and layouts within images.
23
+
24
+ * **Being agentic**: Qwen2.5-VL directly plays as a visual agent that can reason and dynamically direct tools, which is capable of computer use and phone use.
25
+
26
+ * **Understanding long videos and capturing events**: Qwen2.5-VL can comprehend videos of over 1 hour, and this time it has a new ability of cpaturing event by pinpointing the relevant video segments.
27
+
28
+ * **Capable of visual localization in different formats**: Qwen2.5-VL can accurately localize objects in an image by generating bounding boxes or points, and it can provide stable JSON outputs for coordinates and attributes.
29
+
30
+ * **Generating structured outputs**: for data like scans of invoices, forms, tables, etc. Qwen2.5-VL supports structured outputs of their contents, benefiting usages in finance, commerce, etc.
31
+
32
+
33
+ #### Model Architecture Updates:
34
+
35
+ * **Dynamic Resolution and Frame Rate Training for Video Understanding**:
36
+
37
+ We extend dynamic resolution to the temporal dimension by adopting dynamic FPS sampling, enabling the model to comprehend videos at various sampling rates. Accordingly, we update mRoPE in the time dimension with IDs and absolute time alignment, enabling the model to learn temporal sequence and speed, and ultimately acquire the ability to pinpoint specific moments.
38
+
39
+ <p align="center">
40
+ <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-VL/qwen2.5vl_arc.jpeg" width="80%"/>
41
+ <p>
42
+
43
+
44
+ * **Streamlined and Efficient Vision Encoder**
45
+
46
+ We enhance both training and inference speeds by strategically implementing window attention into the ViT. The ViT architecture is further optimized with SwiGLU and RMSNorm, aligning it with the structure of the Qwen2.5 LLM.
47
+
48
+
49
+ We have three models with 3, 7 and 72 billion parameters. This repo contains the instruction-tuned 7B Qwen2.5-VL model. For more information, visit our [Blog](https://qwenlm.github.io/blog/qwen2.5-vl/) and [GitHub](https://github.com/QwenLM/Qwen2.5-VL).
50
+
51
+
52
+
53
+ ## Evaluation
54
+
55
+ ### Image benchmark
56
+
57
+
58
+ | Benchmark | InternVL2.5-8B | MiniCPM-o 2.6 | GPT-4o-mini | Qwen2-VL-7B |**Qwen2.5-VL-7B** |
59
+ | :--- | :---: | :---: | :---: | :---: | :---: |
60
+ | MMMU<sub>val</sub> | 56 | 50.4 | **60**| 54.1 | 58.6|
61
+ | MMMU-Pro<sub>val</sub> | 34.3 | - | 37.6| 30.5 | 41.0|
62
+ | DocVQA<sub>test</sub> | 93 | 93 | - | 94.5 | **95.7** |
63
+ | InfoVQA<sub>test</sub> | 77.6 | - | - |76.5 | **82.6** |
64
+ | ChartQA<sub>test</sub> | 84.8 | - |- | 83.0 |**87.3** |
65
+ | TextVQA<sub>val</sub> | 79.1 | 80.1 | -| 84.3 | **84.9**|
66
+ | OCRBench | 822 | 852 | 785 | 845 | **864** |
67
+ | CC_OCR | 57.7 | | | 61.6 | **77.8**|
68
+ | MMStar | 62.8| | |60.7| **63.9**|
69
+ | MMBench-V1.1-En<sub>test</sub> | 79.4 | 78.0 | 76.0| 80.7 | **82.6** |
70
+ | MMT-Bench<sub>test</sub> | - | - | - |**63.7** |63.6 |
71
+ | MMStar | **61.5** | 57.5 | 54.8 | 60.7 |63.9 |
72
+ | MMVet<sub>GPT-4-Turbo</sub> | 54.2 | 60.0 | 66.9 | 62.0 | **67.1**|
73
+ | HallBench<sub>avg</sub> | 45.2 | 48.1 | 46.1| 50.6 | **52.9**|
74
+ | MathVista<sub>testmini</sub> | 58.3 | 60.6 | 52.4 | 58.2 | **68.2**|
75
+ | MathVision | - | - | - | 16.3 | **25.07** |
76
+
77
+ ### Video Benchmarks
78
+
79
+ | Benchmark | Qwen2-VL-7B | **Qwen2.5-VL-7B** |
80
+ | :--- | :---: | :---: |
81
+ | MVBench | 67.0 | **69.6** |
82
+ | PerceptionTest<sub>test</sub> | 66.9 | **70.5** |
83
+ | Video-MME<sub>wo/w subs</sub> | 63.3/69.0 | **65.1**/**71.6** |
84
+ | LVBench | | 45.3 |
85
+ | LongVideoBench | | 54.7 |
86
+ | MMBench-Video | 1.44 | 1.79 |
87
+ | TempCompass | | 71.7 |
88
+ | MLVU | | 70.2 |
89
+ | CharadesSTA/mIoU | 43.6|
90
+
91
+ ### Agent benchmark
92
+ | Benchmarks | Qwen2.5-VL-7B |
93
+ |-------------------------|---------------|
94
+ | ScreenSpot | 84.7 |
95
+ | ScreenSpot Pro | 29.0 |
96
+ | AITZ_EM | 81.9 |
97
+ | Android Control High_EM | 60.1 |
98
+ | Android Control Low_EM | 93.7 |
99
+ | AndroidWorld_SR | 25.5 |
100
+ | MobileMiniWob++_SR | 91.4 |
101
+
102
+ ## Requirements
103
+ The code of Qwen2.5-VL has been in the latest Hugging face transformers and we advise you to build from source with command:
104
+ ```
105
+ pip install git+https://github.com/huggingface/transformers accelerate
106
+ ```
107
+ or you might encounter the following error:
108
+ ```
109
+ KeyError: 'qwen2_5_vl'
110
+ ```
111
+
112
+
113
+ ## Quickstart
114
+
115
+ Below, we provide simple examples to show how to use Qwen2.5-VL with 🤖 ModelScope and 🤗 Transformers.
116
+
117
+ The code of Qwen2.5-VL has been in the latest Hugging face transformers and we advise you to build from source with command:
118
+ ```
119
+ pip install git+https://github.com/huggingface/transformers accelerate
120
+ ```
121
+ or you might encounter the following error:
122
+ ```
123
+ KeyError: 'qwen2_5_vl'
124
+ ```
125
+
126
+
127
+ We offer a toolkit to help you handle various types of visual input more conveniently, as if you were using an API. This includes base64, URLs, and interleaved images and videos. You can install it using the following command:
128
+
129
+ ```bash
130
+ # It's highly recommanded to use `[decord]` feature for faster video loading.
131
+ pip install qwen-vl-utils[decord]==0.0.8
132
+ ```
133
+
134
+ If you are not using Linux, you might not be able to install `decord` from PyPI. In that case, you can use `pip install qwen-vl-utils` which will fall back to using torchvision for video processing. However, you can still [install decord from source](https://github.com/dmlc/decord?tab=readme-ov-file#install-from-source) to get decord used when loading video.
135
+
136
+ ### Using 🤗 Transformers to Chat
137
+
138
+ Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`:
139
+
140
+ ```python
141
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
142
+ from qwen_vl_utils import process_vision_info
143
+
144
+ # default: Load the model on the available device(s)
145
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
146
+ "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
147
+ )
148
+
149
+ # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
150
+ # model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
151
+ # "Qwen/Qwen2.5-VL-7B-Instruct",
152
+ # torch_dtype=torch.bfloat16,
153
+ # attn_implementation="flash_attention_2",
154
+ # device_map="auto",
155
+ # )
156
+
157
+ # default processer
158
+ processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
159
+
160
+ # The default range for the number of visual tokens per image in the model is 4-16384.
161
+ # You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
162
+ # min_pixels = 256*28*28
163
+ # max_pixels = 1280*28*28
164
+ # processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
165
+
166
+ messages = [
167
+ {
168
+ "role": "user",
169
+ "content": [
170
+ {
171
+ "type": "image",
172
+ "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
173
+ },
174
+ {"type": "text", "text": "Describe this image."},
175
+ ],
176
+ }
177
+ ]
178
+
179
+ # Preparation for inference
180
+ text = processor.apply_chat_template(
181
+ messages, tokenize=False, add_generation_prompt=True
182
+ )
183
+ image_inputs, video_inputs = process_vision_info(messages)
184
+ inputs = processor(
185
+ text=[text],
186
+ images=image_inputs,
187
+ videos=video_inputs,
188
+ padding=True,
189
+ return_tensors="pt",
190
+ )
191
+ inputs = inputs.to("cuda")
192
+
193
+ # Inference: Generation of the output
194
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
195
+ generated_ids_trimmed = [
196
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
197
+ ]
198
+ output_text = processor.batch_decode(
199
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
200
+ )
201
+ print(output_text)
202
+ ```
203
+ <details>
204
+ <summary>Multi image inference</summary>
205
+
206
+ ```python
207
+ # Messages containing multiple images and a text query
208
+ messages = [
209
+ {
210
+ "role": "user",
211
+ "content": [
212
+ {"type": "image", "image": "file:///path/to/image1.jpg"},
213
+ {"type": "image", "image": "file:///path/to/image2.jpg"},
214
+ {"type": "text", "text": "Identify the similarities between these images."},
215
+ ],
216
+ }
217
+ ]
218
+
219
+ # Preparation for inference
220
+ text = processor.apply_chat_template(
221
+ messages, tokenize=False, add_generation_prompt=True
222
+ )
223
+ image_inputs, video_inputs = process_vision_info(messages)
224
+ inputs = processor(
225
+ text=[text],
226
+ images=image_inputs,
227
+ videos=video_inputs,
228
+ padding=True,
229
+ return_tensors="pt",
230
+ )
231
+ inputs = inputs.to("cuda")
232
+
233
+ # Inference
234
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
235
+ generated_ids_trimmed = [
236
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
237
+ ]
238
+ output_text = processor.batch_decode(
239
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
240
+ )
241
+ print(output_text)
242
+ ```
243
+ </details>
244
+
245
+ <details>
246
+ <summary>Video inference</summary>
247
+
248
+ ```python
249
+ # Messages containing a images list as a video and a text query
250
+ messages = [
251
+ {
252
+ "role": "user",
253
+ "content": [
254
+ {
255
+ "type": "video",
256
+ "video": [
257
+ "file:///path/to/frame1.jpg",
258
+ "file:///path/to/frame2.jpg",
259
+ "file:///path/to/frame3.jpg",
260
+ "file:///path/to/frame4.jpg",
261
+ ],
262
+ },
263
+ {"type": "text", "text": "Describe this video."},
264
+ ],
265
+ }
266
+ ]
267
+
268
+ # Messages containing a local video path and a text query
269
+ messages = [
270
+ {
271
+ "role": "user",
272
+ "content": [
273
+ {
274
+ "type": "video",
275
+ "video": "file:///path/to/video1.mp4",
276
+ "max_pixels": 360 * 420,
277
+ "fps": 1.0,
278
+ },
279
+ {"type": "text", "text": "Describe this video."},
280
+ ],
281
+ }
282
+ ]
283
+
284
+ # Messages containing a video url and a text query
285
+ messages = [
286
+ {
287
+ "role": "user",
288
+ "content": [
289
+ {
290
+ "type": "video",
291
+ "video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-VL/space_woaudio.mp4",
292
+ },
293
+ {"type": "text", "text": "Describe this video."},
294
+ ],
295
+ }
296
+ ]
297
+
298
+ #In Qwen 2.5 VL, frame rate information is also input into the model to align with absolute time.
299
+ # Preparation for inference
300
+ text = processor.apply_chat_template(
301
+ messages, tokenize=False, add_generation_prompt=True
302
+ )
303
+ image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)
304
+ inputs = processor(
305
+ text=[text],
306
+ images=image_inputs,
307
+ videos=video_inputs,
308
+ fps=fps,
309
+ padding=True,
310
+ return_tensors="pt",
311
+ **video_kwargs,
312
+ )
313
+ inputs = inputs.to("cuda")
314
+
315
+ # Inference
316
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
317
+ generated_ids_trimmed = [
318
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
319
+ ]
320
+ output_text = processor.batch_decode(
321
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
322
+ )
323
+ print(output_text)
324
+ ```
325
+
326
+ Video URL compatibility largely depends on the third-party library version. The details are in the table below. change the backend by `FORCE_QWENVL_VIDEO_READER=torchvision` or `FORCE_QWENVL_VIDEO_READER=decord` if you prefer not to use the default one.
327
+
328
+ | Backend | HTTP | HTTPS |
329
+ |-------------|------|-------|
330
+ | torchvision >= 0.19.0 | ✅ | ✅ |
331
+ | torchvision < 0.19.0 | ❌ | ❌ |
332
+ | decord | ✅ | ❌ |
333
+ </details>
334
+
335
+ <details>
336
+ <summary>Batch inference</summary>
337
+
338
+ ```python
339
+ # Sample messages for batch inference
340
+ messages1 = [
341
+ {
342
+ "role": "user",
343
+ "content": [
344
+ {"type": "image", "image": "file:///path/to/image1.jpg"},
345
+ {"type": "image", "image": "file:///path/to/image2.jpg"},
346
+ {"type": "text", "text": "What are the common elements in these pictures?"},
347
+ ],
348
+ }
349
+ ]
350
+ messages2 = [
351
+ {"role": "system", "content": "You are a helpful assistant."},
352
+ {"role": "user", "content": "Who are you?"},
353
+ ]
354
+ # Combine messages for batch processing
355
+ messages = [messages1, messages2]
356
+
357
+ # Preparation for batch inference
358
+ texts = [
359
+ processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
360
+ for msg in messages
361
+ ]
362
+ image_inputs, video_inputs = process_vision_info(messages)
363
+ inputs = processor(
364
+ text=texts,
365
+ images=image_inputs,
366
+ videos=video_inputs,
367
+ padding=True,
368
+ return_tensors="pt",
369
+ )
370
+ inputs = inputs.to("cuda")
371
+
372
+ # Batch Inference
373
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
374
+ generated_ids_trimmed = [
375
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
376
+ ]
377
+ output_texts = processor.batch_decode(
378
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
379
+ )
380
+ print(output_texts)
381
+ ```
382
+ </details>
383
+
384
+ ### 🤖 ModelScope
385
+ We strongly advise users especially those in mainland China to use ModelScope. `snapshot_download` can help you solve issues concerning downloading checkpoints.
386
+
387
+
388
+ ### More Usage Tips
389
+
390
+ For input images, we support local files, base64, and URLs. For videos, we currently only support local files.
391
+
392
+ ```python
393
+ # You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.
394
+ ## Local file path
395
+ messages = [
396
+ {
397
+ "role": "user",
398
+ "content": [
399
+ {"type": "image", "image": "file:///path/to/your/image.jpg"},
400
+ {"type": "text", "text": "Describe this image."},
401
+ ],
402
+ }
403
+ ]
404
+ ## Image URL
405
+ messages = [
406
+ {
407
+ "role": "user",
408
+ "content": [
409
+ {"type": "image", "image": "http://path/to/your/image.jpg"},
410
+ {"type": "text", "text": "Describe this image."},
411
+ ],
412
+ }
413
+ ]
414
+ ## Base64 encoded image
415
+ messages = [
416
+ {
417
+ "role": "user",
418
+ "content": [
419
+ {"type": "image", "image": "data:image;base64,/9j/..."},
420
+ {"type": "text", "text": "Describe this image."},
421
+ ],
422
+ }
423
+ ]
424
+ ```
425
+ #### Image Resolution for performance boost
426
+
427
+ The model supports a wide range of resolution inputs. By default, it uses the native resolution for input, but higher resolutions can enhance performance at the cost of more computation. Users can set the minimum and maximum number of pixels to achieve an optimal configuration for their needs, such as a token count range of 256-1280, to balance speed and memory usage.
428
+
429
+ ```python
430
+ min_pixels = 256 * 28 * 28
431
+ max_pixels = 1280 * 28 * 28
432
+ processor = AutoProcessor.from_pretrained(
433
+ "Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
434
+ )
435
+ ```
436
+
437
+ Besides, We provide two methods for fine-grained control over the image size input to the model:
438
+
439
+ 1. Define min_pixels and max_pixels: Images will be resized to maintain their aspect ratio within the range of min_pixels and max_pixels.
440
+
441
+ 2. Specify exact dimensions: Directly set `resized_height` and `resized_width`. These values will be rounded to the nearest multiple of 28.
442
+
443
+ ```python
444
+ # min_pixels and max_pixels
445
+ messages = [
446
+ {
447
+ "role": "user",
448
+ "content": [
449
+ {
450
+ "type": "image",
451
+ "image": "file:///path/to/your/image.jpg",
452
+ "resized_height": 280,
453
+ "resized_width": 420,
454
+ },
455
+ {"type": "text", "text": "Describe this image."},
456
+ ],
457
+ }
458
+ ]
459
+ # resized_height and resized_width
460
+ messages = [
461
+ {
462
+ "role": "user",
463
+ "content": [
464
+ {
465
+ "type": "image",
466
+ "image": "file:///path/to/your/image.jpg",
467
+ "min_pixels": 50176,
468
+ "max_pixels": 50176,
469
+ },
470
+ {"type": "text", "text": "Describe this image."},
471
+ ],
472
+ }
473
+ ]
474
+ ```
475
+
476
+ ### Processing Long Texts
477
+
478
+ The current `config.json` is set for context length up to 32,768 tokens.
479
+ To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
480
+
481
+ For supported frameworks, you could add the following to `config.json` to enable YaRN:
482
+
483
+ {
484
+ ...,
485
+ "type": "yarn",
486
+ "mrope_section": [
487
+ 16,
488
+ 24,
489
+ 24
490
+ ],
491
+ "factor": 4,
492
+ "original_max_position_embeddings": 32768
493
+ }
494
+
495
+ However, it should be noted that this method has a significant impact on the performance of temporal and spatial localization tasks, and is therefore not recommended for use.
496
+
497
+ At the same time, for long video inputs, since MRoPE itself is more economical with ids, the max_position_embeddings can be directly modified to a larger value, such as 64k.
498
+
499
+
500
+
501
+
502
+ ## Citation
503
+
504
+ If you find our work helpful, feel free to give us a cite.
505
+
506
+ ```
507
+ @misc{qwen2.5-VL,
508
+ title = {Qwen2.5-VL},
509
+ url = {https://qwenlm.github.io/blog/qwen2.5-vl/},
510
+ author = {Qwen Team},
511
+ month = {January},
512
+ year = {2025}
513
+ }
514
+
515
+ @article{Qwen2VL,
516
+ title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
517
+ author={Wang, Peng and Bai, Shuai and Tan, Sinan and Wang, Shijie and Fan, Zhihao and Bai, Jinze and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Fan, Yang and Dang, Kai and Du, Mengfei and Ren, Xuancheng and Men, Rui and Liu, Dayiheng and Zhou, Chang and Zhou, Jingren and Lin, Junyang},
518
+ journal={arXiv preprint arXiv:2409.12191},
519
+ year={2024}
520
+ }
521
+
522
+ @article{Qwen-VL,
523
+ title={Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond},
524
+ author={Bai, Jinze and Bai, Shuai and Yang, Shusheng and Wang, Shijie and Tan, Sinan and Wang, Peng and Lin, Junyang and Zhou, Chang and Zhou, Jingren},
525
+ journal={arXiv preprint arXiv:2308.12966},
526
+ year={2023}
527
+ }
528
+ ```
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2_5_VLForConditionalGeneration"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 3584,
10
+ "image_token_id": 151655,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 128000,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2_5_vl",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": {
21
+ "mrope_section": [
22
+ 16,
23
+ 24,
24
+ 24
25
+ ],
26
+ "rope_type": "default",
27
+ "type": "default"
28
+ },
29
+ "rope_theta": 1000000.0,
30
+ "sliding_window": 32768,
31
+ "tie_word_embeddings": false,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.50.0",
34
+ "use_cache": true,
35
+ "use_sliding_window": false,
36
+ "video_token_id": 151656,
37
+ "vision_config": {
38
+ "depth": 32,
39
+ "fullatt_block_indexes": [
40
+ 7,
41
+ 15,
42
+ 23,
43
+ 31
44
+ ],
45
+ "hidden_act": "silu",
46
+ "hidden_size": 1280,
47
+ "in_channels": 3,
48
+ "in_chans": 3,
49
+ "intermediate_size": 3420,
50
+ "model_type": "qwen2_5_vl",
51
+ "num_heads": 16,
52
+ "out_hidden_size": 3584,
53
+ "patch_size": 14,
54
+ "spatial_merge_size": 2,
55
+ "spatial_patch_size": 14,
56
+ "temporal_patch_size": 2,
57
+ "tokens_per_second": 2,
58
+ "window_size": 112
59
+ },
60
+ "vision_end_token_id": 151653,
61
+ "vision_start_token_id": 151652,
62
+ "vision_token_id": 151654,
63
+ "vocab_size": 152064
64
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.1,
11
+ "top_k": 1,
12
+ "top_p": 0.001,
13
+ "transformers_version": "4.50.0"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "min_pixels": 3136,
3
+ "max_pixels": 12845056,
4
+ "patch_size": 14,
5
+ "temporal_patch_size": 2,
6
+ "merge_size": 2,
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "image_processor_type": "Qwen2VLImageProcessor",
18
+ "processor_class": "Qwen2_5_VLProcessor"
19
+ }
pytorch_model-00001-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b24d5e200b4a395bad7de13a44381bc25b2ca59b928c102994e882383d9d7bae
3
+ size 4968346903
pytorch_model-00002-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5268f0f7ee5b50253ba23bbb442f0820dc65abe2dc9d5c32280030c295fa5ca
3
+ size 4991525407
pytorch_model-00003-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42d9077ebc079ad13e4b4316bbee637987fe79a1c5592204ce52bcb4175da98e
3
+ size 4932778600
pytorch_model-00004-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6601d92b5a7f2c23106dbc0658813c9b8703749eb131b373e12ab19b40c7731f
3
+ size 1691928796
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,736 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16584333312
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00004-of-00004.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00004.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
13
+ "model.layers.0.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
14
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
15
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
16
+ "model.layers.0.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
17
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
18
+ "model.layers.0.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
19
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
20
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
21
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
22
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
23
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
24
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
25
+ "model.layers.1.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
26
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
27
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
28
+ "model.layers.1.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
29
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
30
+ "model.layers.1.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
31
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
32
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
33
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
34
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
35
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
36
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
37
+ "model.layers.10.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
38
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
39
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
40
+ "model.layers.10.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
41
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
42
+ "model.layers.10.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
43
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
44
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
45
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
46
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
47
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
48
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
49
+ "model.layers.11.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
50
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
51
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
52
+ "model.layers.11.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
53
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
54
+ "model.layers.11.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
55
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
56
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
57
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
58
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
59
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
60
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
61
+ "model.layers.12.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
62
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
63
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
64
+ "model.layers.12.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
65
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
66
+ "model.layers.12.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
67
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
68
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
69
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
70
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
71
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
72
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
73
+ "model.layers.13.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
74
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
75
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
76
+ "model.layers.13.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
77
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
78
+ "model.layers.13.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
79
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
80
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
81
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
82
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
83
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
84
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
85
+ "model.layers.14.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
86
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
87
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
88
+ "model.layers.14.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
89
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
90
+ "model.layers.14.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
91
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
92
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
93
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
94
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
95
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
96
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
97
+ "model.layers.15.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
98
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
99
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
100
+ "model.layers.15.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
101
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
102
+ "model.layers.15.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
103
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
104
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
105
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
106
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
107
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
108
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
109
+ "model.layers.16.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
110
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
111
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
112
+ "model.layers.16.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
113
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
114
+ "model.layers.16.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
115
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
116
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
117
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
118
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
119
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
120
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
121
+ "model.layers.17.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
122
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
123
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
124
+ "model.layers.17.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
125
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
126
+ "model.layers.17.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
127
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
128
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
129
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
130
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
131
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
132
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
133
+ "model.layers.18.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
134
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
135
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
136
+ "model.layers.18.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
137
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
138
+ "model.layers.18.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
139
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
140
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
141
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
142
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
143
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
144
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
145
+ "model.layers.19.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
146
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
147
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
148
+ "model.layers.19.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
149
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
150
+ "model.layers.19.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
151
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
152
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
153
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
154
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
155
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
156
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
157
+ "model.layers.2.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
158
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
159
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
160
+ "model.layers.2.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
161
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
162
+ "model.layers.2.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
163
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
164
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
165
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
166
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
167
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
168
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
169
+ "model.layers.20.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
170
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
171
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
172
+ "model.layers.20.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
173
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
174
+ "model.layers.20.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
175
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
176
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
177
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
178
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
179
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
180
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
181
+ "model.layers.21.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
182
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
183
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
184
+ "model.layers.21.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
185
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
186
+ "model.layers.21.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
187
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
188
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
189
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
190
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
191
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
192
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
193
+ "model.layers.22.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
194
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
195
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
196
+ "model.layers.22.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
197
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
198
+ "model.layers.22.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
199
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
200
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
201
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
202
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
203
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
204
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
205
+ "model.layers.23.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
206
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
207
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
208
+ "model.layers.23.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
209
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
210
+ "model.layers.23.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
211
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
212
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
213
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
214
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
215
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
216
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
217
+ "model.layers.24.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
218
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
219
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
220
+ "model.layers.24.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
221
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
222
+ "model.layers.24.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
223
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
224
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
225
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
226
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
227
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
228
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
229
+ "model.layers.25.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
230
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
231
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
232
+ "model.layers.25.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
233
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
234
+ "model.layers.25.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
235
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
236
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
237
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
238
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
239
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
240
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
241
+ "model.layers.26.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
242
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
243
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
244
+ "model.layers.26.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
245
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
246
+ "model.layers.26.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
247
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
248
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
249
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
250
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00004-of-00004.bin",
251
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00004-of-00004.bin",
252
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
253
+ "model.layers.27.self_attn.k_proj.bias": "pytorch_model-00004-of-00004.bin",
254
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
255
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
256
+ "model.layers.27.self_attn.q_proj.bias": "pytorch_model-00004-of-00004.bin",
257
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
258
+ "model.layers.27.self_attn.v_proj.bias": "pytorch_model-00004-of-00004.bin",
259
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
260
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
261
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
262
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
263
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
264
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
265
+ "model.layers.3.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
266
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
267
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
268
+ "model.layers.3.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
269
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
270
+ "model.layers.3.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
271
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
272
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
273
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
274
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
275
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
276
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
277
+ "model.layers.4.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
278
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
279
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
280
+ "model.layers.4.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
281
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
282
+ "model.layers.4.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
283
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
284
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
285
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
286
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
287
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
288
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
289
+ "model.layers.5.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
290
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
291
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
292
+ "model.layers.5.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
293
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
294
+ "model.layers.5.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
295
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
296
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
297
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
298
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
299
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
300
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
301
+ "model.layers.6.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
302
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
303
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
304
+ "model.layers.6.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
305
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
306
+ "model.layers.6.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
307
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
308
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
309
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
310
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
311
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
312
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
313
+ "model.layers.7.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
314
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
315
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
316
+ "model.layers.7.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
317
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
318
+ "model.layers.7.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
319
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
320
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
321
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
322
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
323
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
324
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
325
+ "model.layers.8.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
326
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
327
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
328
+ "model.layers.8.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
329
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
330
+ "model.layers.8.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
331
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
332
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
333
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
334
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
335
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
336
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
337
+ "model.layers.9.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
338
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
339
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
340
+ "model.layers.9.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
341
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
342
+ "model.layers.9.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
343
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
344
+ "model.norm.weight": "pytorch_model-00004-of-00004.bin",
345
+ "visual.blocks.0.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
346
+ "visual.blocks.0.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
347
+ "visual.blocks.0.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
348
+ "visual.blocks.0.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
349
+ "visual.blocks.0.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
350
+ "visual.blocks.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
351
+ "visual.blocks.0.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
352
+ "visual.blocks.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
353
+ "visual.blocks.0.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
354
+ "visual.blocks.0.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
355
+ "visual.blocks.0.norm1.weight": "pytorch_model-00001-of-00004.bin",
356
+ "visual.blocks.0.norm2.weight": "pytorch_model-00001-of-00004.bin",
357
+ "visual.blocks.1.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
358
+ "visual.blocks.1.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
359
+ "visual.blocks.1.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
360
+ "visual.blocks.1.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
361
+ "visual.blocks.1.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
362
+ "visual.blocks.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
363
+ "visual.blocks.1.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
364
+ "visual.blocks.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
365
+ "visual.blocks.1.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
366
+ "visual.blocks.1.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
367
+ "visual.blocks.1.norm1.weight": "pytorch_model-00001-of-00004.bin",
368
+ "visual.blocks.1.norm2.weight": "pytorch_model-00001-of-00004.bin",
369
+ "visual.blocks.10.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
370
+ "visual.blocks.10.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
371
+ "visual.blocks.10.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
372
+ "visual.blocks.10.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
373
+ "visual.blocks.10.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
374
+ "visual.blocks.10.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
375
+ "visual.blocks.10.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
376
+ "visual.blocks.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
377
+ "visual.blocks.10.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
378
+ "visual.blocks.10.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
379
+ "visual.blocks.10.norm1.weight": "pytorch_model-00001-of-00004.bin",
380
+ "visual.blocks.10.norm2.weight": "pytorch_model-00001-of-00004.bin",
381
+ "visual.blocks.11.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
382
+ "visual.blocks.11.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
383
+ "visual.blocks.11.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
384
+ "visual.blocks.11.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
385
+ "visual.blocks.11.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
386
+ "visual.blocks.11.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
387
+ "visual.blocks.11.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
388
+ "visual.blocks.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
389
+ "visual.blocks.11.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
390
+ "visual.blocks.11.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
391
+ "visual.blocks.11.norm1.weight": "pytorch_model-00001-of-00004.bin",
392
+ "visual.blocks.11.norm2.weight": "pytorch_model-00001-of-00004.bin",
393
+ "visual.blocks.12.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
394
+ "visual.blocks.12.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
395
+ "visual.blocks.12.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
396
+ "visual.blocks.12.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
397
+ "visual.blocks.12.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
398
+ "visual.blocks.12.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
399
+ "visual.blocks.12.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
400
+ "visual.blocks.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
401
+ "visual.blocks.12.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
402
+ "visual.blocks.12.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
403
+ "visual.blocks.12.norm1.weight": "pytorch_model-00001-of-00004.bin",
404
+ "visual.blocks.12.norm2.weight": "pytorch_model-00001-of-00004.bin",
405
+ "visual.blocks.13.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
406
+ "visual.blocks.13.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
407
+ "visual.blocks.13.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
408
+ "visual.blocks.13.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
409
+ "visual.blocks.13.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
410
+ "visual.blocks.13.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
411
+ "visual.blocks.13.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
412
+ "visual.blocks.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
413
+ "visual.blocks.13.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
414
+ "visual.blocks.13.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
415
+ "visual.blocks.13.norm1.weight": "pytorch_model-00001-of-00004.bin",
416
+ "visual.blocks.13.norm2.weight": "pytorch_model-00001-of-00004.bin",
417
+ "visual.blocks.14.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
418
+ "visual.blocks.14.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
419
+ "visual.blocks.14.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
420
+ "visual.blocks.14.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
421
+ "visual.blocks.14.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
422
+ "visual.blocks.14.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
423
+ "visual.blocks.14.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
424
+ "visual.blocks.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
425
+ "visual.blocks.14.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
426
+ "visual.blocks.14.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
427
+ "visual.blocks.14.norm1.weight": "pytorch_model-00001-of-00004.bin",
428
+ "visual.blocks.14.norm2.weight": "pytorch_model-00001-of-00004.bin",
429
+ "visual.blocks.15.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
430
+ "visual.blocks.15.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
431
+ "visual.blocks.15.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
432
+ "visual.blocks.15.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
433
+ "visual.blocks.15.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
434
+ "visual.blocks.15.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
435
+ "visual.blocks.15.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
436
+ "visual.blocks.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
437
+ "visual.blocks.15.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
438
+ "visual.blocks.15.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
439
+ "visual.blocks.15.norm1.weight": "pytorch_model-00001-of-00004.bin",
440
+ "visual.blocks.15.norm2.weight": "pytorch_model-00001-of-00004.bin",
441
+ "visual.blocks.16.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
442
+ "visual.blocks.16.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
443
+ "visual.blocks.16.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
444
+ "visual.blocks.16.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
445
+ "visual.blocks.16.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
446
+ "visual.blocks.16.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
447
+ "visual.blocks.16.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
448
+ "visual.blocks.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
449
+ "visual.blocks.16.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
450
+ "visual.blocks.16.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
451
+ "visual.blocks.16.norm1.weight": "pytorch_model-00001-of-00004.bin",
452
+ "visual.blocks.16.norm2.weight": "pytorch_model-00001-of-00004.bin",
453
+ "visual.blocks.17.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
454
+ "visual.blocks.17.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
455
+ "visual.blocks.17.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
456
+ "visual.blocks.17.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
457
+ "visual.blocks.17.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
458
+ "visual.blocks.17.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
459
+ "visual.blocks.17.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
460
+ "visual.blocks.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
461
+ "visual.blocks.17.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
462
+ "visual.blocks.17.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
463
+ "visual.blocks.17.norm1.weight": "pytorch_model-00001-of-00004.bin",
464
+ "visual.blocks.17.norm2.weight": "pytorch_model-00001-of-00004.bin",
465
+ "visual.blocks.18.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
466
+ "visual.blocks.18.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
467
+ "visual.blocks.18.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
468
+ "visual.blocks.18.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
469
+ "visual.blocks.18.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
470
+ "visual.blocks.18.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
471
+ "visual.blocks.18.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
472
+ "visual.blocks.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
473
+ "visual.blocks.18.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
474
+ "visual.blocks.18.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
475
+ "visual.blocks.18.norm1.weight": "pytorch_model-00001-of-00004.bin",
476
+ "visual.blocks.18.norm2.weight": "pytorch_model-00001-of-00004.bin",
477
+ "visual.blocks.19.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
478
+ "visual.blocks.19.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
479
+ "visual.blocks.19.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
480
+ "visual.blocks.19.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
481
+ "visual.blocks.19.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
482
+ "visual.blocks.19.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
483
+ "visual.blocks.19.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
484
+ "visual.blocks.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
485
+ "visual.blocks.19.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
486
+ "visual.blocks.19.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
487
+ "visual.blocks.19.norm1.weight": "pytorch_model-00001-of-00004.bin",
488
+ "visual.blocks.19.norm2.weight": "pytorch_model-00001-of-00004.bin",
489
+ "visual.blocks.2.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
490
+ "visual.blocks.2.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
491
+ "visual.blocks.2.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
492
+ "visual.blocks.2.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
493
+ "visual.blocks.2.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
494
+ "visual.blocks.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
495
+ "visual.blocks.2.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
496
+ "visual.blocks.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
497
+ "visual.blocks.2.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
498
+ "visual.blocks.2.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
499
+ "visual.blocks.2.norm1.weight": "pytorch_model-00001-of-00004.bin",
500
+ "visual.blocks.2.norm2.weight": "pytorch_model-00001-of-00004.bin",
501
+ "visual.blocks.20.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
502
+ "visual.blocks.20.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
503
+ "visual.blocks.20.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
504
+ "visual.blocks.20.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
505
+ "visual.blocks.20.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
506
+ "visual.blocks.20.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
507
+ "visual.blocks.20.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
508
+ "visual.blocks.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
509
+ "visual.blocks.20.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
510
+ "visual.blocks.20.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
511
+ "visual.blocks.20.norm1.weight": "pytorch_model-00001-of-00004.bin",
512
+ "visual.blocks.20.norm2.weight": "pytorch_model-00001-of-00004.bin",
513
+ "visual.blocks.21.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
514
+ "visual.blocks.21.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
515
+ "visual.blocks.21.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
516
+ "visual.blocks.21.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
517
+ "visual.blocks.21.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
518
+ "visual.blocks.21.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
519
+ "visual.blocks.21.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
520
+ "visual.blocks.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
521
+ "visual.blocks.21.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
522
+ "visual.blocks.21.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
523
+ "visual.blocks.21.norm1.weight": "pytorch_model-00001-of-00004.bin",
524
+ "visual.blocks.21.norm2.weight": "pytorch_model-00001-of-00004.bin",
525
+ "visual.blocks.22.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
526
+ "visual.blocks.22.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
527
+ "visual.blocks.22.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
528
+ "visual.blocks.22.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
529
+ "visual.blocks.22.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
530
+ "visual.blocks.22.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
531
+ "visual.blocks.22.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
532
+ "visual.blocks.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
533
+ "visual.blocks.22.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
534
+ "visual.blocks.22.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
535
+ "visual.blocks.22.norm1.weight": "pytorch_model-00001-of-00004.bin",
536
+ "visual.blocks.22.norm2.weight": "pytorch_model-00001-of-00004.bin",
537
+ "visual.blocks.23.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
538
+ "visual.blocks.23.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
539
+ "visual.blocks.23.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
540
+ "visual.blocks.23.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
541
+ "visual.blocks.23.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
542
+ "visual.blocks.23.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
543
+ "visual.blocks.23.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
544
+ "visual.blocks.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
545
+ "visual.blocks.23.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
546
+ "visual.blocks.23.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
547
+ "visual.blocks.23.norm1.weight": "pytorch_model-00001-of-00004.bin",
548
+ "visual.blocks.23.norm2.weight": "pytorch_model-00001-of-00004.bin",
549
+ "visual.blocks.24.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
550
+ "visual.blocks.24.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
551
+ "visual.blocks.24.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
552
+ "visual.blocks.24.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
553
+ "visual.blocks.24.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
554
+ "visual.blocks.24.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
555
+ "visual.blocks.24.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
556
+ "visual.blocks.24.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
557
+ "visual.blocks.24.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
558
+ "visual.blocks.24.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
559
+ "visual.blocks.24.norm1.weight": "pytorch_model-00001-of-00004.bin",
560
+ "visual.blocks.24.norm2.weight": "pytorch_model-00001-of-00004.bin",
561
+ "visual.blocks.25.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
562
+ "visual.blocks.25.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
563
+ "visual.blocks.25.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
564
+ "visual.blocks.25.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
565
+ "visual.blocks.25.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
566
+ "visual.blocks.25.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
567
+ "visual.blocks.25.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
568
+ "visual.blocks.25.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
569
+ "visual.blocks.25.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
570
+ "visual.blocks.25.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
571
+ "visual.blocks.25.norm1.weight": "pytorch_model-00001-of-00004.bin",
572
+ "visual.blocks.25.norm2.weight": "pytorch_model-00001-of-00004.bin",
573
+ "visual.blocks.26.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
574
+ "visual.blocks.26.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
575
+ "visual.blocks.26.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
576
+ "visual.blocks.26.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
577
+ "visual.blocks.26.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
578
+ "visual.blocks.26.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
579
+ "visual.blocks.26.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
580
+ "visual.blocks.26.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
581
+ "visual.blocks.26.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
582
+ "visual.blocks.26.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
583
+ "visual.blocks.26.norm1.weight": "pytorch_model-00001-of-00004.bin",
584
+ "visual.blocks.26.norm2.weight": "pytorch_model-00001-of-00004.bin",
585
+ "visual.blocks.27.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
586
+ "visual.blocks.27.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
587
+ "visual.blocks.27.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
588
+ "visual.blocks.27.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
589
+ "visual.blocks.27.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
590
+ "visual.blocks.27.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
591
+ "visual.blocks.27.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
592
+ "visual.blocks.27.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
593
+ "visual.blocks.27.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
594
+ "visual.blocks.27.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
595
+ "visual.blocks.27.norm1.weight": "pytorch_model-00001-of-00004.bin",
596
+ "visual.blocks.27.norm2.weight": "pytorch_model-00001-of-00004.bin",
597
+ "visual.blocks.28.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
598
+ "visual.blocks.28.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
599
+ "visual.blocks.28.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
600
+ "visual.blocks.28.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
601
+ "visual.blocks.28.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
602
+ "visual.blocks.28.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
603
+ "visual.blocks.28.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
604
+ "visual.blocks.28.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
605
+ "visual.blocks.28.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
606
+ "visual.blocks.28.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
607
+ "visual.blocks.28.norm1.weight": "pytorch_model-00001-of-00004.bin",
608
+ "visual.blocks.28.norm2.weight": "pytorch_model-00001-of-00004.bin",
609
+ "visual.blocks.29.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
610
+ "visual.blocks.29.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
611
+ "visual.blocks.29.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
612
+ "visual.blocks.29.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
613
+ "visual.blocks.29.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
614
+ "visual.blocks.29.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
615
+ "visual.blocks.29.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
616
+ "visual.blocks.29.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
617
+ "visual.blocks.29.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
618
+ "visual.blocks.29.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
619
+ "visual.blocks.29.norm1.weight": "pytorch_model-00001-of-00004.bin",
620
+ "visual.blocks.29.norm2.weight": "pytorch_model-00001-of-00004.bin",
621
+ "visual.blocks.3.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
622
+ "visual.blocks.3.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
623
+ "visual.blocks.3.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
624
+ "visual.blocks.3.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
625
+ "visual.blocks.3.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
626
+ "visual.blocks.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
627
+ "visual.blocks.3.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
628
+ "visual.blocks.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
629
+ "visual.blocks.3.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
630
+ "visual.blocks.3.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
631
+ "visual.blocks.3.norm1.weight": "pytorch_model-00001-of-00004.bin",
632
+ "visual.blocks.3.norm2.weight": "pytorch_model-00001-of-00004.bin",
633
+ "visual.blocks.30.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
634
+ "visual.blocks.30.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
635
+ "visual.blocks.30.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
636
+ "visual.blocks.30.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
637
+ "visual.blocks.30.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
638
+ "visual.blocks.30.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
639
+ "visual.blocks.30.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
640
+ "visual.blocks.30.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
641
+ "visual.blocks.30.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
642
+ "visual.blocks.30.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
643
+ "visual.blocks.30.norm1.weight": "pytorch_model-00001-of-00004.bin",
644
+ "visual.blocks.30.norm2.weight": "pytorch_model-00001-of-00004.bin",
645
+ "visual.blocks.31.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
646
+ "visual.blocks.31.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
647
+ "visual.blocks.31.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
648
+ "visual.blocks.31.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
649
+ "visual.blocks.31.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
650
+ "visual.blocks.31.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
651
+ "visual.blocks.31.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
652
+ "visual.blocks.31.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
653
+ "visual.blocks.31.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
654
+ "visual.blocks.31.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
655
+ "visual.blocks.31.norm1.weight": "pytorch_model-00001-of-00004.bin",
656
+ "visual.blocks.31.norm2.weight": "pytorch_model-00001-of-00004.bin",
657
+ "visual.blocks.4.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
658
+ "visual.blocks.4.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
659
+ "visual.blocks.4.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
660
+ "visual.blocks.4.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
661
+ "visual.blocks.4.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
662
+ "visual.blocks.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
663
+ "visual.blocks.4.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
664
+ "visual.blocks.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
665
+ "visual.blocks.4.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
666
+ "visual.blocks.4.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
667
+ "visual.blocks.4.norm1.weight": "pytorch_model-00001-of-00004.bin",
668
+ "visual.blocks.4.norm2.weight": "pytorch_model-00001-of-00004.bin",
669
+ "visual.blocks.5.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
670
+ "visual.blocks.5.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
671
+ "visual.blocks.5.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
672
+ "visual.blocks.5.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
673
+ "visual.blocks.5.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
674
+ "visual.blocks.5.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
675
+ "visual.blocks.5.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
676
+ "visual.blocks.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
677
+ "visual.blocks.5.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
678
+ "visual.blocks.5.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
679
+ "visual.blocks.5.norm1.weight": "pytorch_model-00001-of-00004.bin",
680
+ "visual.blocks.5.norm2.weight": "pytorch_model-00001-of-00004.bin",
681
+ "visual.blocks.6.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
682
+ "visual.blocks.6.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
683
+ "visual.blocks.6.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
684
+ "visual.blocks.6.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
685
+ "visual.blocks.6.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
686
+ "visual.blocks.6.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
687
+ "visual.blocks.6.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
688
+ "visual.blocks.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
689
+ "visual.blocks.6.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
690
+ "visual.blocks.6.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
691
+ "visual.blocks.6.norm1.weight": "pytorch_model-00001-of-00004.bin",
692
+ "visual.blocks.6.norm2.weight": "pytorch_model-00001-of-00004.bin",
693
+ "visual.blocks.7.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
694
+ "visual.blocks.7.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
695
+ "visual.blocks.7.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
696
+ "visual.blocks.7.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
697
+ "visual.blocks.7.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
698
+ "visual.blocks.7.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
699
+ "visual.blocks.7.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
700
+ "visual.blocks.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
701
+ "visual.blocks.7.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
702
+ "visual.blocks.7.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
703
+ "visual.blocks.7.norm1.weight": "pytorch_model-00001-of-00004.bin",
704
+ "visual.blocks.7.norm2.weight": "pytorch_model-00001-of-00004.bin",
705
+ "visual.blocks.8.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
706
+ "visual.blocks.8.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
707
+ "visual.blocks.8.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
708
+ "visual.blocks.8.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
709
+ "visual.blocks.8.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
710
+ "visual.blocks.8.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
711
+ "visual.blocks.8.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
712
+ "visual.blocks.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
713
+ "visual.blocks.8.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
714
+ "visual.blocks.8.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
715
+ "visual.blocks.8.norm1.weight": "pytorch_model-00001-of-00004.bin",
716
+ "visual.blocks.8.norm2.weight": "pytorch_model-00001-of-00004.bin",
717
+ "visual.blocks.9.attn.proj.bias": "pytorch_model-00001-of-00004.bin",
718
+ "visual.blocks.9.attn.proj.weight": "pytorch_model-00001-of-00004.bin",
719
+ "visual.blocks.9.attn.qkv.bias": "pytorch_model-00001-of-00004.bin",
720
+ "visual.blocks.9.attn.qkv.weight": "pytorch_model-00001-of-00004.bin",
721
+ "visual.blocks.9.mlp.down_proj.bias": "pytorch_model-00001-of-00004.bin",
722
+ "visual.blocks.9.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
723
+ "visual.blocks.9.mlp.gate_proj.bias": "pytorch_model-00001-of-00004.bin",
724
+ "visual.blocks.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
725
+ "visual.blocks.9.mlp.up_proj.bias": "pytorch_model-00001-of-00004.bin",
726
+ "visual.blocks.9.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
727
+ "visual.blocks.9.norm1.weight": "pytorch_model-00001-of-00004.bin",
728
+ "visual.blocks.9.norm2.weight": "pytorch_model-00001-of-00004.bin",
729
+ "visual.merger.ln_q.weight": "pytorch_model-00001-of-00004.bin",
730
+ "visual.merger.mlp.0.bias": "pytorch_model-00001-of-00004.bin",
731
+ "visual.merger.mlp.0.weight": "pytorch_model-00001-of-00004.bin",
732
+ "visual.merger.mlp.2.bias": "pytorch_model-00001-of-00004.bin",
733
+ "visual.merger.mlp.2.weight": "pytorch_model-00001-of-00004.bin",
734
+ "visual.patch_embed.proj.weight": "pytorch_model-00001-of-00004.bin"
735
+ }
736
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "151657": {
117
+ "content": "<tool_call>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "151658": {
125
+ "content": "</tool_call>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "151659": {
133
+ "content": "<|fim_prefix|>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "151660": {
141
+ "content": "<|fim_middle|>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "151661": {
149
+ "content": "<|fim_suffix|>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "151662": {
157
+ "content": "<|fim_pad|>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "151663": {
165
+ "content": "<|repo_name|>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "151664": {
173
+ "content": "<|file_sep|>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ }
180
+ },
181
+ "additional_special_tokens": [
182
+ "<|im_start|>",
183
+ "<|im_end|>",
184
+ "<|object_ref_start|>",
185
+ "<|object_ref_end|>",
186
+ "<|box_start|>",
187
+ "<|box_end|>",
188
+ "<|quad_start|>",
189
+ "<|quad_end|>",
190
+ "<|vision_start|>",
191
+ "<|vision_end|>",
192
+ "<|vision_pad|>",
193
+ "<|image_pad|>",
194
+ "<|video_pad|>"
195
+ ],
196
+ "bos_token": null,
197
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
198
+ "clean_up_tokenization_spaces": false,
199
+ "eos_token": "<|im_end|>",
200
+ "errors": "replace",
201
+ "model_max_length": 131072,
202
+ "pad_token": "<|endoftext|>",
203
+ "split_special_tokens": false,
204
+ "tokenizer_class": "Qwen2Tokenizer",
205
+ "unk_token": null,
206
+ "add_bos_token": false
207
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff