--- license: mit tags: - generated_from_trainer datasets: - emotion metrics: - f1 model-index: - name: emotion_model results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: F1 type: f1 value: 0.14545454545454545 --- # emotion_model This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 1.7815 - F1: 0.1455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.7968 | 1.0 | 2 | 1.7804 | 0.2286 | | 1.7918 | 2.0 | 4 | 1.7812 | 0.2286 | | 1.7867 | 3.0 | 6 | 1.7822 | 0.08 | | 1.7884 | 4.0 | 8 | 1.7816 | 0.08 | | 1.7833 | 5.0 | 10 | 1.7815 | 0.1455 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1 - Datasets 2.5.2 - Tokenizers 0.11.0