diff --git "a/H100_llama8b_pp1_tp1/profiling_bs1_pl4096.json" "b/H100_llama8b_pp1_tp1/profiling_bs1_pl4096.json" deleted file mode 100644--- "a/H100_llama8b_pp1_tp1/profiling_bs1_pl4096.json" +++ /dev/null @@ -1,18548 +0,0 @@ -{ - "context": { - "python_version": "3.12.9 | packaged by Anaconda, Inc. | (main, Feb 6 2025, 18:56:27) [GCC 11.2.0]", - "torch_version": "2.5.1+cu124", - "engine_args": { - "model": "deepseek-ai/DeepSeek-R1-Distill-Llama-8B", - "served_model_name": null, - "tokenizer": "deepseek-ai/DeepSeek-R1-Distill-Llama-8B", - "task": "auto", - "skip_tokenizer_init": false, - "tokenizer_mode": "auto", - "trust_remote_code": false, - "allowed_local_media_path": null, - "download_dir": null, - "load_format": "dummy", - "config_format": "auto", - "dtype": "auto", - "kv_cache_dtype": "auto", - "seed": 0, - "max_model_len": null, - "distributed_executor_backend": null, - "pipeline_parallel_size": 1, - "tensor_parallel_size": 1, - "max_parallel_loading_workers": null, - "block_size": null, - "enable_prefix_caching": false, - "disable_sliding_window": false, - "use_v2_block_manager": true, - "swap_space": 4, - "cpu_offload_gb": 0, - "gpu_memory_utilization": 0.9, - "max_num_batched_tokens": 8000, - "max_num_partial_prefills": 1, - "max_long_partial_prefills": 1, - "long_prefill_token_threshold": 0, - "max_num_seqs": 256, - "max_logprobs": 20, - "disable_log_stats": false, - "revision": null, - "code_revision": null, - "rope_scaling": null, - "rope_theta": null, - "hf_overrides": null, - "tokenizer_revision": null, - "quantization": null, - "enforce_eager": true, - "max_seq_len_to_capture": 8192, - "disable_custom_all_reduce": false, - "tokenizer_pool_size": 0, - "tokenizer_pool_type": "ray", - "tokenizer_pool_extra_config": null, - "limit_mm_per_prompt": null, - "mm_processor_kwargs": null, - "disable_mm_preprocessor_cache": false, - "enable_lora": false, - "enable_lora_bias": false, - "max_loras": 1, - "max_lora_rank": 16, - "enable_prompt_adapter": false, - "max_prompt_adapters": 1, - "max_prompt_adapter_token": 0, - "fully_sharded_loras": false, - "lora_extra_vocab_size": 256, - "long_lora_scaling_factors": null, - "lora_dtype": "auto", - "max_cpu_loras": null, - "device": "auto", - "num_scheduler_steps": 1, - "multi_step_stream_outputs": true, - "ray_workers_use_nsight": false, - "num_gpu_blocks_override": null, - "num_lookahead_slots": 0, - "model_loader_extra_config": null, - "ignore_patterns": [], - "preemption_mode": null, - "scheduler_delay_factor": 0.0, - "enable_chunked_prefill": null, - "guided_decoding_backend": "xgrammar", - "logits_processor_pattern": null, - "speculative_model": null, - "speculative_model_quantization": null, - "speculative_draft_tensor_parallel_size": null, - "num_speculative_tokens": null, - "speculative_disable_mqa_scorer": false, - "speculative_max_model_len": null, - "speculative_disable_by_batch_size": null, - "ngram_prompt_lookup_max": null, - "ngram_prompt_lookup_min": null, - "spec_decoding_acceptance_method": "rejection_sampler", - "typical_acceptance_sampler_posterior_threshold": null, - "typical_acceptance_sampler_posterior_alpha": null, - "qlora_adapter_name_or_path": null, - "disable_logprobs_during_spec_decoding": null, - "otlp_traces_endpoint": null, - "collect_detailed_traces": null, - "disable_async_output_proc": false, - "scheduling_policy": "fcfs", - "scheduler_cls": "vllm.core.scheduler.Scheduler", - "override_neuron_config": null, - "override_pooler_config": null, - "compilation_config": null, - "worker_cls": "auto", - "kv_transfer_config": null, - "generation_config": null, - "override_generation_config": null, - "enable_sleep_mode": false, - "model_impl": "auto", - "calculate_kv_scales": false, - "additional_config": null - }, - "prompt_len": 0, - "batch_size": 1, - "num_steps": 2, - "complete_num_requests_per_step": null, - "save_chrome_traces_folder": null - }, - "prefill": { - "metadata": { - "num_running_seqs": null - }, - "summary_stats": [ - { - "entry": { - "name": "LlamaForCausalLM", - "cuda_time_us": 94699.17500000002, - "pct_cuda_time": 99.4739494416884, - "invocations": 1 - }, - "children": [ - { - "entry": { - "name": "VocabParallelEmbedding(weight=bfloat16[128256, 4096])", - "cuda_time_us": 127.775, - "pct_cuda_time": 0.13421747222097483, - "invocations": 1 - }, - "children": [ - { - "entry": { - "name": "void at::native::(anonymous namespace)::indexSelectLargeIndex(at::cuda::detail::TensorInfo, at::cuda::detail::TensorInfo, at::cuda::detail::TensorInfo, int, int, unsigned int, unsigned int, long)", - "cuda_time_us": 127.775, - "pct_cuda_time": 0.13421747222097483, - "invocations": 1 - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cuda_time_us": 94525.993, - "pct_cuda_time": 99.29203552837066, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cuda_time_us": 2845.9129999999996, - "pct_cuda_time": 2.9894051967975823, - "invocations": 64 - }, - "children": [ - { - "entry": { - "name": "void vllm::rms_norm_kernel(c10::BFloat16*, c10::BFloat16 const*, c10::BFloat16 const*, float, int, int)", - "cuda_time_us": 71.264, - "pct_cuda_time": 0.07485716251501115, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cuda_time_us": 2774.6489999999994, - "pct_cuda_time": 2.9145480342825705, - "invocations": 63 - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cuda_time_us": 25478.952999999998, - "pct_cuda_time": 26.763613120696718, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cuda_time_us": 8821.841, - "pct_cuda_time": 9.2666421393493, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cuda_time_us": 29.729000000000013, - "pct_cuda_time": 0.031227949377087554, - "invocations": 32 - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cuda_time_us": 8792.112000000001, - "pct_cuda_time": 9.235414189972213, - "invocations": 32 - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cuda_time_us": 1748.3490000000002, - "pct_cuda_time": 1.83650153269473, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cuda_time_us": 1748.3490000000002, - "pct_cuda_time": 1.83650153269473, - "invocations": 32 - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cuda_time_us": 8695.786, - "pct_cuda_time": 9.134231390291855, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cuda_time_us": 729.1479999999999, - "pct_cuda_time": 0.7659119658382261, - "invocations": 32 - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cuda_time_us": 7918.416000000002, - "pct_cuda_time": 8.317666049807261, - "invocations": 32 - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cuda_time_us": 48.22200000000001, - "pct_cuda_time": 0.05065337464636939, - "invocations": 32 - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cuda_time_us": 6212.977, - "pct_cuda_time": 6.526238058360834, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cuda_time_us": 31.231000000000012, - "pct_cuda_time": 0.03280568088384477, - "invocations": 32 - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cuda_time_us": 6181.746000000001, - "pct_cuda_time": 6.493432377476989, - "invocations": 32 - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cuda_time_us": 66201.12700000001, - "pct_cuda_time": 69.53901721087637, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cuda_time_us": 41526.33599999999, - "pct_cuda_time": 43.62011229519753, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cuda_time_us": 31.39000000000001, - "pct_cuda_time": 0.03297269773442693, - "invocations": 32 - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cuda_time_us": 41494.94599999999, - "pct_cuda_time": 43.58713959746311, - "invocations": 32 - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cuda_time_us": 5641.842000000001, - "pct_cuda_time": 5.926306178126621, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cuda_time_us": 5641.842000000001, - "pct_cuda_time": 5.926306178126621, - "invocations": 32 - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cuda_time_us": 19032.949, - "pct_cuda_time": 19.992598737552186, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cuda_time_us": 32.254000000000005, - "pct_cuda_time": 0.0338802609979677, - "invocations": 32 - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cuda_time_us": 19000.695000000003, - "pct_cuda_time": 19.95871847655422, - "invocations": 32 - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cuda_time_us": 45.407, - "pct_cuda_time": 0.04769644109675447, - "invocations": 1 - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cuda_time_us": 45.407, - "pct_cuda_time": 0.04769644109675447, - "invocations": 1 - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "LogitsProcessor", - "cuda_time_us": 356.608, - "pct_cuda_time": 0.3745883336629027, - "invocations": 1 - }, - "children": [ - { - "entry": { - "name": "void at::native::(anonymous namespace)::indexSelectSmallIndex(at::cuda::detail::TensorInfo, at::cuda::detail::TensorInfo, at::cuda::detail::TensorInfo, int, int, unsigned int, long)", - "cuda_time_us": 3.265, - "pct_cuda_time": 0.0034296227493757214, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "Memset (Device)", - "cuda_time_us": 0.768, - "pct_cuda_time": 0.0008067229009251313, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cuda_time_us": 352.575, - "pct_cuda_time": 0.37035198801260183, - "invocations": 1 - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Sampler", - "cuda_time_us": 144.192, - "pct_cuda_time": 0.1514622246486934, - "invocations": 1 - }, - "children": [ - { - "entry": { - "name": "Memcpy HtoD (Pinned -> Device)", - "cuda_time_us": 16.544, - "pct_cuda_time": 0.017378155824095538, - "invocations": 7 - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::unrolled_elementwise_kernel, TrivialOffsetCalculator<1, unsigned int>, TrivialOffsetCalculator<1, unsigned int>, at::native::memory::LoadWithCast<1>, at::native::memory::StoreWithCast<1> >(int, at::native::direct_copy_kernel_cuda(at::TensorIteratorBase&)::{lambda()#3}::operator()() const::{lambda()#7}::operator()() const::{lambda(float)#1}, at::detail::Array, TrivialOffsetCalculator<1, unsigned int>, TrivialOffsetCalculator<1, unsigned int>, at::native::memory::LoadWithCast<1>, at::native::memory::StoreWithCast<1>)", - "cuda_time_us": 4.704, - "pct_cuda_time": 0.0049411777681664295, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::elementwise_kernel<128, 4, at::native::gpu_kernel_impl > >(at::TensorIteratorBase&, at::native::BinaryFunctor > const&)::{lambda(int)#1}>(int, at::native::gpu_kernel_impl > >(at::TensorIteratorBase&, at::native::BinaryFunctor > const&)::{lambda(int)#1})", - "cuda_time_us": 5.376, - "pct_cuda_time": 0.00564706030647592, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::(anonymous namespace)::cunn_SoftMaxForward<4, float, float, float, at::native::(anonymous namespace)::SoftMaxForwardEpilogue>(float*, float const*, int)", - "cuda_time_us": 40.64, - "pct_cuda_time": 0.04268908684062153, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::(anonymous namespace)::cunn_SoftMaxForward<4, float, float, float, at::native::(anonymous namespace)::LogSoftMaxForwardEpilogue>(float*, float const*, int)", - "cuda_time_us": 32.576, - "pct_cuda_time": 0.034218496380907654, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::unrolled_elementwise_kernel, TrivialOffsetCalculator<1, unsigned int>, TrivialOffsetCalculator<1, unsigned int>, at::native::memory::LoadWithCast<1>, at::native::memory::StoreWithCast<1> >(int, at::native::direct_copy_kernel_cuda(at::TensorIteratorBase&)::{lambda()#3}::operator()() const::{lambda()#4}::operator()() const::{lambda(long)#1}, at::detail::Array, TrivialOffsetCalculator<1, unsigned int>, TrivialOffsetCalculator<1, unsigned int>, at::native::memory::LoadWithCast<1>, at::native::memory::StoreWithCast<1>)", - "cuda_time_us": 2.144, - "pct_cuda_time": 0.0022521014317493254, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::index_elementwise_kernel<128, 4, at::native::gpu_index_kernel >(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef)::{lambda(char*, char const*, long)#1}>(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef, at::native::index_kernel_impl >(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef)::{lambda(char*, char const*, long)#1} const&)::{lambda(int)#1}>(long, at::native::gpu_index_kernel >(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef)::{lambda(char*, char const*, long)#1}>(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef, at::native::index_kernel_impl >(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef)::{lambda(char*, char const*, long)#1} const&)::{lambda(int)#1})", - "cuda_time_us": 5.312, - "pct_cuda_time": 0.005579833398065492, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::reduce_kernel<512, 1, at::native::ReduceOp, unsigned int, long, 4> >(at::native::ReduceOp, unsigned int, long, 4>)", - "cuda_time_us": 33.728, - "pct_cuda_time": 0.03542858073229535, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "Memcpy DtoH (Device -> Pageable)", - "cuda_time_us": 3.168, - "pct_cuda_time": 0.003327731966316167, - "invocations": 1 - }, - "children": [] - } - ] - } - ], - "model_stats": [ - { - "entry": { - "name": "LlamaForCausalLM", - "cpu_time_us": 17255.819, - "cuda_time_us": 94699.17500000002, - "pct_cuda_time": 99.4739494416884, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "VocabParallelEmbedding(weight=bfloat16[128256, 4096])", - "cpu_time_us": 66.087, - "cuda_time_us": 127.775, - "pct_cuda_time": 0.13421747222097483, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void at::native::(anonymous namespace)::indexSelectLargeIndex(at::cuda::detail::TensorInfo, at::cuda::detail::TensorInfo, at::cuda::detail::TensorInfo, int, int, unsigned int, unsigned int, long)", - "cpu_time_us": 0, - "cuda_time_us": 127.775, - "pct_cuda_time": 0.13421747222097483, - "trace": "index_select(bfloat16[128256, 4096], 0, int64[4096]) <- embedding(bfloat16[128256, 4096], int64[4096], -1, False, False)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 865.73, - "cuda_time_us": 3222.3269999999998, - "pct_cuda_time": 3.3847981577726247, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 48.726, - "cuda_time_us": 71.264, - "pct_cuda_time": 0.07485716251501115, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rms_norm_kernel(c10::BFloat16*, c10::BFloat16 const*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 71.264, - "pct_cuda_time": 0.07485716251501115, - "trace": "_C::rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 627.754, - "cuda_time_us": 878.684, - "pct_cuda_time": 0.9229876373391902, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 87.367, - "cuda_time_us": 300.991, - "pct_cuda_time": 0.31616709983379715, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 300.255, - "pct_cuda_time": 0.3153939903870772, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 194.088, - "cuda_time_us": 57.152, - "pct_cuda_time": 0.060033629210511856, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 57.152, - "pct_cuda_time": 0.060033629210511856, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 217.039, - "cuda_time_us": 305.919, - "pct_cuda_time": 0.32134357178140005, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 23.52, - "pct_cuda_time": 0.02470588884083215, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 280.799, - "pct_cuda_time": 0.29495701023030724, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.6, - "pct_cuda_time": 0.0016806727102606906, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 73.253, - "cuda_time_us": 214.622, - "pct_cuda_time": 0.2254433365134812, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.735, - "pct_cuda_time": 0.0007720590262760047, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 213.887, - "pct_cuda_time": 0.22467127748720517, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 26.61, - "cuda_time_us": 44.032, - "pct_cuda_time": 0.046252112986374196, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.032, - "pct_cuda_time": 0.046252112986374196, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 128.122, - "cuda_time_us": 2228.3469999999998, - "pct_cuda_time": 2.340701244932049, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 44.016, - "cuda_time_us": 1419.037, - "pct_cuda_time": 1.4905854754688745, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.768, - "pct_cuda_time": 0.0008067229009251313, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1418.269, - "pct_cuda_time": 1.4897787525679493, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 29.454, - "cuda_time_us": 182.079, - "pct_cuda_time": 0.19125950400722266, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 182.079, - "pct_cuda_time": 0.19125950400722266, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 38.651, - "cuda_time_us": 627.231, - "pct_cuda_time": 0.658856265455952, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 626.495, - "pct_cuda_time": 0.6580831560092321, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 582.613, - "cuda_time_us": 2951.322, - "pct_cuda_time": 3.100128965370001, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 18.859, - "cuda_time_us": 44.0, - "pct_cuda_time": 0.046218499532168986, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.0, - "pct_cuda_time": 0.046218499532168986, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 421.202, - "cuda_time_us": 815.1670000000001, - "pct_cuda_time": 0.8562680820031728, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 35.504, - "cuda_time_us": 278.975, - "pct_cuda_time": 0.2930410433406101, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.024, - "pct_cuda_time": 0.001075630534566842, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 277.951, - "pct_cuda_time": 0.2919654128060432, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 125.134, - "cuda_time_us": 54.977, - "pct_cuda_time": 0.05774896474500123, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.977, - "pct_cuda_time": 0.05774896474500123, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 178.446, - "cuda_time_us": 282.68800000000005, - "pct_cuda_time": 0.2969412544488588, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 23.648, - "pct_cuda_time": 0.024840342657653003, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 257.696, - "pct_cuda_time": 0.2706891467145868, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.344, - "pct_cuda_time": 0.00141176507661898, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 46.477, - "cuda_time_us": 198.52700000000002, - "pct_cuda_time": 0.2085368194687026, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.12, - "pct_cuda_time": 0.0011764708971824835, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 197.407, - "pct_cuda_time": 0.20736034857152008, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 18.452, - "cuda_time_us": 44.639, - "pct_cuda_time": 0.04688971819582935, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.639, - "pct_cuda_time": 0.04688971819582935, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 104.658, - "cuda_time_us": 2047.516, - "pct_cuda_time": 2.15075266563883, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 35.735, - "cuda_time_us": 1292.1570000000002, - "pct_cuda_time": 1.3573081295452019, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.344, - "pct_cuda_time": 0.00141176507661898, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1290.813, - "pct_cuda_time": 1.3558963644685829, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 23.348, - "cuda_time_us": 174.304, - "pct_cuda_time": 0.18309248505579961, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.304, - "pct_cuda_time": 0.18309248505579961, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 33.55, - "cuda_time_us": 581.055, - "pct_cuda_time": 0.6103520510378283, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 580.319, - "pct_cuda_time": 0.6095789415911084, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 523.093, - "cuda_time_us": 2890.967, - "pct_cuda_time": 3.0367308394776362, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.391, - "cuda_time_us": 44.896, - "pct_cuda_time": 0.047159676249914975, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.896, - "pct_cuda_time": 0.047159676249914975, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 362.922, - "cuda_time_us": 780.702, - "pct_cuda_time": 0.8200653414037135, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 33.708, - "cuda_time_us": 271.07099999999997, - "pct_cuda_time": 0.28473852015192225, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.376, - "pct_cuda_time": 0.0014453785308241936, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 269.695, - "pct_cuda_time": 0.28329314162109803, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 104.264, - "cuda_time_us": 54.016, - "pct_cuda_time": 0.056739510698400906, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.016, - "pct_cuda_time": 0.056739510698400906, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 154.065, - "cuda_time_us": 266.527, - "pct_cuda_time": 0.2799654096547819, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.4, - "pct_cuda_time": 0.023529417943649662, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 242.559, - "pct_cuda_time": 0.2547889324550768, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.568, - "pct_cuda_time": 0.0016470592560554765, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 41.246, - "cuda_time_us": 189.088, - "pct_cuda_time": 0.1986219008986084, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.768, - "pct_cuda_time": 0.0008067229009251313, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 188.32, - "pct_cuda_time": 0.19781517799768322, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.057, - "cuda_time_us": 43.328, - "pct_cuda_time": 0.045512616993859493, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.328, - "pct_cuda_time": 0.045512616993859493, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 99.961, - "cuda_time_us": 2022.0410000000002, - "pct_cuda_time": 2.123993204830148, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.337, - "cuda_time_us": 1263.613, - "pct_cuda_time": 1.3273249283941513, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.768, - "pct_cuda_time": 0.0008067229009251313, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1262.845, - "pct_cuda_time": 1.326518205493226, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 22.046, - "cuda_time_us": 175.007, - "pct_cuda_time": 0.1838309306278704, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 175.007, - "pct_cuda_time": 0.1838309306278704, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 32.185, - "cuda_time_us": 583.4209999999999, - "pct_cuda_time": 0.6128373458081263, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.087, - "pct_cuda_time": 0.0011418070225333564, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 582.334, - "pct_cuda_time": 0.611695538785593, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 528.428, - "cuda_time_us": 2891.352, - "pct_cuda_time": 3.037135251348542, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.071, - "cuda_time_us": 44.704, - "pct_cuda_time": 0.04695799552468369, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.704, - "pct_cuda_time": 0.04695799552468369, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 376.622, - "cuda_time_us": 783.6759999999999, - "pct_cuda_time": 0.8231892918039104, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 30.857, - "cuda_time_us": 271.39099999999996, - "pct_cuda_time": 0.28507465469397436, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 270.655, - "pct_cuda_time": 0.28430154524725443, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 103.531, - "cuda_time_us": 53.92, - "pct_cuda_time": 0.05663867033578526, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 53.92, - "pct_cuda_time": 0.05663867033578526, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 162.877, - "cuda_time_us": 266.654, - "pct_cuda_time": 0.28009881305115886, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.655, - "pct_cuda_time": 0.023797275156847465, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 242.368, - "pct_cuda_time": 0.2545883021502894, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.631, - "pct_cuda_time": 0.0017132357440219914, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 47.676, - "cuda_time_us": 191.711, - "pct_cuda_time": 0.20137715372299203, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.728, - "pct_cuda_time": 0.0018151265270815455, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 189.983, - "pct_cuda_time": 0.19956202719591046, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 18.674, - "cuda_time_us": 42.687, - "pct_cuda_time": 0.04483929748931131, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 42.687, - "pct_cuda_time": 0.04483929748931131, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 103.028, - "cuda_time_us": 2020.285, - "pct_cuda_time": 2.122148666530637, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 36.575, - "cuda_time_us": 1262.622, - "pct_cuda_time": 1.3262839617342335, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.768, - "pct_cuda_time": 0.0008067229009251313, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1261.854, - "pct_cuda_time": 1.3254772388333083, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.474, - "cuda_time_us": 175.104, - "pct_cuda_time": 0.18393282141092995, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 175.104, - "pct_cuda_time": 0.18393282141092995, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 33.154, - "cuda_time_us": 582.559, - "pct_cuda_time": 0.6119318833854734, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.408, - "pct_cuda_time": 0.0014789919850294075, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 581.151, - "pct_cuda_time": 0.6104528914004439, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 531.975, - "cuda_time_us": 2886.232, - "pct_cuda_time": 3.0317570986757083, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.618, - "cuda_time_us": 43.872, - "pct_cuda_time": 0.04608404571534813, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.872, - "pct_cuda_time": 0.04608404571534813, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 376.051, - "cuda_time_us": 781.151, - "pct_cuda_time": 0.8205369801830302, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 32.781, - "cuda_time_us": 270.751, - "pct_cuda_time": 0.2844023856098701, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.96, - "pct_cuda_time": 0.0010084036261564142, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 269.791, - "pct_cuda_time": 0.2833939819837137, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 104.423, - "cuda_time_us": 54.048, - "pct_cuda_time": 0.05677312415260612, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.048, - "pct_cuda_time": 0.05677312415260612, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 161.396, - "cuda_time_us": 266.848, - "pct_cuda_time": 0.28030259461727797, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.368, - "pct_cuda_time": 0.023495804489444452, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 242.816, - "pct_cuda_time": 0.25505889050916236, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.664, - "pct_cuda_time": 0.001747899618671118, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 44.869, - "cuda_time_us": 189.504, - "pct_cuda_time": 0.19905887580327616, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 188.768, - "pct_cuda_time": 0.19828576635655626, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.506, - "cuda_time_us": 43.455, - "pct_cuda_time": 0.045646020390236436, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.455, - "pct_cuda_time": 0.045646020390236436, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 100.487, - "cuda_time_us": 2017.754, - "pct_cuda_time": 2.119490052387093, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.687, - "cuda_time_us": 1261.596, - "pct_cuda_time": 1.3252062303587786, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.056, - "pct_cuda_time": 0.0011092439887720558, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1260.54, - "pct_cuda_time": 1.3240969863700067, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.84, - "cuda_time_us": 174.815, - "pct_cuda_time": 0.18362924990263912, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.815, - "pct_cuda_time": 0.18362924990263912, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 34.023, - "cuda_time_us": 581.343, - "pct_cuda_time": 0.6106545721256753, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 580.607, - "pct_cuda_time": 0.6098814626789554, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 523.021, - "cuda_time_us": 2889.978, - "pct_cuda_time": 3.035691973658606, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.966, - "cuda_time_us": 43.776, - "pct_cuda_time": 0.04598320535273249, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.776, - "pct_cuda_time": 0.04598320535273249, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 373.991, - "cuda_time_us": 779.9669999999999, - "pct_cuda_time": 0.8192932823774374, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 31.831, - "cuda_time_us": 270.143, - "pct_cuda_time": 0.283763729979971, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 269.407, - "pct_cuda_time": 0.2829906205332511, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 113.59, - "cuda_time_us": 53.664, - "pct_cuda_time": 0.056369762702143555, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 53.664, - "pct_cuda_time": 0.056369762702143555, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 154.238, - "cuda_time_us": 265.823, - "pct_cuda_time": 0.2792259136622672, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 23.008, - "pct_cuda_time": 0.024168073573548728, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 241.471, - "pct_cuda_time": 0.25364607501209946, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.344, - "pct_cuda_time": 0.00141176507661898, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 43.029, - "cuda_time_us": 190.337, - "pct_cuda_time": 0.19993387603305562, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.057, - "pct_cuda_time": 0.0011102944092159686, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 189.28, - "pct_cuda_time": 0.19882358162383967, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.166, - "cuda_time_us": 43.456, - "pct_cuda_time": 0.045647070810680354, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.456, - "pct_cuda_time": 0.045647070810680354, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 98.791, - "cuda_time_us": 2022.779, - "pct_cuda_time": 2.1247684151177557, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.875, - "cuda_time_us": 1266.333, - "pct_cuda_time": 1.3301820720015944, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.664, - "pct_cuda_time": 0.001747899618671118, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1264.669, - "pct_cuda_time": 1.3284341723829232, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.15, - "cuda_time_us": 174.752, - "pct_cuda_time": 0.1835630734146726, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.752, - "pct_cuda_time": 0.1835630734146726, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 31.702, - "cuda_time_us": 581.694, - "pct_cuda_time": 0.6110232697014887, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.088, - "pct_cuda_time": 0.0011428574429772696, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 580.606, - "pct_cuda_time": 0.6098804122585115, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 526.001, - "cuda_time_us": 2887.9970000000003, - "pct_cuda_time": 3.033611090759215, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.739, - "cuda_time_us": 43.744, - "pct_cuda_time": 0.04594959189852727, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.744, - "pct_cuda_time": 0.04594959189852727, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 381.098, - "cuda_time_us": 779.7440000000001, - "pct_cuda_time": 0.819059038618445, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 31.51, - "cuda_time_us": 271.264, - "pct_cuda_time": 0.28494125129759745, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.312, - "pct_cuda_time": 0.0013781516224137661, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 269.952, - "pct_cuda_time": 0.28356309967518367, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 110.113, - "cuda_time_us": 53.919, - "pct_cuda_time": 0.05663761991534135, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 53.919, - "pct_cuda_time": 0.05663761991534135, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 166.246, - "cuda_time_us": 265.40900000000005, - "pct_cuda_time": 0.2787910395984873, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 23.008, - "pct_cuda_time": 0.024168073573548728, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 241.056, - "pct_cuda_time": 0.2532101505278756, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.345, - "pct_cuda_time": 0.0014128154970628928, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 41.999, - "cuda_time_us": 189.152, - "pct_cuda_time": 0.1986891278070188, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 188.416, - "pct_cuda_time": 0.1979160183602989, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.82, - "cuda_time_us": 43.584, - "pct_cuda_time": 0.04578152462750121, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.584, - "pct_cuda_time": 0.04578152462750121, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 98.561, - "cuda_time_us": 2020.925, - "pct_cuda_time": 2.122820935614741, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.333, - "cuda_time_us": 1263.006, - "pct_cuda_time": 1.326687323184696, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.057, - "pct_cuda_time": 0.0011102944092159686, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1261.949, - "pct_cuda_time": 1.32557702877548, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.256, - "cuda_time_us": 175.072, - "pct_cuda_time": 0.18389920795672474, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 175.072, - "pct_cuda_time": 0.18389920795672474, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 31.836, - "cuda_time_us": 582.847, - "pct_cuda_time": 0.6122344044733203, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.376, - "pct_cuda_time": 0.0014453785308241936, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 581.471, - "pct_cuda_time": 0.6107890259424962, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 522.652, - "cuda_time_us": 2888.0899999999997, - "pct_cuda_time": 3.033708779860498, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.747, - "cuda_time_us": 44.288, - "pct_cuda_time": 0.04652102062001591, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.288, - "pct_cuda_time": 0.04652102062001591, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 371.043, - "cuda_time_us": 779.198, - "pct_cuda_time": 0.8184855090560683, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 31.005, - "cuda_time_us": 271.135, - "pct_cuda_time": 0.2848057470603326, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 270.399, - "pct_cuda_time": 0.28403263761361275, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 107.188, - "cuda_time_us": 54.112, - "pct_cuda_time": 0.05684035106101654, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.112, - "pct_cuda_time": 0.05684035106101654, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 156.677, - "cuda_time_us": 264.127, - "pct_cuda_time": 0.27744440058939085, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.24, - "pct_cuda_time": 0.023361350672623595, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.383, - "pct_cuda_time": 0.2525032175691222, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.001579832347645049, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 45.195, - "cuda_time_us": 189.82399999999998, - "pct_cuda_time": 0.19939501034532828, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.408, - "pct_cuda_time": 0.0014789919850294075, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 188.416, - "pct_cuda_time": 0.1979160183602989, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 18.662, - "cuda_time_us": 44.096, - "pct_cuda_time": 0.04631933989478462, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.096, - "pct_cuda_time": 0.04631933989478462, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 102.544, - "cuda_time_us": 2020.5079999999998, - "pct_cuda_time": 2.122382910289629, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 36.685, - "cuda_time_us": 1261.981, - "pct_cuda_time": 1.3256106422296852, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.768, - "pct_cuda_time": 0.0008067229009251313, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1261.213, - "pct_cuda_time": 1.3248039193287602, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.57, - "cuda_time_us": 174.432, - "pct_cuda_time": 0.18322693887262045, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.432, - "pct_cuda_time": 0.18322693887262045, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 32.653, - "cuda_time_us": 584.0949999999999, - "pct_cuda_time": 0.6135453291873236, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.536, - "pct_cuda_time": 0.0016134458018502626, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 582.559, - "pct_cuda_time": 0.6119318833854734, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 524.462, - "cuda_time_us": 2886.202, - "pct_cuda_time": 3.031725586062391, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.254, - "cuda_time_us": 43.712, - "pct_cuda_time": 0.04591597844432207, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.712, - "pct_cuda_time": 0.04591597844432207, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 369.849, - "cuda_time_us": 778.687, - "pct_cuda_time": 0.8179487442092289, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 32.606, - "cuda_time_us": 270.079, - "pct_cuda_time": 0.28369650307156064, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 269.343, - "pct_cuda_time": 0.28292339362484076, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 99.906, - "cuda_time_us": 54.432, - "pct_cuda_time": 0.057176485603068684, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.432, - "pct_cuda_time": 0.057176485603068684, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 157.013, - "cuda_time_us": 264.512, - "pct_cuda_time": 0.27784881246029736, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.4, - "pct_cuda_time": 0.023529417943649662, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.384, - "pct_cuda_time": 0.2525042679895661, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.728, - "pct_cuda_time": 0.0018151265270815455, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 44.025, - "cuda_time_us": 189.664, - "pct_cuda_time": 0.1992269430743022, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 188.928, - "pct_cuda_time": 0.19845383362758232, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.634, - "cuda_time_us": 44.352, - "pct_cuda_time": 0.04658824752842633, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.352, - "pct_cuda_time": 0.04658824752842633, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 106.93, - "cuda_time_us": 2019.451, - "pct_cuda_time": 2.1212726158804136, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 35.64, - "cuda_time_us": 1263.325, - "pct_cuda_time": 1.3270224073063042, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.088, - "pct_cuda_time": 0.0011428574429772696, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1262.237, - "pct_cuda_time": 1.3258795498633271, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.815, - "cuda_time_us": 174.528, - "pct_cuda_time": 0.1833277792352361, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.528, - "pct_cuda_time": 0.1833277792352361, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 37.964, - "cuda_time_us": 581.598, - "pct_cuda_time": 0.6109224293388731, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 580.862, - "pct_cuda_time": 0.6101493198921532, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 519.703, - "cuda_time_us": 2888.6989999999996, - "pct_cuda_time": 3.034348485910841, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.059, - "cuda_time_us": 44.193, - "pct_cuda_time": 0.04642123067784418, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.193, - "pct_cuda_time": 0.04642123067784418, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 367.633, - "cuda_time_us": 780.255, - "pct_cuda_time": 0.8195958034652843, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 32.514, - "cuda_time_us": 270.432, - "pct_cuda_time": 0.2840673014882619, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.024, - "pct_cuda_time": 0.001075630534566842, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 269.408, - "pct_cuda_time": 0.28299167095369504, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 102.285, - "cuda_time_us": 54.368, - "pct_cuda_time": 0.057109258694658264, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.368, - "pct_cuda_time": 0.057109258694658264, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 157.515, - "cuda_time_us": 264.575, - "pct_cuda_time": 0.27791498894826383, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.528, - "pct_cuda_time": 0.02366387176047052, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.576, - "pct_cuda_time": 0.2527059487147974, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.471, - "pct_cuda_time": 0.0015451684729959224, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 44.42, - "cuda_time_us": 190.88, - "pct_cuda_time": 0.20050425433410035, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.024, - "pct_cuda_time": 0.001075630534566842, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 189.856, - "pct_cuda_time": 0.19942862379953352, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 18.138, - "cuda_time_us": 43.84, - "pct_cuda_time": 0.04605043226114292, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.84, - "pct_cuda_time": 0.04605043226114292, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 102.238, - "cuda_time_us": 2020.4109999999996, - "pct_cuda_time": 2.1222810195065693, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 35.5, - "cuda_time_us": 1263.3249999999998, - "pct_cuda_time": 1.327022407306304, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.503, - "pct_cuda_time": 0.001578781927201136, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1261.822, - "pct_cuda_time": 1.3254436253791029, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 22.382, - "cuda_time_us": 174.591, - "pct_cuda_time": 0.18339395572320263, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.591, - "pct_cuda_time": 0.18339395572320263, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 32.58, - "cuda_time_us": 582.495, - "pct_cuda_time": 0.611864656477063, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.056, - "pct_cuda_time": 0.0011092439887720558, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 581.439, - "pct_cuda_time": 0.6107554124882909, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 518.174, - "cuda_time_us": 2889.498, - "pct_cuda_time": 3.0351877718455276, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.858, - "cuda_time_us": 44.352, - "pct_cuda_time": 0.04658824752842633, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.352, - "pct_cuda_time": 0.04658824752842633, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 373.315, - "cuda_time_us": 778.111, - "pct_cuda_time": 0.817343702033535, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 31.84, - "cuda_time_us": 269.087, - "pct_cuda_time": 0.282654485991199, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 268.351, - "pct_cuda_time": 0.2818813765444791, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 115.585, - "cuda_time_us": 54.208, - "pct_cuda_time": 0.05694119142363219, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.208, - "pct_cuda_time": 0.05694119142363219, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 154.912, - "cuda_time_us": 264.32, - "pct_cuda_time": 0.27764713173506606, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.464, - "pct_cuda_time": 0.023596644852060093, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.512, - "pct_cuda_time": 0.25263872180638697, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.344, - "pct_cuda_time": 0.00141176507661898, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 41.914, - "cuda_time_us": 190.49599999999998, - "pct_cuda_time": 0.2001008928836378, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 189.76, - "pct_cuda_time": 0.19932778343691787, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.345, - "cuda_time_us": 44.128, - "pct_cuda_time": 0.04635295334898984, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.128, - "pct_cuda_time": 0.04635295334898984, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 97.913, - "cuda_time_us": 2022.907, - "pct_cuda_time": 2.1249028689345764, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.063, - "cuda_time_us": 1266.2369999999999, - "pct_cuda_time": 1.3300812316389785, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.024, - "pct_cuda_time": 0.001075630534566842, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1265.213, - "pct_cuda_time": 1.3290056011044116, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.678, - "cuda_time_us": 174.719, - "pct_cuda_time": 0.18352840954002347, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.719, - "pct_cuda_time": 0.18352840954002347, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 31.026, - "cuda_time_us": 581.951, - "pct_cuda_time": 0.6112932277555744, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 581.215, - "pct_cuda_time": 0.6105201183088546, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 514.779, - "cuda_time_us": 2886.105, - "pct_cuda_time": 3.0316236952793307, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.004, - "cuda_time_us": 43.904, - "pct_cuda_time": 0.04611765916955335, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.904, - "pct_cuda_time": 0.04611765916955335, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 366.733, - "cuda_time_us": 779.39, - "pct_cuda_time": 0.8186871897812996, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 30.587, - "cuda_time_us": 270.368, - "pct_cuda_time": 0.28400007457985144, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.024, - "pct_cuda_time": 0.001075630534566842, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 269.344, - "pct_cuda_time": 0.2829244440452846, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 100.786, - "cuda_time_us": 54.4, - "pct_cuda_time": 0.05714287214886347, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.4, - "pct_cuda_time": 0.05714287214886347, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 152.201, - "cuda_time_us": 264.959, - "pct_cuda_time": 0.27831835039872643, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.4, - "pct_cuda_time": 0.023529417943649662, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.863, - "pct_cuda_time": 0.25300741938220045, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.696, - "pct_cuda_time": 0.0017815130728763317, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 43.511, - "cuda_time_us": 189.66299999999998, - "pct_cuda_time": 0.19922589265385832, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 188.927, - "pct_cuda_time": 0.19845278320713838, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.895, - "cuda_time_us": 43.648, - "pct_cuda_time": 0.045848751535911635, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.648, - "pct_cuda_time": 0.045848751535911635, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 101.709, - "cuda_time_us": 2019.163, - "pct_cuda_time": 2.1209700947925665, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 35.532, - "cuda_time_us": 1262.461, - "pct_cuda_time": 1.3261148440427635, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.768, - "pct_cuda_time": 0.0008067229009251313, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1261.693, - "pct_cuda_time": 1.3253081211418383, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.834, - "cuda_time_us": 174.368, - "pct_cuda_time": 0.18315971196421005, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.368, - "pct_cuda_time": 0.18315971196421005, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 32.864, - "cuda_time_us": 582.3340000000001, - "pct_cuda_time": 0.6116955387855931, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.312, - "pct_cuda_time": 0.0013781516224137661, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 581.022, - "pct_cuda_time": 0.6103173871631794, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 534.281, - "cuda_time_us": 2889.374, - "pct_cuda_time": 3.0350575197104823, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.113, - "cuda_time_us": 44.641, - "pct_cuda_time": 0.04689181903671717, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.641, - "pct_cuda_time": 0.04689181903671717, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 389.037, - "cuda_time_us": 779.5830000000001, - "pct_cuda_time": 0.818889920926975, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 31.563, - "cuda_time_us": 270.94500000000005, - "pct_cuda_time": 0.28460616717598924, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.737, - "pct_cuda_time": 0.0007741598671638304, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 270.208, - "pct_cuda_time": 0.2838320073088254, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 109.628, - "cuda_time_us": 54.048, - "pct_cuda_time": 0.05677312415260612, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.048, - "pct_cuda_time": 0.05677312415260612, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 166.293, - "cuda_time_us": 265.43800000000005, - "pct_cuda_time": 0.2788215017913607, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.623, - "pct_cuda_time": 0.02376366170264225, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 241.311, - "pct_cuda_time": 0.2534780077410734, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.001579832347645049, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 43.82, - "cuda_time_us": 189.152, - "pct_cuda_time": 0.1986891278070188, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 188.416, - "pct_cuda_time": 0.1979160183602989, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.42, - "cuda_time_us": 43.2, - "pct_cuda_time": 0.04537816317703865, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.2, - "pct_cuda_time": 0.04537816317703865, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 97.672, - "cuda_time_us": 2021.9499999999998, - "pct_cuda_time": 2.1238976165697516, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.003, - "cuda_time_us": 1264.127, - "pct_cuda_time": 1.3278648445023222, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.057, - "pct_cuda_time": 0.0011102944092159686, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1263.07, - "pct_cuda_time": 1.3267545500931062, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.313, - "cuda_time_us": 174.24, - "pct_cuda_time": 0.18302525814738918, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.24, - "pct_cuda_time": 0.18302525814738918, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 31.258, - "cuda_time_us": 583.583, - "pct_cuda_time": 0.6130075139200403, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 582.847, - "pct_cuda_time": 0.6122344044733203, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 489.202, - "cuda_time_us": 2886.265, - "pct_cuda_time": 3.0317917625503568, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 13.907, - "cuda_time_us": 45.376, - "pct_cuda_time": 0.04766387806299318, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 45.376, - "pct_cuda_time": 0.04766387806299318, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 348.722, - "cuda_time_us": 778.2379999999999, - "pct_cuda_time": 0.817477105429912, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 30.863, - "cuda_time_us": 270.175, - "pct_cuda_time": 0.2837973434341763, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.024, - "pct_cuda_time": 0.001075630534566842, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 269.151, - "pct_cuda_time": 0.2827217128996094, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 104.311, - "cuda_time_us": 54.015, - "pct_cuda_time": 0.056738460277956995, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.015, - "pct_cuda_time": 0.056738460277956995, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 144.675, - "cuda_time_us": 264.928, - "pct_cuda_time": 0.2782857873649651, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.336, - "pct_cuda_time": 0.023462191035239235, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 241.28, - "pct_cuda_time": 0.2534454447073121, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.312, - "pct_cuda_time": 0.0013781516224137661, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 39.548, - "cuda_time_us": 189.11999999999998, - "pct_cuda_time": 0.19865551435281356, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.057, - "pct_cuda_time": 0.0011102944092159686, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 188.063, - "pct_cuda_time": 0.19754521994359764, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.886, - "cuda_time_us": 43.04, - "pct_cuda_time": 0.04521009590601257, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.04, - "pct_cuda_time": 0.04521009590601257, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 96.733, - "cuda_time_us": 2019.611, - "pct_cuda_time": 2.1214406831514396, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 33.556, - "cuda_time_us": 1262.621, - "pct_cuda_time": 1.3262829113137895, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1261.885, - "pct_cuda_time": 1.3255098018670695, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.202, - "cuda_time_us": 173.855, - "pct_cuda_time": 0.18262084627648267, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 173.855, - "pct_cuda_time": 0.18262084627648267, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 31.191, - "cuda_time_us": 583.135, - "pct_cuda_time": 0.6125369255611672, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.056, - "pct_cuda_time": 0.0011092439887720558, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 582.079, - "pct_cuda_time": 0.6114276815723952, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 518.435, - "cuda_time_us": 2887.2599999999998, - "pct_cuda_time": 3.03283693089205, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.369, - "cuda_time_us": 44.8, - "pct_cuda_time": 0.047058835887299325, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.8, - "pct_cuda_time": 0.047058835887299325, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 371.191, - "cuda_time_us": 777.8549999999999, - "pct_cuda_time": 0.8170747943998932, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 32.771, - "cuda_time_us": 269.792, - "pct_cuda_time": 0.2833950324041576, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.344, - "pct_cuda_time": 0.00141176507661898, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 268.448, - "pct_cuda_time": 0.2819832673275386, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 101.088, - "cuda_time_us": 54.272, - "pct_cuda_time": 0.057008418332042614, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.272, - "pct_cuda_time": 0.057008418332042614, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 152.609, - "cuda_time_us": 264.159, - "pct_cuda_time": 0.27747801404359607, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.272, - "pct_cuda_time": 0.02339496412682881, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.511, - "pct_cuda_time": 0.25263767138594306, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.376, - "pct_cuda_time": 0.0014453785308241936, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 44.91, - "cuda_time_us": 189.63199999999998, - "pct_cuda_time": 0.199193329620097, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 188.896, - "pct_cuda_time": 0.19842022017337707, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.96, - "cuda_time_us": 43.392, - "pct_cuda_time": 0.04557984390226993, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.392, - "pct_cuda_time": 0.04557984390226993, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 100.011, - "cuda_time_us": 2021.213, - "pct_cuda_time": 2.123123456702588, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 35.396, - "cuda_time_us": 1263.4859999999999, - "pct_cuda_time": 1.327191524997774, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.12, - "pct_cuda_time": 0.0011764708971824835, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1262.366, - "pct_cuda_time": 1.3260150541005917, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.404, - "cuda_time_us": 174.688, - "pct_cuda_time": 0.18349584650626216, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.688, - "pct_cuda_time": 0.18349584650626216, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 31.775, - "cuda_time_us": 583.039, - "pct_cuda_time": 0.6124360851985516, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 582.303, - "pct_cuda_time": 0.6116629757518317, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 503.524, - "cuda_time_us": 2890.0730000000003, - "pct_cuda_time": 3.035791763600778, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.693, - "cuda_time_us": 44.544, - "pct_cuda_time": 0.04678992825365762, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.544, - "pct_cuda_time": 0.04678992825365762, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 354.327, - "cuda_time_us": 779.232, - "pct_cuda_time": 0.8185212233511614, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 31.0, - "cuda_time_us": 269.889, - "pct_cuda_time": 0.2834969231872172, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.993, - "pct_cuda_time": 0.001043067500805541, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 268.896, - "pct_cuda_time": 0.2824538556864117, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 104.924, - "cuda_time_us": 53.888, - "pct_cuda_time": 0.056605056881580046, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 53.888, - "pct_cuda_time": 0.056605056881580046, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 147.664, - "cuda_time_us": 264.511, - "pct_cuda_time": 0.27784776203985345, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.304, - "pct_cuda_time": 0.023428577581034022, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.703, - "pct_cuda_time": 0.25283935211117436, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.001579832347645049, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 40.534, - "cuda_time_us": 190.944, - "pct_cuda_time": 0.20057148124251076, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.44, - "pct_cuda_time": 0.0015126054392346213, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 189.504, - "pct_cuda_time": 0.19905887580327616, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.955, - "cuda_time_us": 43.328, - "pct_cuda_time": 0.045512616993859493, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.328, - "pct_cuda_time": 0.045512616993859493, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 103.164, - "cuda_time_us": 2022.9690000000003, - "pct_cuda_time": 2.124967995002099, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 33.35, - "cuda_time_us": 1265.4050000000002, - "pct_cuda_time": 1.3292072818296432, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1264.669, - "pct_cuda_time": 1.3284341723829232, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.654, - "cuda_time_us": 174.911, - "pct_cuda_time": 0.18373009026525475, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.911, - "pct_cuda_time": 0.18373009026525475, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 38.097, - "cuda_time_us": 582.653, - "pct_cuda_time": 0.6120306229072013, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.311, - "pct_cuda_time": 0.001377101201969853, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 581.342, - "pct_cuda_time": 0.6106535217052315, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 500.18, - "cuda_time_us": 2885.53, - "pct_cuda_time": 3.0310197035240813, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.534, - "cuda_time_us": 44.736, - "pct_cuda_time": 0.046991608978888905, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.736, - "pct_cuda_time": 0.046991608978888905, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 354.171, - "cuda_time_us": 777.311, - "pct_cuda_time": 0.8165033656784048, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 31.562, - "cuda_time_us": 269.59999999999997, - "pct_cuda_time": 0.2831933516789263, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 268.864, - "pct_cuda_time": 0.28242024223220635, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 99.186, - "cuda_time_us": 53.984, - "pct_cuda_time": 0.0567058972441957, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 53.984, - "pct_cuda_time": 0.0567058972441957, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 154.066, - "cuda_time_us": 264.512, - "pct_cuda_time": 0.27784881246029736, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.56, - "pct_cuda_time": 0.023697485214675733, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.448, - "pct_cuda_time": 0.25257149489797653, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.001579832347645049, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 40.161, - "cuda_time_us": 189.215, - "pct_cuda_time": 0.19875530429498534, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.056, - "pct_cuda_time": 0.0011092439887720558, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 188.159, - "pct_cuda_time": 0.19764606030621326, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.784, - "cuda_time_us": 43.456, - "pct_cuda_time": 0.045647070810680354, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.456, - "pct_cuda_time": 0.045647070810680354, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 99.524, - "cuda_time_us": 2020.027, - "pct_cuda_time": 2.1218776580561074, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.921, - "cuda_time_us": 1262.749, - "pct_cuda_time": 1.3264173651306104, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.768, - "pct_cuda_time": 0.0008067229009251313, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1261.981, - "pct_cuda_time": 1.3256106422296852, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.192, - "cuda_time_us": 175.008, - "pct_cuda_time": 0.18383198104831433, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 175.008, - "pct_cuda_time": 0.18383198104831433, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 32.547, - "cuda_time_us": 582.27, - "pct_cuda_time": 0.6116283118771826, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 581.534, - "pct_cuda_time": 0.6108552024304627, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 546.694, - "cuda_time_us": 2891.098, - "pct_cuda_time": 3.0368684445557883, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.329, - "cuda_time_us": 43.648, - "pct_cuda_time": 0.045848751535911635, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.648, - "pct_cuda_time": 0.045848751535911635, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 380.947, - "cuda_time_us": 778.5889999999999, - "pct_cuda_time": 0.8178458030057253, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 31.909, - "cuda_time_us": 270.49600000000004, - "pct_cuda_time": 0.28413452839667236, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.992, - "pct_cuda_time": 0.001042017080361628, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 269.504, - "pct_cuda_time": 0.2830925113163107, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 110.521, - "cuda_time_us": 54.207, - "pct_cuda_time": 0.056940141003188276, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.207, - "pct_cuda_time": 0.056940141003188276, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 160.826, - "cuda_time_us": 264.83, - "pct_cuda_time": 0.27818284616146166, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 23.008, - "pct_cuda_time": 0.024168073573548728, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.351, - "pct_cuda_time": 0.252469604114917, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.471, - "pct_cuda_time": 0.0015451684729959224, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 47.0, - "cuda_time_us": 189.05599999999998, - "pct_cuda_time": 0.19858828744440316, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 188.32, - "pct_cuda_time": 0.19781517799768322, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 18.677, - "cuda_time_us": 43.04, - "pct_cuda_time": 0.04521009590601257, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.04, - "pct_cuda_time": 0.04521009590601257, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 117.127, - "cuda_time_us": 2025.821, - "pct_cuda_time": 2.1279637941081386, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 37.59, - "cuda_time_us": 1266.046, - "pct_cuda_time": 1.3298806013341913, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.44, - "pct_cuda_time": 0.0015126054392346213, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1264.606, - "pct_cuda_time": 1.3283679958949568, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 24.435, - "cuda_time_us": 174.624, - "pct_cuda_time": 0.18342861959785173, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.624, - "pct_cuda_time": 0.18342861959785173, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 34.606, - "cuda_time_us": 585.151, - "pct_cuda_time": 0.6146545731760957, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.088, - "pct_cuda_time": 0.0011428574429772696, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 584.063, - "pct_cuda_time": 0.6135117157331185, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 498.057, - "cuda_time_us": 2888.92, - "pct_cuda_time": 3.0345806288289463, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.883, - "cuda_time_us": 44.383, - "pct_cuda_time": 0.04662081056218764, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.383, - "pct_cuda_time": 0.04662081056218764, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 351.15, - "cuda_time_us": 778.7819999999999, - "pct_cuda_time": 0.8180485341514006, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 34.073, - "cuda_time_us": 270.143, - "pct_cuda_time": 0.283763729979971, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 269.407, - "pct_cuda_time": 0.2829906205332511, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 98.165, - "cuda_time_us": 53.472, - "pct_cuda_time": 0.056168081976912275, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 53.472, - "pct_cuda_time": 0.056168081976912275, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 149.239, - "cuda_time_us": 264.96, - "pct_cuda_time": 0.2783194008191703, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.976, - "pct_cuda_time": 0.02413446011934351, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.64, - "pct_cuda_time": 0.25277317562320784, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.344, - "pct_cuda_time": 0.00141176507661898, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 40.552, - "cuda_time_us": 190.207, - "pct_cuda_time": 0.19979732137534695, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.215, - "pct_cuda_time": 0.0012762608393542118, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 188.992, - "pct_cuda_time": 0.19852106053599275, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.642, - "cuda_time_us": 44.032, - "pct_cuda_time": 0.046252112986374196, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.032, - "pct_cuda_time": 0.046252112986374196, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 98.386, - "cuda_time_us": 2021.723, - "pct_cuda_time": 2.1236591711289834, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 35.67, - "cuda_time_us": 1264.157, - "pct_cuda_time": 1.3278963571156397, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.768, - "pct_cuda_time": 0.0008067229009251313, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1263.389, - "pct_cuda_time": 1.3270896342147145, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.224, - "cuda_time_us": 174.688, - "pct_cuda_time": 0.18349584650626216, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.688, - "pct_cuda_time": 0.18349584650626216, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 30.067, - "cuda_time_us": 582.878, - "pct_cuda_time": 0.6122669675070816, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.863, - "pct_cuda_time": 0.0009065128430968598, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 582.015, - "pct_cuda_time": 0.6113604546639848, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 518.638, - "cuda_time_us": 2889.399, - "pct_cuda_time": 3.0350837802215804, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.126, - "cuda_time_us": 43.808, - "pct_cuda_time": 0.046016818806937705, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.808, - "pct_cuda_time": 0.046016818806937705, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 365.823, - "cuda_time_us": 779.261, - "pct_cuda_time": 0.8185516855440349, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 30.136, - "cuda_time_us": 270.59200000000004, - "pct_cuda_time": 0.284235368759288, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.992, - "pct_cuda_time": 0.001042017080361628, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 269.6, - "pct_cuda_time": 0.28319335167892634, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 96.881, - "cuda_time_us": 53.727, - "pct_cuda_time": 0.056435939190110064, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 53.727, - "pct_cuda_time": 0.056435939190110064, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 167.878, - "cuda_time_us": 265.279, - "pct_cuda_time": 0.27865448494077855, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.528, - "pct_cuda_time": 0.02366387176047052, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 241.088, - "pct_cuda_time": 0.2532437639820808, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.663, - "pct_cuda_time": 0.001746849198227205, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 42.891, - "cuda_time_us": 189.66299999999998, - "pct_cuda_time": 0.19922589265385832, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 188.927, - "pct_cuda_time": 0.19845278320713838, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.59, - "cuda_time_us": 44.223, - "pct_cuda_time": 0.04645274329116157, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.223, - "pct_cuda_time": 0.04645274329116157, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 99.711, - "cuda_time_us": 2022.107, - "pct_cuda_time": 2.1240625325794458, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.975, - "cuda_time_us": 1264.6039999999998, - "pct_cuda_time": 1.3283658950540687, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.024, - "pct_cuda_time": 0.001075630534566842, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1263.58, - "pct_cuda_time": 1.327290264519502, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.167, - "cuda_time_us": 174.88, - "pct_cuda_time": 0.18369752723149346, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.88, - "pct_cuda_time": 0.18369752723149346, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 32.257, - "cuda_time_us": 582.623, - "pct_cuda_time": 0.6119991102938839, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.312, - "pct_cuda_time": 0.0013781516224137661, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 581.311, - "pct_cuda_time": 0.6106209586714701, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 515.238, - "cuda_time_us": 2892.633, - "pct_cuda_time": 3.0384808399371943, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 13.985, - "cuda_time_us": 43.647, - "pct_cuda_time": 0.045847701115467716, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.647, - "pct_cuda_time": 0.045847701115467716, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 373.698, - "cuda_time_us": 781.887, - "pct_cuda_time": 0.8213100896297503, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 31.169, - "cuda_time_us": 270.65599999999995, - "pct_cuda_time": 0.28430259566769833, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.768, - "pct_cuda_time": 0.0008067229009251313, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 269.888, - "pct_cuda_time": 0.28349587276677324, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 115.651, - "cuda_time_us": 54.944, - "pct_cuda_time": 0.05771430087035211, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.944, - "pct_cuda_time": 0.05771430087035211, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 154.627, - "cuda_time_us": 264.79900000000004, - "pct_cuda_time": 0.2781502831277004, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.463, - "pct_cuda_time": 0.02359559443161618, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.671, - "pct_cuda_time": 0.25280573865696915, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.665, - "pct_cuda_time": 0.001748950039115031, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 41.103, - "cuda_time_us": 191.488, - "pct_cuda_time": 0.20114290996399942, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.088, - "pct_cuda_time": 0.0011428574429772696, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 190.4, - "pct_cuda_time": 0.20000005252102218, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.515, - "cuda_time_us": 44.448, - "pct_cuda_time": 0.04668908789104198, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.448, - "pct_cuda_time": 0.04668908789104198, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 96.183, - "cuda_time_us": 2022.6509999999998, - "pct_cuda_time": 2.1246339613009346, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 33.105, - "cuda_time_us": 1267.3890000000001, - "pct_cuda_time": 1.3312913159903663, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1266.653, - "pct_cuda_time": 1.3305182065436465, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.789, - "cuda_time_us": 174.303, - "pct_cuda_time": 0.18309143463535568, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.303, - "pct_cuda_time": 0.18309143463535568, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 30.916, - "cuda_time_us": 580.959, - "pct_cuda_time": 0.6102512106752127, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 580.223, - "pct_cuda_time": 0.6094781012284928, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 497.529, - "cuda_time_us": 2890.934, - "pct_cuda_time": 3.036696175602987, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.175, - "cuda_time_us": 43.936, - "pct_cuda_time": 0.04615127262375855, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.936, - "pct_cuda_time": 0.04615127262375855, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 357.207, - "cuda_time_us": 780.988, - "pct_cuda_time": 0.8203657616506725, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 31.953, - "cuda_time_us": 272.063, - "pct_cuda_time": 0.28578053723228386, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.96, - "pct_cuda_time": 0.0010084036261564142, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 271.103, - "pct_cuda_time": 0.28477213360612746, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 100.11, - "cuda_time_us": 53.888, - "pct_cuda_time": 0.056605056881580046, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 53.888, - "pct_cuda_time": 0.056605056881580046, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 148.878, - "cuda_time_us": 265.183, - "pct_cuda_time": 0.2785536445781629, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.304, - "pct_cuda_time": 0.023428577581034022, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 241.567, - "pct_cuda_time": 0.25374691537471517, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.312, - "pct_cuda_time": 0.0013781516224137661, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 47.415, - "cuda_time_us": 189.854, - "pct_cuda_time": 0.19942652295864569, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.735, - "pct_cuda_time": 0.0007720590262760047, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 189.119, - "pct_cuda_time": 0.19865446393236966, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.619, - "cuda_time_us": 43.904, - "pct_cuda_time": 0.04611765916955335, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.904, - "pct_cuda_time": 0.04611765916955335, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 95.559, - "cuda_time_us": 2022.106, - "pct_cuda_time": 2.1240614821590023, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 33.44, - "cuda_time_us": 1265.117, - "pct_cuda_time": 1.328904760741796, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.056, - "pct_cuda_time": 0.0011092439887720558, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1264.061, - "pct_cuda_time": 1.327795516753024, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.929, - "cuda_time_us": 173.952, - "pct_cuda_time": 0.18272273705954226, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 173.952, - "pct_cuda_time": 0.18272273705954226, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 30.743, - "cuda_time_us": 583.037, - "pct_cuda_time": 0.6124339843576638, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.735, - "pct_cuda_time": 0.0007720590262760047, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 582.302, - "pct_cuda_time": 0.6116619253313879, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 510.321, - "cuda_time_us": 2893.3679999999995, - "pct_cuda_time": 3.03925289896347, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 13.627, - "cuda_time_us": 44.832, - "pct_cuda_time": 0.04709244934150454, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.832, - "pct_cuda_time": 0.04709244934150454, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 361.755, - "cuda_time_us": 781.0539999999999, - "pct_cuda_time": 0.8204350893999707, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 30.153, - "cuda_time_us": 272.352, - "pct_cuda_time": 0.2860841087405747, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.376, - "pct_cuda_time": 0.0014453785308241936, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 270.976, - "pct_cuda_time": 0.2846387302097505, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 104.032, - "cuda_time_us": 54.017, - "pct_cuda_time": 0.056740561118844825, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.017, - "pct_cuda_time": 0.056740561118844825, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 154.219, - "cuda_time_us": 264.702, - "pct_cuda_time": 0.2780483923446408, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.623, - "pct_cuda_time": 0.02376366170264225, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.736, - "pct_cuda_time": 0.25287401598582343, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.343, - "pct_cuda_time": 0.001410714656175067, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 44.415, - "cuda_time_us": 189.983, - "pct_cuda_time": 0.19956202719591046, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.216, - "pct_cuda_time": 0.0012773112597981246, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 188.767, - "pct_cuda_time": 0.19828471593611235, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.722, - "cuda_time_us": 43.808, - "pct_cuda_time": 0.046016818806937705, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.808, - "pct_cuda_time": 0.046016818806937705, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 101.802, - "cuda_time_us": 2023.6739999999998, - "pct_cuda_time": 2.125708541415057, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 36.684, - "cuda_time_us": 1264.6999999999998, - "pct_cuda_time": 1.3284667354166841, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.735, - "pct_cuda_time": 0.0007720590262760047, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1263.965, - "pct_cuda_time": 1.3276946763904083, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.156, - "cuda_time_us": 174.271, - "pct_cuda_time": 0.18305782118115047, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.271, - "pct_cuda_time": 0.18305782118115047, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 32.317, - "cuda_time_us": 584.703, - "pct_cuda_time": 0.6141839848172227, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.088, - "pct_cuda_time": 0.0011428574429772696, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 583.615, - "pct_cuda_time": 0.6130411273742455, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 506.453, - "cuda_time_us": 2886.967, - "pct_cuda_time": 3.032529157701984, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.579, - "cuda_time_us": 44.672, - "pct_cuda_time": 0.04692438207047847, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.672, - "pct_cuda_time": 0.04692438207047847, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 361.843, - "cuda_time_us": 777.758, - "pct_cuda_time": 0.8169729036168338, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 31.09, - "cuda_time_us": 269.471, - "pct_cuda_time": 0.28305784744166157, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 268.735, - "pct_cuda_time": 0.28228473799494164, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 99.716, - "cuda_time_us": 53.92, - "pct_cuda_time": 0.05663867033578526, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 53.92, - "pct_cuda_time": 0.05663867033578526, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 160.414, - "cuda_time_us": 264.767, - "pct_cuda_time": 0.27811666967349513, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.592, - "pct_cuda_time": 0.023731098668880946, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.671, - "pct_cuda_time": 0.25280573865696915, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.001579832347645049, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 42.245, - "cuda_time_us": 189.6, - "pct_cuda_time": 0.1991597161658918, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.376, - "pct_cuda_time": 0.0014453785308241936, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 188.224, - "pct_cuda_time": 0.1977143376350676, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.154, - "cuda_time_us": 43.103, - "pct_cuda_time": 0.045276272393979085, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.103, - "pct_cuda_time": 0.045276272393979085, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 97.526, - "cuda_time_us": 2021.4340000000002, - "pct_cuda_time": 2.123355599620693, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 33.458, - "cuda_time_us": 1264.604, - "pct_cuda_time": 1.3283658950540689, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.055, - "pct_cuda_time": 0.0011081935683281427, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1263.549, - "pct_cuda_time": 1.3272577014857405, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.975, - "cuda_time_us": 174.079, - "pct_cuda_time": 0.18285614045591922, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.079, - "pct_cuda_time": 0.18285614045591922, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 31.949, - "cuda_time_us": 582.7510000000001, - "pct_cuda_time": 0.6121335641107049, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.344, - "pct_cuda_time": 0.00141176507661898, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 581.407, - "pct_cuda_time": 0.6107217990340857, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 481.086, - "cuda_time_us": 2891.4800000000005, - "pct_cuda_time": 3.0372697051653637, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.318, - "cuda_time_us": 44.544, - "pct_cuda_time": 0.04678992825365762, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.544, - "pct_cuda_time": 0.04678992825365762, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 339.956, - "cuda_time_us": 779.389, - "pct_cuda_time": 0.8186861393608558, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 30.614, - "cuda_time_us": 270.207, - "pct_cuda_time": 0.2838309568883815, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 269.471, - "pct_cuda_time": 0.28305784744166157, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 95.132, - "cuda_time_us": 54.24, - "pct_cuda_time": 0.056974804877837404, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.24, - "pct_cuda_time": 0.056974804877837404, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 147.014, - "cuda_time_us": 265.40700000000004, - "pct_cuda_time": 0.2787889387575994, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.656, - "pct_cuda_time": 0.023798325577291373, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 241.055, - "pct_cuda_time": 0.2532091001074317, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.696, - "pct_cuda_time": 0.0017815130728763317, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 39.151, - "cuda_time_us": 189.535, - "pct_cuda_time": 0.19909143883703748, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.088, - "pct_cuda_time": 0.0011428574429772696, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 188.447, - "pct_cuda_time": 0.19794858139406019, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.522, - "cuda_time_us": 43.488, - "pct_cuda_time": 0.045680684264885564, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.488, - "pct_cuda_time": 0.045680684264885564, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 97.426, - "cuda_time_us": 2024.0590000000002, - "pct_cuda_time": 2.1261129532859644, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.173, - "cuda_time_us": 1265.853, - "pct_cuda_time": 1.3296778701885161, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1265.117, - "pct_cuda_time": 1.328904760741796, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.207, - "cuda_time_us": 175.104, - "pct_cuda_time": 0.18393282141092995, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 175.104, - "pct_cuda_time": 0.18393282141092995, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 31.376, - "cuda_time_us": 583.102, - "pct_cuda_time": 0.6125022616865181, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.12, - "pct_cuda_time": 0.0011764708971824835, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 581.982, - "pct_cuda_time": 0.6113257907893357, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 530.572, - "cuda_time_us": 2893.7209999999995, - "pct_cuda_time": 3.0396236973801716, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.32, - "cuda_time_us": 43.583, - "pct_cuda_time": 0.04578047420705729, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.583, - "pct_cuda_time": 0.04578047420705729, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 380.175, - "cuda_time_us": 780.6379999999999, - "pct_cuda_time": 0.8199981144953029, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 33.39, - "cuda_time_us": 271.551, - "pct_cuda_time": 0.28524272196500045, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.735, - "pct_cuda_time": 0.0007720590262760047, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 270.816, - "pct_cuda_time": 0.2844706629387244, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 106.855, - "cuda_time_us": 54.048, - "pct_cuda_time": 0.05677312415260612, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.048, - "pct_cuda_time": 0.05677312415260612, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 166.59, - "cuda_time_us": 264.799, - "pct_cuda_time": 0.27815028312770035, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.464, - "pct_cuda_time": 0.023596644852060093, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.863, - "pct_cuda_time": 0.25300741938220045, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.472, - "pct_cuda_time": 0.0015462188934398352, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 43.711, - "cuda_time_us": 190.23999999999998, - "pct_cuda_time": 0.19983198524999604, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 189.504, - "pct_cuda_time": 0.19905887580327616, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 18.503, - "cuda_time_us": 43.552, - "pct_cuda_time": 0.04574791117329599, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.552, - "pct_cuda_time": 0.04574791117329599, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 101.997, - "cuda_time_us": 2025.9479999999999, - "pct_cuda_time": 2.1280971975045153, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 36.484, - "cuda_time_us": 1268.062, - "pct_cuda_time": 1.3319982489491198, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.408, - "pct_cuda_time": 0.0014789919850294075, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1266.654, - "pct_cuda_time": 1.3305192569640902, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 22.161, - "cuda_time_us": 174.783, - "pct_cuda_time": 0.18359563644843388, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.783, - "pct_cuda_time": 0.18359563644843388, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 32.055, - "cuda_time_us": 583.103, - "pct_cuda_time": 0.6125033121069621, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 582.367, - "pct_cuda_time": 0.6117302026602421, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 504.368, - "cuda_time_us": 2888.059, - "pct_cuda_time": 3.0336762168267373, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.053, - "cuda_time_us": 43.584, - "pct_cuda_time": 0.04578152462750121, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.584, - "pct_cuda_time": 0.04578152462750121, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 360.172, - "cuda_time_us": 778.495, - "pct_cuda_time": 0.8177470634839976, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 31.913, - "cuda_time_us": 269.887, - "pct_cuda_time": 0.28349482234632933, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.024, - "pct_cuda_time": 0.001075630534566842, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 268.863, - "pct_cuda_time": 0.2824191918117625, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 98.704, - "cuda_time_us": 54.144, - "pct_cuda_time": 0.05687396451522177, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 54.144, - "pct_cuda_time": 0.05687396451522177, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 161.742, - "cuda_time_us": 264.352, - "pct_cuda_time": 0.27768074518927127, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.88, - "pct_cuda_time": 0.02403361975672787, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.128, - "pct_cuda_time": 0.2522353603559244, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.344, - "pct_cuda_time": 0.00141176507661898, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 40.174, - "cuda_time_us": 190.112, - "pct_cuda_time": 0.19969753143317523, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.057, - "pct_cuda_time": 0.0011102944092159686, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 189.055, - "pct_cuda_time": 0.19858723702395925, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.077, - "cuda_time_us": 43.296, - "pct_cuda_time": 0.04547900353965428, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.296, - "pct_cuda_time": 0.04547900353965428, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 97.604, - "cuda_time_us": 2022.684, - "pct_cuda_time": 2.124668625175584, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.16, - "cuda_time_us": 1264.221, - "pct_cuda_time": 1.3279635840240502, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1263.485, - "pct_cuda_time": 1.3271904745773302, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.809, - "cuda_time_us": 174.847, - "pct_cuda_time": 0.18366286335684434, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.847, - "pct_cuda_time": 0.18366286335684434, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 31.664, - "cuda_time_us": 583.616, - "pct_cuda_time": 0.6130421777946894, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.185, - "pct_cuda_time": 0.001244748226036824, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 582.431, - "pct_cuda_time": 0.6117974295686527, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 487.127, - "cuda_time_us": 2892.026, - "pct_cuda_time": 3.0378432347277395, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 13.862, - "cuda_time_us": 43.904, - "pct_cuda_time": 0.04611765916955335, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.904, - "pct_cuda_time": 0.04611765916955335, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 350.574, - "cuda_time_us": 780.0300000000001, - "pct_cuda_time": 0.8193594588654041, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 30.098, - "cuda_time_us": 270.784, - "pct_cuda_time": 0.28443704948451926, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 270.048, - "pct_cuda_time": 0.2836639400377993, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 98.322, - "cuda_time_us": 53.92, - "pct_cuda_time": 0.05663867033578526, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 53.92, - "pct_cuda_time": 0.05663867033578526, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 155.635, - "cuda_time_us": 265.024, - "pct_cuda_time": 0.27838662772758077, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.816, - "pct_cuda_time": 0.023966392848317444, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.512, - "pct_cuda_time": 0.25263872180638697, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.696, - "pct_cuda_time": 0.0017815130728763317, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 39.524, - "cuda_time_us": 190.30200000000002, - "pct_cuda_time": 0.19989711131751872, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.735, - "pct_cuda_time": 0.0007720590262760047, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 189.567, - "pct_cuda_time": 0.1991250522912427, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.869, - "cuda_time_us": 42.688, - "pct_cuda_time": 0.04484034790975522, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 42.688, - "pct_cuda_time": 0.04484034790975522, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 92.808, - "cuda_time_us": 2025.404, - "pct_cuda_time": 2.127525768783027, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 32.394, - "cuda_time_us": 1265.981, - "pct_cuda_time": 1.329812324005337, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.088, - "pct_cuda_time": 0.0011428574429772696, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1264.893, - "pct_cuda_time": 1.3286694665623595, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.215, - "cuda_time_us": 174.848, - "pct_cuda_time": 0.18366391377728827, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 174.848, - "pct_cuda_time": 0.18366391377728827, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 30.212, - "cuda_time_us": 584.5749999999999, - "pct_cuda_time": 0.6140495310004018, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.376, - "pct_cuda_time": 0.0014453785308241936, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 583.199, - "pct_cuda_time": 0.6126041524695777, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 494.076, - "cuda_time_us": 3203.833, - "pct_cuda_time": 3.3653716820828987, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 13.793, - "cuda_time_us": 43.808, - "pct_cuda_time": 0.046016818806937705, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 43.808, - "pct_cuda_time": 0.046016818806937705, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 349.317, - "cuda_time_us": 781.087, - "pct_cuda_time": 0.8204697532746198, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 30.899, - "cuda_time_us": 271.392, - "pct_cuda_time": 0.28507570511441827, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.056, - "pct_cuda_time": 0.0011092439887720558, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 270.336, - "pct_cuda_time": 0.2839664611256463, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 96.661, - "cuda_time_us": 53.952, - "pct_cuda_time": 0.05667228378999048, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 53.952, - "pct_cuda_time": 0.05667228378999048, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 150.931, - "cuda_time_us": 264.863, - "pct_cuda_time": 0.2782175100361108, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 22.463, - "pct_cuda_time": 0.02359559443161618, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 240.703, - "pct_cuda_time": 0.25283935211117436, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.697, - "pct_cuda_time": 0.0017825634933202447, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 43.047, - "cuda_time_us": 190.88, - "pct_cuda_time": 0.20050425433410035, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.768, - "pct_cuda_time": 0.0008067229009251313, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 190.112, - "pct_cuda_time": 0.19969753143317523, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.721, - "cuda_time_us": 44.64, - "pct_cuda_time": 0.04689076861627326, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.64, - "pct_cuda_time": 0.04689076861627326, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 99.133, - "cuda_time_us": 2334.2980000000002, - "pct_cuda_time": 2.4519943413850687, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.832, - "cuda_time_us": 1479.6760000000002, - "pct_cuda_time": 1.5542819207673109, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1478.94, - "pct_cuda_time": 1.5535088113205908, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.526, - "cuda_time_us": 186.144, - "pct_cuda_time": 0.19552946311172872, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 186.144, - "pct_cuda_time": 0.19552946311172872, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 31.294, - "cuda_time_us": 668.4780000000001, - "pct_cuda_time": 0.7021829575060287, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.056, - "pct_cuda_time": 0.0011092439887720558, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 667.422, - "pct_cuda_time": 0.7010737135172566, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 501.846, - "cuda_time_us": 3342.331, - "pct_cuda_time": 3.5108528127239524, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.015, - "cuda_time_us": 44.672, - "pct_cuda_time": 0.04692438207047847, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.672, - "pct_cuda_time": 0.04692438207047847, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 356.278, - "cuda_time_us": 911.0390000000001, - "pct_cuda_time": 0.9569739908019933, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 31.694, - "cuda_time_us": 312.0, - "pct_cuda_time": 0.3277311785008346, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 311.264, - "pct_cuda_time": 0.32695806905411473, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 95.252, - "cuda_time_us": 58.944, - "pct_cuda_time": 0.06191598264600383, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 58.944, - "pct_cuda_time": 0.06191598264600383, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 158.141, - "cuda_time_us": 317.024, - "pct_cuda_time": 0.33300849081105316, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 24.064, - "pct_cuda_time": 0.025277317562320784, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 291.488, - "pct_cuda_time": 0.3061849543552925, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.472, - "pct_cuda_time": 0.0015462188934398352, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 41.667, - "cuda_time_us": 223.071, - "pct_cuda_time": 0.23431833884410155, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 222.335, - "pct_cuda_time": 0.23354522939738162, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.255, - "cuda_time_us": 44.704, - "pct_cuda_time": 0.04695799552468369, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.704, - "pct_cuda_time": 0.04695799552468369, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 97.368, - "cuda_time_us": 2341.916, - "pct_cuda_time": 2.459996444326797, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.445, - "cuda_time_us": 1487.741, - "pct_cuda_time": 1.5627535616474686, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.024, - "pct_cuda_time": 0.001075630534566842, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1486.717, - "pct_cuda_time": 1.5616779311129019, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.028, - "cuda_time_us": 186.272, - "pct_cuda_time": 0.1956639169285496, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 186.272, - "pct_cuda_time": 0.1956639169285496, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 30.9, - "cuda_time_us": 667.903, - "pct_cuda_time": 0.7015789657507787, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 667.167, - "pct_cuda_time": 0.7008058563040588, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 499.387, - "cuda_time_us": 3345.6899999999996, - "pct_cuda_time": 3.514381174995055, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.544, - "cuda_time_us": 45.343, - "pct_cuda_time": 0.04762921418834406, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 45.343, - "pct_cuda_time": 0.04762921418834406, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 348.963, - "cuda_time_us": 913.343, - "pct_cuda_time": 0.9593941595047685, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 29.813, - "cuda_time_us": 313.472, - "pct_cuda_time": 0.3292773973942744, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.44, - "pct_cuda_time": 0.0015126054392346213, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 312.032, - "pct_cuda_time": 0.3277647919550398, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 96.212, - "cuda_time_us": 58.975, - "pct_cuda_time": 0.06194854567976514, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 58.975, - "pct_cuda_time": 0.06194854567976514, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 150.812, - "cuda_time_us": 317.217, - "pct_cuda_time": 0.33321122195672837, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 24.321, - "pct_cuda_time": 0.025547275616406406, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 291.424, - "pct_cuda_time": 0.30611772744688215, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.472, - "pct_cuda_time": 0.0015462188934398352, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 43.116, - "cuda_time_us": 223.679, - "pct_cuda_time": 0.2349569944740006, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.056, - "pct_cuda_time": 0.0011092439887720558, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 222.623, - "pct_cuda_time": 0.23384775048522852, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.749, - "cuda_time_us": 45.92, - "pct_cuda_time": 0.04823530678448182, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 45.92, - "pct_cuda_time": 0.04823530678448182, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 102.536, - "cuda_time_us": 2341.084, - "pct_cuda_time": 2.459122494517461, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 35.958, - "cuda_time_us": 1487.133, - "pct_cuda_time": 1.5621149060175694, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.768, - "pct_cuda_time": 0.0008067229009251313, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1486.365, - "pct_cuda_time": 1.5613081831166444, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.749, - "cuda_time_us": 186.527, - "pct_cuda_time": 0.19593177414174734, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 186.527, - "pct_cuda_time": 0.19593177414174734, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 33.092, - "cuda_time_us": 667.424, - "pct_cuda_time": 0.7010758143581444, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.025, - "pct_cuda_time": 0.0010766809550107547, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 666.399, - "pct_cuda_time": 0.6999991334031336, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 505.974, - "cuda_time_us": 3338.263, - "pct_cuda_time": 3.506579702358114, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.638, - "cuda_time_us": 45.984, - "pct_cuda_time": 0.04830253369289224, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 45.984, - "pct_cuda_time": 0.04830253369289224, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 362.856, - "cuda_time_us": 909.6619999999999, - "pct_cuda_time": 0.955527561850725, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 31.394, - "cuda_time_us": 310.687, - "pct_cuda_time": 0.326351976457977, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 309.951, - "pct_cuda_time": 0.32557886701125704, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[4096, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 101.38, - "cuda_time_us": 58.528, - "pct_cuda_time": 0.06147900774133605, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 58.528, - "pct_cuda_time": 0.06147900774133605, - "trace": "_C::rotary_embedding(int64[4096], bfloat16[4096, 4096], bfloat16[4096, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 157.531, - "cuda_time_us": 316.671, - "pct_cuda_time": 0.3326376923943519, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 24.256, - "pct_cuda_time": 0.025478998287552068, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[4096], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, false, false, true, true, true, false, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, cutlass::bfloat16_t, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, false, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 290.783, - "pct_cuda_time": 0.30544440794233396, - "trace": "_vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.632, - "pct_cuda_time": 0.001714286164465904, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], None, None, bfloat16[4096, 32, 128], int32[2], int32[2], None, None, None, 4096, 4096, None, None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[4096, 32, 128], bfloat16[4096, 8, 128], bfloat16[4096, 8, 128], bfloat16[4096, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 42.344, - "cuda_time_us": 223.77599999999998, - "pct_cuda_time": 0.23505888525706012, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.408, - "pct_cuda_time": 0.0014789919850294075, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 222.368, - "pct_cuda_time": 0.23357989327203071, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[4096, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.488, - "cuda_time_us": 44.256, - "pct_cuda_time": 0.04648740716581069, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 44.256, - "pct_cuda_time": 0.04648740716581069, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 96.544, - "cuda_time_us": 2338.361, - "pct_cuda_time": 2.456262199648686, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 33.686, - "cuda_time_us": 1486.971, - "pct_cuda_time": 1.5619447379056557, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 1.087, - "pct_cuda_time": 0.0011418070225333564, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 1485.884, - "pct_cuda_time": 1.5608029308831224, - "trace": "mm(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[4096, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[4096, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.706, - "cuda_time_us": 186.047, - "pct_cuda_time": 0.19542757232866914, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 186.047, - "pct_cuda_time": 0.19542757232866914, - "trace": "_C::silu_and_mul(bfloat16[4096, 14336], bfloat16[4096, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 31.501, - "cuda_time_us": 665.343, - "pct_cuda_time": 0.6988898894143616, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.736, - "pct_cuda_time": 0.0007731094467199176, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x256x64_warpgroupsize2x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 664.607, - "pct_cuda_time": 0.6981167799676417, - "trace": "mm(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[4096, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[4096, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.776, - "cuda_time_us": 45.407, - "pct_cuda_time": 0.04769644109675447, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 45.407, - "pct_cuda_time": 0.04769644109675447, - "trace": "_C::fused_add_rms_norm(bfloat16[4096, 4096], bfloat16[4096, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "LogitsProcessor", - "cpu_time_us": 91.588, - "cuda_time_us": 356.608, - "pct_cuda_time": 0.3745883336629027, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void at::native::(anonymous namespace)::indexSelectSmallIndex(at::cuda::detail::TensorInfo, at::cuda::detail::TensorInfo, at::cuda::detail::TensorInfo, int, int, unsigned int, long)", - "cpu_time_us": 0, - "cuda_time_us": 3.265, - "pct_cuda_time": 0.0034296227493757214, - "trace": "index_select(bfloat16[4096, 4096], 0, int64[1])" - }, - "children": [] - }, - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.768, - "pct_cuda_time": 0.0008067229009251313, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 128256]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 128256]) <- linear(bfloat16[1, 4096], bfloat16[128256, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 352.575, - "pct_cuda_time": 0.37035198801260183, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 128256]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 128256]) <- linear(bfloat16[1, 4096], bfloat16[128256, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Sampler", - "cpu_time_us": 78884.866, - "cuda_time_us": 144.192, - "pct_cuda_time": 0.1514622246486934, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memcpy HtoD (Pinned -> Device)", - "cpu_time_us": 0, - "cuda_time_us": 3.36, - "pct_cuda_time": 0.00352941269154745, - "trace": "copy_(bfloat16[1], bfloat16[1], True) <- _to_copy(bfloat16[1], 15, 0, None, None, True, None) <- to(bfloat16[1], 15, 0, None, None, True, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "Memcpy HtoD (Pinned -> Device)", - "cpu_time_us": 0, - "cuda_time_us": 2.176, - "pct_cuda_time": 0.0022857148859545392, - "trace": "copy_(bfloat16[1], bfloat16[1], True) <- _to_copy(bfloat16[1], 15, 0, None, None, True, None) <- to(bfloat16[1], 15, 0, None, None, True, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "Memcpy HtoD (Pinned -> Device)", - "cpu_time_us": 0, - "cuda_time_us": 2.176, - "pct_cuda_time": 0.0022857148859545392, - "trace": "copy_(int32[1], int32[1], True) <- _to_copy(int32[1], 3, 0, None, None, True, None) <- to(int32[1], 3, 0, None, None, True, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "Memcpy HtoD (Pinned -> Device)", - "cpu_time_us": 0, - "cuda_time_us": 2.208, - "pct_cuda_time": 0.0023193283401597526, - "trace": "copy_(bfloat16[1], bfloat16[1], True) <- _to_copy(bfloat16[1], 15, 0, None, None, True, None) <- to(bfloat16[1], 15, 0, None, None, True, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "Memcpy HtoD (Pinned -> Device)", - "cpu_time_us": 0, - "cuda_time_us": 2.208, - "pct_cuda_time": 0.0023193283401597526, - "trace": "copy_(bfloat16[1], bfloat16[1], True) <- _to_copy(bfloat16[1], 15, 0, None, None, True, None) <- to(bfloat16[1], 15, 0, None, None, True, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "Memcpy HtoD (Pinned -> Device)", - "cpu_time_us": 0, - "cuda_time_us": 2.176, - "pct_cuda_time": 0.0022857148859545392, - "trace": "copy_(bfloat16[1], bfloat16[1], True) <- _to_copy(bfloat16[1], 15, 0, None, None, True, None) <- to(bfloat16[1], 15, 0, None, None, True, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "Memcpy HtoD (Pinned -> Device)", - "cpu_time_us": 0, - "cuda_time_us": 2.24, - "pct_cuda_time": 0.002352941794364967, - "trace": "copy_(bfloat16[1], bfloat16[1], True) <- _to_copy(bfloat16[1], 15, 0, None, None, True, None) <- to(bfloat16[1], 15, 0, None, None, True, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::unrolled_elementwise_kernel, TrivialOffsetCalculator<1, unsigned int>, TrivialOffsetCalculator<1, unsigned int>, at::native::memory::LoadWithCast<1>, at::native::memory::StoreWithCast<1> >(int, at::native::direct_copy_kernel_cuda(at::TensorIteratorBase&)::{lambda()#3}::operator()() const::{lambda()#7}::operator()() const::{lambda(float)#1}, at::detail::Array, TrivialOffsetCalculator<1, unsigned int>, TrivialOffsetCalculator<1, unsigned int>, at::native::memory::LoadWithCast<1>, at::native::memory::StoreWithCast<1>)", - "cpu_time_us": 0, - "cuda_time_us": 4.704, - "pct_cuda_time": 0.0049411777681664295, - "trace": "copy_(float32[1, 128256], bfloat16[1, 128256], False) <- _to_copy(bfloat16[1, 128256], 6, None, None, None, False, None) <- to(bfloat16[1, 128256], 6, False, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::elementwise_kernel<128, 4, at::native::gpu_kernel_impl > >(at::TensorIteratorBase&, at::native::BinaryFunctor > const&)::{lambda(int)#1}>(int, at::native::gpu_kernel_impl > >(at::TensorIteratorBase&, at::native::BinaryFunctor > const&)::{lambda(int)#1})", - "cpu_time_us": 0, - "cuda_time_us": 5.376, - "pct_cuda_time": 0.00564706030647592, - "trace": "div_(float32[1, 128256], bfloat16[1, 1])" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::(anonymous namespace)::cunn_SoftMaxForward<4, float, float, float, at::native::(anonymous namespace)::SoftMaxForwardEpilogue>(float*, float const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 40.64, - "pct_cuda_time": 0.04268908684062153, - "trace": "_softmax(float32[1, 128256], -1, False) <- softmax(float32[1, 128256], -1, 6)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::(anonymous namespace)::cunn_SoftMaxForward<4, float, float, float, at::native::(anonymous namespace)::LogSoftMaxForwardEpilogue>(float*, float const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 32.576, - "pct_cuda_time": 0.034218496380907654, - "trace": "_log_softmax(float32[1, 128256], -1, False) <- log_softmax(float32[1, 128256], -1, 6)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::unrolled_elementwise_kernel, TrivialOffsetCalculator<1, unsigned int>, TrivialOffsetCalculator<1, unsigned int>, at::native::memory::LoadWithCast<1>, at::native::memory::StoreWithCast<1> >(int, at::native::direct_copy_kernel_cuda(at::TensorIteratorBase&)::{lambda()#3}::operator()() const::{lambda()#4}::operator()() const::{lambda(long)#1}, at::detail::Array, TrivialOffsetCalculator<1, unsigned int>, TrivialOffsetCalculator<1, unsigned int>, at::native::memory::LoadWithCast<1>, at::native::memory::StoreWithCast<1>)", - "cpu_time_us": 0, - "cuda_time_us": 2.144, - "pct_cuda_time": 0.0022521014317493254, - "trace": "copy_(int64[1], int32[1], False) <- _to_copy(int32[1], 4, None, None, None, False, None) <- to(int32[1], 4, False, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::index_elementwise_kernel<128, 4, at::native::gpu_index_kernel >(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef)::{lambda(char*, char const*, long)#1}>(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef, at::native::index_kernel_impl >(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef)::{lambda(char*, char const*, long)#1} const&)::{lambda(int)#1}>(long, at::native::gpu_index_kernel >(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef)::{lambda(char*, char const*, long)#1}>(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef, at::native::index_kernel_impl >(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef)::{lambda(char*, char const*, long)#1} const&)::{lambda(int)#1})", - "cpu_time_us": 0, - "cuda_time_us": 5.312, - "pct_cuda_time": 0.005579833398065492, - "trace": "index(float32[1, 128256], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::reduce_kernel<512, 1, at::native::ReduceOp, unsigned int, long, 4> >(at::native::ReduceOp, unsigned int, long, 4>)", - "cpu_time_us": 0, - "cuda_time_us": 33.728, - "pct_cuda_time": 0.03542858073229535, - "trace": "argmax(float32[1, 128256], -1, False)" - }, - "children": [] - }, - { - "entry": { - "name": "Memcpy DtoH (Device -> Pageable)", - "cpu_time_us": 0, - "cuda_time_us": 3.168, - "pct_cuda_time": 0.003327731966316167, - "trace": "copy_(int64[1], int64[1], False) <- _to_copy(int64[1], 4, 0, None, None, False, None) <- to(int64[1], 4, 0, None, None, False, False, None)" - }, - "children": [] - } - ] - } - ] - }, - "decode_1": { - "metadata": { - "num_running_seqs": 1 - }, - "summary_stats": [ - { - "entry": { - "name": "LlamaForCausalLM", - "cuda_time_us": 6791.93, - "pct_cuda_time": 93.5046501558771, - "invocations": 1 - }, - "children": [ - { - "entry": { - "name": "VocabParallelEmbedding(weight=bfloat16[128256, 4096])", - "cuda_time_us": 3.104, - "pct_cuda_time": 0.0427328364815071, - "invocations": 1 - }, - "children": [ - { - "entry": { - "name": "void at::native::(anonymous namespace)::indexSelectSmallIndex(at::cuda::detail::TensorInfo, at::cuda::detail::TensorInfo, at::cuda::detail::TensorInfo, int, int, unsigned int, long)", - "cuda_time_us": 3.104, - "pct_cuda_time": 0.0427328364815071, - "invocations": 1 - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cuda_time_us": 6785.37, - "pct_cuda_time": 93.41433849114814, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cuda_time_us": 222.2410000000001, - "pct_cuda_time": 3.059596750156773, - "invocations": 64 - }, - "children": [ - { - "entry": { - "name": "void vllm::rms_norm_kernel(c10::BFloat16*, c10::BFloat16 const*, c10::BFloat16 const*, float, int, int)", - "cuda_time_us": 4.576, - "pct_cuda_time": 0.06299789295727334, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cuda_time_us": 217.6650000000001, - "pct_cuda_time": 2.9965988571995, - "invocations": 63 - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cuda_time_us": 2328.683, - "pct_cuda_time": 32.059030237198904, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cuda_time_us": 664.3159999999997, - "pct_cuda_time": 9.145653028366256, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cuda_time_us": 664.3159999999997, - "pct_cuda_time": 9.145653028366256, - "invocations": 32 - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cuda_time_us": 119.84, - "pct_cuda_time": 1.64983992395097, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cuda_time_us": 119.84, - "pct_cuda_time": 1.64983992395097, - "invocations": 32 - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cuda_time_us": 956.726, - "pct_cuda_time": 13.171267949615451, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cuda_time_us": 74.11200000000001, - "pct_cuda_time": 1.0203015390842314, - "invocations": 32 - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cuda_time_us": 753.1120000000001, - "pct_cuda_time": 10.368109519413911, - "invocations": 32 - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cuda_time_us": 81.40700000000001, - "pct_cuda_time": 1.1207319650290106, - "invocations": 32 - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cuda_time_us": 48.095, - "pct_cuda_time": 0.6621249260883003, - "invocations": 32 - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cuda_time_us": 587.8009999999999, - "pct_cuda_time": 8.092269335266222, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cuda_time_us": 587.8009999999999, - "pct_cuda_time": 8.092269335266222, - "invocations": 32 - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cuda_time_us": 4234.446, - "pct_cuda_time": 58.29571150379247, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cuda_time_us": 2560.629, - "pct_cuda_time": 35.2522359364707, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cuda_time_us": 2560.629, - "pct_cuda_time": 35.2522359364707, - "invocations": 32 - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cuda_time_us": 282.43, - "pct_cuda_time": 3.8882200410670267, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cuda_time_us": 282.43, - "pct_cuda_time": 3.8882200410670267, - "invocations": 32 - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cuda_time_us": 1391.3869999999997, - "pct_cuda_time": 19.155255526254738, - "invocations": 32 - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cuda_time_us": 1391.3869999999997, - "pct_cuda_time": 19.155255526254738, - "invocations": 32 - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cuda_time_us": 3.456, - "pct_cuda_time": 0.0475788282474512, - "invocations": 1 - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cuda_time_us": 3.456, - "pct_cuda_time": 0.0475788282474512, - "invocations": 1 - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "LogitsProcessor", - "cuda_time_us": 347.518, - "pct_cuda_time": 4.784287973060691, - "invocations": 1 - }, - "children": [ - { - "entry": { - "name": "void at::native::(anonymous namespace)::indexSelectSmallIndex(at::cuda::detail::TensorInfo, at::cuda::detail::TensorInfo, at::cuda::detail::TensorInfo, int, int, unsigned int, long)", - "cuda_time_us": 2.624, - "pct_cuda_time": 0.03612466589158332, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "Memset (Device)", - "cuda_time_us": 0.735, - "pct_cuda_time": 0.010118761215820785, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cuda_time_us": 344.159, - "pct_cuda_time": 4.7380445459532865, - "invocations": 1 - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Sampler", - "cuda_time_us": 124.28700000000002, - "pct_cuda_time": 1.7110618710622016, - "invocations": 1 - }, - "children": [ - { - "entry": { - "name": "Memcpy HtoD (Pinned -> Device)", - "cuda_time_us": 16.031, - "pct_cuda_time": 0.22069913068139183, - "invocations": 7 - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::unrolled_elementwise_kernel, TrivialOffsetCalculator<1, unsigned int>, TrivialOffsetCalculator<1, unsigned int>, at::native::memory::LoadWithCast<1>, at::native::memory::StoreWithCast<1> >(int, at::native::direct_copy_kernel_cuda(at::TensorIteratorBase&)::{lambda()#3}::operator()() const::{lambda()#7}::operator()() const::{lambda(float)#1}, at::detail::Array, TrivialOffsetCalculator<1, unsigned int>, TrivialOffsetCalculator<1, unsigned int>, at::native::memory::LoadWithCast<1>, at::native::memory::StoreWithCast<1>)", - "cuda_time_us": 4.192, - "pct_cuda_time": 0.057711356485334334, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::elementwise_kernel<128, 4, at::native::gpu_kernel_impl > >(at::TensorIteratorBase&, at::native::BinaryFunctor > const&)::{lambda(int)#1}>(int, at::native::gpu_kernel_impl > >(at::TensorIteratorBase&, at::native::BinaryFunctor > const&)::{lambda(int)#1})", - "cuda_time_us": 4.512, - "pct_cuda_time": 0.062116803545283504, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::(anonymous namespace)::cunn_SoftMaxForward<4, float, float, float, at::native::(anonymous namespace)::SoftMaxForwardEpilogue>(float*, float const*, int)", - "cuda_time_us": 34.08, - "pct_cuda_time": 0.46918011188458825, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::(anonymous namespace)::cunn_SoftMaxForward<4, float, float, float, at::native::(anonymous namespace)::LogSoftMaxForwardEpilogue>(float*, float const*, int)", - "cuda_time_us": 27.584, - "pct_cuda_time": 0.3797495365676198, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::unrolled_elementwise_kernel, TrivialOffsetCalculator<1, unsigned int>, TrivialOffsetCalculator<1, unsigned int>, at::native::memory::LoadWithCast<1>, at::native::memory::StoreWithCast<1> >(int, at::native::direct_copy_kernel_cuda(at::TensorIteratorBase&)::{lambda()#3}::operator()() const::{lambda()#4}::operator()() const::{lambda(long)#1}, at::detail::Array, TrivialOffsetCalculator<1, unsigned int>, TrivialOffsetCalculator<1, unsigned int>, at::native::memory::LoadWithCast<1>, at::native::memory::StoreWithCast<1>)", - "cuda_time_us": 1.888, - "pct_cuda_time": 0.025992137653700193, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::index_elementwise_kernel<128, 4, at::native::gpu_index_kernel >(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef)::{lambda(char*, char const*, long)#1}>(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef, at::native::index_kernel_impl >(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef)::{lambda(char*, char const*, long)#1} const&)::{lambda(int)#1}>(long, at::native::gpu_index_kernel >(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef)::{lambda(char*, char const*, long)#1}>(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef, at::native::index_kernel_impl >(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef)::{lambda(char*, char const*, long)#1} const&)::{lambda(int)#1})", - "cuda_time_us": 4.64, - "pct_cuda_time": 0.06387898236926319, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::reduce_kernel<512, 1, at::native::ReduceOp, unsigned int, long, 4> >(at::native::ReduceOp, unsigned int, long, 4>)", - "cuda_time_us": 28.576, - "pct_cuda_time": 0.3934064224534623, - "invocations": 1 - }, - "children": [] - }, - { - "entry": { - "name": "Memcpy DtoH (Device -> Pageable)", - "cuda_time_us": 2.784, - "pct_cuda_time": 0.03832738942155792, - "invocations": 1 - }, - "children": [] - } - ] - } - ], - "model_stats": [ - { - "entry": { - "name": "LlamaForCausalLM", - "cpu_time_us": 17089.731, - "cuda_time_us": 6791.93, - "pct_cuda_time": 93.5046501558771, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "VocabParallelEmbedding(weight=bfloat16[128256, 4096])", - "cpu_time_us": 68.255, - "cuda_time_us": 3.104, - "pct_cuda_time": 0.0427328364815071, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void at::native::(anonymous namespace)::indexSelectSmallIndex(at::cuda::detail::TensorInfo, at::cuda::detail::TensorInfo, at::cuda::detail::TensorInfo, int, int, unsigned int, long)", - "cpu_time_us": 0, - "cuda_time_us": 3.104, - "pct_cuda_time": 0.0427328364815071, - "trace": "index_select(bfloat16[128256, 4096], 0, int64[1]) <- embedding(bfloat16[128256, 4096], int64[1], -1, False, False)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 833.35, - "cuda_time_us": 214.909, - "pct_cuda_time": 2.9586569443956856, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 50.825, - "cuda_time_us": 4.576, - "pct_cuda_time": 0.06299789295727334, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rms_norm_kernel(c10::BFloat16*, c10::BFloat16 const*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 4.576, - "pct_cuda_time": 0.06299789295727334, - "trace": "_C::rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 601.687, - "cuda_time_us": 74.464, - "pct_cuda_time": 1.0251475308501754, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 93.019, - "cuda_time_us": 22.688, - "pct_cuda_time": 0.31234619655039725, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 22.688, - "pct_cuda_time": 0.31234619655039725, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 182.562, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 223.755, - "cuda_time_us": 29.599999999999998, - "pct_cuda_time": 0.4075038530452996, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.048, - "pct_cuda_time": 0.02819486118367479, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.584, - "pct_cuda_time": 0.32468144831825496, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.464, - "pct_cuda_time": 0.033921942361608726, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.020705601181761173, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 46.424, - "cuda_time_us": 18.4, - "pct_cuda_time": 0.2533132059470782, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.4, - "pct_cuda_time": 0.2533132059470782, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 24.425, - "cuda_time_us": 3.296, - "pct_cuda_time": 0.04537610471747661, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.296, - "pct_cuda_time": 0.04537610471747661, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 128.22, - "cuda_time_us": 132.573, - "pct_cuda_time": 1.8251354158707607, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 46.138, - "cuda_time_us": 79.871, - "pct_cuda_time": 1.0995858191412542, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.871, - "pct_cuda_time": 1.0995858191412542, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 29.968, - "cuda_time_us": 8.831, - "pct_cuda_time": 0.12157657183253519, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.831, - "pct_cuda_time": 0.12157657183253519, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 34.706, - "cuda_time_us": 43.871, - "pct_cuda_time": 0.603973024896971, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.871, - "pct_cuda_time": 0.603973024896971, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 547.732, - "cuda_time_us": 214.399, - "pct_cuda_time": 2.9516357631438916, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.372, - "cuda_time_us": 3.68, - "pct_cuda_time": 0.050662641189415644, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.68, - "pct_cuda_time": 0.050662641189415644, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 391.377, - "cuda_time_us": 73.08699999999999, - "pct_cuda_time": 1.0061903414703315, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 30.464, - "cuda_time_us": 20.704, - "pct_cuda_time": 0.2850324247787123, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.704, - "pct_cuda_time": 0.2850324247787123, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 118.811, - "cuda_time_us": 3.84, - "pct_cuda_time": 0.052865364719390226, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.84, - "pct_cuda_time": 0.052865364719390226, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 176.711, - "cuda_time_us": 30.174999999999997, - "pct_cuda_time": 0.4154198907311458, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.336, - "pct_cuda_time": 0.03215976353762905, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.807, - "pct_cuda_time": 0.327751494238157, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.56, - "pct_cuda_time": 0.03524357647959349, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.472, - "pct_cuda_time": 0.020265056475766253, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 32.192, - "cuda_time_us": 18.368, - "pct_cuda_time": 0.2528726612410832, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.368, - "pct_cuda_time": 0.2528726612410832, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.703, - "cuda_time_us": 3.424, - "pct_cuda_time": 0.047138283541456286, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.424, - "pct_cuda_time": 0.047138283541456286, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 104.285, - "cuda_time_us": 134.208, - "pct_cuda_time": 1.8476444969426884, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 37.2, - "cuda_time_us": 82.208, - "pct_cuda_time": 1.1317593497009457, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 82.208, - "pct_cuda_time": 1.1317593497009457, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 22.84, - "cuda_time_us": 8.832, - "pct_cuda_time": 0.12159033885459752, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.832, - "pct_cuda_time": 0.12159033885459752, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 32.221, - "cuda_time_us": 43.168, - "pct_cuda_time": 0.5942948083871451, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.168, - "pct_cuda_time": 0.5942948083871451, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 504.409, - "cuda_time_us": 215.231, - "pct_cuda_time": 2.96308992549976, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.327, - "cuda_time_us": 3.488, - "pct_cuda_time": 0.048019372953446125, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.488, - "pct_cuda_time": 0.048019372953446125, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 357.289, - "cuda_time_us": 72.28699999999999, - "pct_cuda_time": 0.9951767238204586, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 28.483, - "cuda_time_us": 20.864, - "pct_cuda_time": 0.2872351483086869, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.864, - "pct_cuda_time": 0.2872351483086869, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 107.246, - "cuda_time_us": 3.648, - "pct_cuda_time": 0.050222096483420714, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.648, - "pct_cuda_time": 0.050222096483420714, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 163.445, - "cuda_time_us": 29.535, - "pct_cuda_time": 0.4066089966112475, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.272, - "pct_cuda_time": 0.031278674125639214, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.327, - "pct_cuda_time": 0.3211433236482333, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.465, - "pct_cuda_time": 0.03393570938367107, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.471, - "pct_cuda_time": 0.020251289453703913, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 27.529, - "cuda_time_us": 18.24, - "pct_cuda_time": 0.25111048241710354, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.24, - "pct_cuda_time": 0.25111048241710354, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.988, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 96.376, - "cuda_time_us": 136.12800000000001, - "pct_cuda_time": 1.8740771793023838, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 33.99, - "cuda_time_us": 83.488, - "pct_cuda_time": 1.1493811379407426, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 83.488, - "pct_cuda_time": 1.1493811379407426, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.968, - "cuda_time_us": 8.736, - "pct_cuda_time": 0.12026870473661277, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.736, - "pct_cuda_time": 0.12026870473661277, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 29.517, - "cuda_time_us": 43.904, - "pct_cuda_time": 0.6044273366250283, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.904, - "pct_cuda_time": 0.6044273366250283, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 502.608, - "cuda_time_us": 212.223, - "pct_cuda_time": 2.921678723136238, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.855, - "cuda_time_us": 3.424, - "pct_cuda_time": 0.047138283541456286, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.424, - "pct_cuda_time": 0.047138283541456286, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 355.405, - "cuda_time_us": 72.864, - "pct_cuda_time": 1.0031202955504297, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 29.179, - "cuda_time_us": 20.576, - "pct_cuda_time": 0.2832702459547326, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.576, - "pct_cuda_time": 0.2832702459547326, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 100.954, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 161.704, - "cuda_time_us": 29.951999999999998, - "pct_cuda_time": 0.41234984481124376, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.24, - "pct_cuda_time": 0.0308381294196443, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.584, - "pct_cuda_time": 0.32468144831825496, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.592, - "pct_cuda_time": 0.035684121185588405, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.536, - "pct_cuda_time": 0.021146145887756092, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 27.51, - "cuda_time_us": 18.56, - "pct_cuda_time": 0.25551592947705276, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.56, - "pct_cuda_time": 0.25551592947705276, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.002, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 96.234, - "cuda_time_us": 132.607, - "pct_cuda_time": 1.8256034946208803, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.115, - "cuda_time_us": 80.223, - "pct_cuda_time": 1.1044318109071984, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 80.223, - "pct_cuda_time": 1.1044318109071984, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.587, - "cuda_time_us": 8.576, - "pct_cuda_time": 0.11806598120663817, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.576, - "pct_cuda_time": 0.11806598120663817, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 29.383, - "cuda_time_us": 43.808, - "pct_cuda_time": 0.6031057025070434, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.808, - "pct_cuda_time": 0.6031057025070434, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 492.75, - "cuda_time_us": 211.551, - "pct_cuda_time": 2.9124272843103443, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.707, - "cuda_time_us": 3.552, - "pct_cuda_time": 0.048900462365435965, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.552, - "pct_cuda_time": 0.048900462365435965, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 349.782, - "cuda_time_us": 72.576, - "pct_cuda_time": 0.9991553931964752, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 27.905, - "cuda_time_us": 20.64, - "pct_cuda_time": 0.2841513353667225, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.64, - "pct_cuda_time": 0.2841513353667225, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 104.999, - "cuda_time_us": 3.68, - "pct_cuda_time": 0.050662641189415644, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.68, - "pct_cuda_time": 0.050662641189415644, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 160.034, - "cuda_time_us": 30.08, - "pct_cuda_time": 0.4141120236352235, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.4, - "pct_cuda_time": 0.033040852949618886, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.712, - "pct_cuda_time": 0.3264436271422346, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.464, - "pct_cuda_time": 0.033921942361608726, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.020705601181761173, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 26.756, - "cuda_time_us": 18.176, - "pct_cuda_time": 0.2502293930051137, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.176, - "pct_cuda_time": 0.2502293930051137, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.918, - "cuda_time_us": 3.296, - "pct_cuda_time": 0.04537610471747661, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.296, - "pct_cuda_time": 0.04537610471747661, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 94.955, - "cuda_time_us": 132.12699999999998, - "pct_cuda_time": 1.8189953240309562, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 33.156, - "cuda_time_us": 80.064, - "pct_cuda_time": 1.1022428543992862, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 80.064, - "pct_cuda_time": 1.1022428543992862, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.186, - "cuda_time_us": 8.576, - "pct_cuda_time": 0.11806598120663817, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.576, - "pct_cuda_time": 0.11806598120663817, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 29.567, - "cuda_time_us": 43.487, - "pct_cuda_time": 0.598686488425032, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.487, - "pct_cuda_time": 0.598686488425032, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 535.017, - "cuda_time_us": 211.965, - "pct_cuda_time": 2.9181268314441535, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 20.186, - "cuda_time_us": 3.616, - "pct_cuda_time": 0.049781551777425805, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.616, - "pct_cuda_time": 0.049781551777425805, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 373.628, - "cuda_time_us": 72.288, - "pct_cuda_time": 0.995190490842521, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 28.615, - "cuda_time_us": 20.64, - "pct_cuda_time": 0.2841513353667225, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.64, - "pct_cuda_time": 0.2841513353667225, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 100.361, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 175.325, - "cuda_time_us": 29.568, - "pct_cuda_time": 0.40706330833930476, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.24, - "pct_cuda_time": 0.0308381294196443, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.296, - "pct_cuda_time": 0.3207165459643007, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.528, - "pct_cuda_time": 0.034803031773598565, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.020705601181761173, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 30.109, - "cuda_time_us": 18.304, - "pct_cuda_time": 0.2519915718290934, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.304, - "pct_cuda_time": 0.2519915718290934, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 18.501, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 99.116, - "cuda_time_us": 132.733, - "pct_cuda_time": 1.8273381394007353, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 36.3, - "cuda_time_us": 80.447, - "pct_cuda_time": 1.107515623849163, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 80.447, - "pct_cuda_time": 1.107515623849163, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 22.014, - "cuda_time_us": 9.151, - "pct_cuda_time": 0.12598201889248437, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 9.151, - "pct_cuda_time": 0.12598201889248437, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 29.411, - "cuda_time_us": 43.135, - "pct_cuda_time": 0.5938404966590878, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.135, - "pct_cuda_time": 0.5938404966590878, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 526.821, - "cuda_time_us": 211.774, - "pct_cuda_time": 2.9154973302302465, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.021, - "cuda_time_us": 3.488, - "pct_cuda_time": 0.048019372953446125, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.488, - "pct_cuda_time": 0.048019372953446125, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 368.943, - "cuda_time_us": 72.606, - "pct_cuda_time": 0.9995684038583456, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 28.847, - "cuda_time_us": 20.384, - "pct_cuda_time": 0.2806269777187631, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.384, - "pct_cuda_time": 0.2806269777187631, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 111.361, - "cuda_time_us": 3.712, - "pct_cuda_time": 0.051103185895410554, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.712, - "pct_cuda_time": 0.051103185895410554, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 169.301, - "cuda_time_us": 29.854, - "pct_cuda_time": 0.4110006766491343, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.271, - "pct_cuda_time": 0.03126490710357688, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.584, - "pct_cuda_time": 0.32468144831825496, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.496, - "pct_cuda_time": 0.03436248706760365, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.503, - "pct_cuda_time": 0.02069183415969883, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 28.865, - "cuda_time_us": 18.656, - "pct_cuda_time": 0.2568375635950375, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.656, - "pct_cuda_time": 0.2568375635950375, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 18.283, - "cuda_time_us": 3.296, - "pct_cuda_time": 0.04537610471747661, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.296, - "pct_cuda_time": 0.04537610471747661, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 106.243, - "cuda_time_us": 132.38400000000001, - "pct_cuda_time": 1.8225334487009783, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 35.521, - "cuda_time_us": 80.608, - "pct_cuda_time": 1.1097321144011998, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 80.608, - "pct_cuda_time": 1.1097321144011998, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 27.938, - "cuda_time_us": 8.64, - "pct_cuda_time": 0.11894707061862803, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.64, - "pct_cuda_time": 0.11894707061862803, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 31.144, - "cuda_time_us": 43.136, - "pct_cuda_time": 0.5938542636811502, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.136, - "pct_cuda_time": 0.5938542636811502, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 515.051, - "cuda_time_us": 211.99800000000002, - "pct_cuda_time": 2.9185811431722106, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.298, - "cuda_time_us": 3.873, - "pct_cuda_time": 0.05331967644744749, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.873, - "pct_cuda_time": 0.05331967644744749, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 367.597, - "cuda_time_us": 72.31700000000001, - "pct_cuda_time": 0.995589734482329, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 28.727, - "cuda_time_us": 20.64, - "pct_cuda_time": 0.2841513353667225, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.64, - "pct_cuda_time": 0.2841513353667225, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 112.782, - "cuda_time_us": 3.744, - "pct_cuda_time": 0.05154373060140547, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.744, - "pct_cuda_time": 0.05154373060140547, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 167.782, - "cuda_time_us": 29.598000000000003, - "pct_cuda_time": 0.40747631900117504, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.24, - "pct_cuda_time": 0.0308381294196443, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.359, - "pct_cuda_time": 0.3215838683542282, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.496, - "pct_cuda_time": 0.03436248706760365, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.503, - "pct_cuda_time": 0.02069183415969883, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 27.076, - "cuda_time_us": 18.335, - "pct_cuda_time": 0.252418349513026, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.335, - "pct_cuda_time": 0.252418349513026, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.261, - "cuda_time_us": 3.456, - "pct_cuda_time": 0.0475788282474512, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.456, - "pct_cuda_time": 0.0475788282474512, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 97.96, - "cuda_time_us": 132.352, - "pct_cuda_time": 1.8220929039949831, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.04, - "cuda_time_us": 79.488, - "pct_cuda_time": 1.0943130496913775, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.488, - "pct_cuda_time": 1.0943130496913775, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.635, - "cuda_time_us": 8.48, - "pct_cuda_time": 0.11674434708865342, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.48, - "pct_cuda_time": 0.11674434708865342, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 30.843, - "cuda_time_us": 44.384, - "pct_cuda_time": 0.611035507214952, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 44.384, - "pct_cuda_time": 0.611035507214952, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 492.119, - "cuda_time_us": 211.968, - "pct_cuda_time": 2.91816813251034, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.119, - "cuda_time_us": 3.584, - "pct_cuda_time": 0.049341007071430874, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.584, - "pct_cuda_time": 0.049341007071430874, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 337.822, - "cuda_time_us": 72.097, - "pct_cuda_time": 0.9925609896286137, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 27.866, - "cuda_time_us": 20.448, - "pct_cuda_time": 0.281508067130753, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.448, - "pct_cuda_time": 0.281508067130753, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 100.297, - "cuda_time_us": 3.585, - "pct_cuda_time": 0.049354774093493224, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.585, - "pct_cuda_time": 0.049354774093493224, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 154.941, - "cuda_time_us": 29.951999999999998, - "pct_cuda_time": 0.41234984481124376, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.304, - "pct_cuda_time": 0.03171921883163414, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.552, - "pct_cuda_time": 0.32424090361226005, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.592, - "pct_cuda_time": 0.035684121185588405, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.020705601181761173, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 25.766, - "cuda_time_us": 18.112, - "pct_cuda_time": 0.24934830359312388, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.112, - "pct_cuda_time": 0.24934830359312388, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.425, - "cuda_time_us": 3.36, - "pct_cuda_time": 0.046257194129466446, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.36, - "pct_cuda_time": 0.046257194129466446, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 105.429, - "cuda_time_us": 132.927, - "pct_cuda_time": 1.8300089416808292, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 39.223, - "cuda_time_us": 80.223, - "pct_cuda_time": 1.1044318109071984, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 80.223, - "pct_cuda_time": 1.1044318109071984, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.616, - "cuda_time_us": 8.64, - "pct_cuda_time": 0.11894707061862803, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.64, - "pct_cuda_time": 0.11894707061862803, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 30.197, - "cuda_time_us": 44.064, - "pct_cuda_time": 0.6066300601550029, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 44.064, - "pct_cuda_time": 0.6066300601550029, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 515.681, - "cuda_time_us": 211.423, - "pct_cuda_time": 2.9106651054863644, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.273, - "cuda_time_us": 3.552, - "pct_cuda_time": 0.048900462365435965, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.552, - "pct_cuda_time": 0.048900462365435965, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 370.649, - "cuda_time_us": 73.055, - "pct_cuda_time": 1.005749796764337, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 47.811, - "cuda_time_us": 20.896, - "pct_cuda_time": 0.2876756930146818, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.896, - "pct_cuda_time": 0.2876756930146818, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 100.45, - "cuda_time_us": 3.808, - "pct_cuda_time": 0.05242482001339531, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.808, - "pct_cuda_time": 0.05242482001339531, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 163.927, - "cuda_time_us": 29.950999999999997, - "pct_cuda_time": 0.4123360777891814, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.336, - "pct_cuda_time": 0.03215976353762905, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.584, - "pct_cuda_time": 0.32468144831825496, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.528, - "pct_cuda_time": 0.034803031773598565, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.503, - "pct_cuda_time": 0.02069183415969883, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 28.958, - "cuda_time_us": 18.4, - "pct_cuda_time": 0.2533132059470782, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.4, - "pct_cuda_time": 0.2533132059470782, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.336, - "cuda_time_us": 3.424, - "pct_cuda_time": 0.047138283541456286, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.424, - "pct_cuda_time": 0.047138283541456286, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 98.163, - "cuda_time_us": 131.392, - "pct_cuda_time": 1.8088765628151358, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 35.053, - "cuda_time_us": 79.168, - "pct_cuda_time": 1.0899076026314287, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.168, - "pct_cuda_time": 1.0899076026314287, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.191, - "cuda_time_us": 9.184, - "pct_cuda_time": 0.1264363306205416, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 9.184, - "pct_cuda_time": 0.1264363306205416, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 30.545, - "cuda_time_us": 43.04, - "pct_cuda_time": 0.5925326295631654, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.04, - "pct_cuda_time": 0.5925326295631654, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 488.661, - "cuda_time_us": 211.67700000000002, - "pct_cuda_time": 2.9141619290901994, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.692, - "cuda_time_us": 3.616, - "pct_cuda_time": 0.049781551777425805, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.616, - "pct_cuda_time": 0.049781551777425805, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 341.136, - "cuda_time_us": 72.381, - "pct_cuda_time": 0.9964708238943187, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 29.736, - "cuda_time_us": 20.671, - "pct_cuda_time": 0.28457811305065506, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.671, - "pct_cuda_time": 0.28457811305065506, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 100.335, - "cuda_time_us": 3.648, - "pct_cuda_time": 0.050222096483420714, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.648, - "pct_cuda_time": 0.050222096483420714, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 154.053, - "cuda_time_us": 29.854999999999997, - "pct_cuda_time": 0.41101444367119666, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.336, - "pct_cuda_time": 0.03215976353762905, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.423, - "pct_cuda_time": 0.32246495776621803, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.592, - "pct_cuda_time": 0.035684121185588405, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.020705601181761173, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 27.12, - "cuda_time_us": 18.207, - "pct_cuda_time": 0.25065617068904633, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.207, - "pct_cuda_time": 0.25065617068904633, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.955, - "cuda_time_us": 3.457, - "pct_cuda_time": 0.047592595269513545, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.457, - "pct_cuda_time": 0.047592595269513545, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 101.799, - "cuda_time_us": 132.223, - "pct_cuda_time": 1.8203169581489413, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 33.565, - "cuda_time_us": 79.103, - "pct_cuda_time": 1.0890127461973762, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.103, - "pct_cuda_time": 1.0890127461973762, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.375, - "cuda_time_us": 9.536, - "pct_cuda_time": 0.13128232238648574, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 9.536, - "pct_cuda_time": 0.13128232238648574, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 29.177, - "cuda_time_us": 43.584, - "pct_cuda_time": 0.6000218895650791, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.584, - "pct_cuda_time": 0.6000218895650791, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 504.236, - "cuda_time_us": 212.47899999999998, - "pct_cuda_time": 2.9252030807841964, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.166, - "cuda_time_us": 3.456, - "pct_cuda_time": 0.0475788282474512, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.456, - "pct_cuda_time": 0.0475788282474512, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 366.506, - "cuda_time_us": 73.087, - "pct_cuda_time": 1.0061903414703317, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 27.856, - "cuda_time_us": 20.896, - "pct_cuda_time": 0.2876756930146818, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.896, - "pct_cuda_time": 0.2876756930146818, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 96.48, - "cuda_time_us": 3.968, - "pct_cuda_time": 0.0546275435433699, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.968, - "pct_cuda_time": 0.0546275435433699, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 157.563, - "cuda_time_us": 29.791, - "pct_cuda_time": 0.41013335425920683, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.24, - "pct_cuda_time": 0.0308381294196443, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.519, - "pct_cuda_time": 0.3237865918842028, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.528, - "pct_cuda_time": 0.034803031773598565, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.020705601181761173, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 26.931, - "cuda_time_us": 18.432, - "pct_cuda_time": 0.2537537506530731, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.432, - "pct_cuda_time": 0.2537537506530731, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.794, - "cuda_time_us": 3.296, - "pct_cuda_time": 0.04537610471747661, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.296, - "pct_cuda_time": 0.04537610471747661, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 93.713, - "cuda_time_us": 132.64, - "pct_cuda_time": 1.8260578063489372, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 33.361, - "cuda_time_us": 79.744, - "pct_cuda_time": 1.097837407339337, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.744, - "pct_cuda_time": 1.097837407339337, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.409, - "cuda_time_us": 9.184, - "pct_cuda_time": 0.1264363306205416, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 9.184, - "pct_cuda_time": 0.1264363306205416, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 28.215, - "cuda_time_us": 43.712, - "pct_cuda_time": 0.6017840683890588, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.712, - "pct_cuda_time": 0.6017840683890588, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 562.581, - "cuda_time_us": 212.222, - "pct_cuda_time": 2.921664956114175, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 13.867, - "cuda_time_us": 3.584, - "pct_cuda_time": 0.049341007071430874, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.584, - "pct_cuda_time": 0.049341007071430874, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 410.087, - "cuda_time_us": 72.224, - "pct_cuda_time": 0.9943094014305311, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 27.725, - "cuda_time_us": 20.32, - "pct_cuda_time": 0.27974588830677327, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.32, - "pct_cuda_time": 0.27974588830677327, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 99.087, - "cuda_time_us": 3.68, - "pct_cuda_time": 0.050662641189415644, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.68, - "pct_cuda_time": 0.050662641189415644, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 221.741, - "cuda_time_us": 30.048, - "pct_cuda_time": 0.4136714789292285, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.304, - "pct_cuda_time": 0.03171921883163414, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.776, - "pct_cuda_time": 0.32732471655422446, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.496, - "pct_cuda_time": 0.03436248706760365, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.472, - "pct_cuda_time": 0.020265056475766253, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 32.57, - "cuda_time_us": 18.176, - "pct_cuda_time": 0.2502293930051137, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.176, - "pct_cuda_time": 0.2502293930051137, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 18.777, - "cuda_time_us": 3.359, - "pct_cuda_time": 0.0462434271074041, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.359, - "pct_cuda_time": 0.0462434271074041, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 104.151, - "cuda_time_us": 133.055, - "pct_cuda_time": 1.831771120504809, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 38.339, - "cuda_time_us": 80.255, - "pct_cuda_time": 1.1048723556131934, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 80.255, - "pct_cuda_time": 1.1048723556131934, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 22.971, - "cuda_time_us": 8.832, - "pct_cuda_time": 0.12159033885459752, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.832, - "pct_cuda_time": 0.12159033885459752, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 30.502, - "cuda_time_us": 43.968, - "pct_cuda_time": 0.6053084260370182, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.968, - "pct_cuda_time": 0.6053084260370182, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 496.491, - "cuda_time_us": 211.647, - "pct_cuda_time": 2.913748918428329, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.653, - "cuda_time_us": 3.424, - "pct_cuda_time": 0.047138283541456286, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.424, - "pct_cuda_time": 0.047138283541456286, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 352.754, - "cuda_time_us": 72.896, - "pct_cuda_time": 1.0035608402564244, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 27.996, - "cuda_time_us": 20.8, - "pct_cuda_time": 0.2863540588966971, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.8, - "pct_cuda_time": 0.2863540588966971, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 101.387, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 166.705, - "cuda_time_us": 30.112, - "pct_cuda_time": 0.41455256834121834, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.368, - "pct_cuda_time": 0.03260030824362397, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.552, - "pct_cuda_time": 0.32424090361226005, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.688, - "pct_cuda_time": 0.03700575530357316, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.020705601181761173, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 26.815, - "cuda_time_us": 18.208, - "pct_cuda_time": 0.2506699377111087, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.208, - "pct_cuda_time": 0.2506699377111087, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.722, - "cuda_time_us": 3.488, - "pct_cuda_time": 0.048019372953446125, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.488, - "pct_cuda_time": 0.048019372953446125, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 97.186, - "cuda_time_us": 131.839, - "pct_cuda_time": 1.8150304216770021, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.137, - "cuda_time_us": 79.423, - "pct_cuda_time": 1.0934181932573255, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.423, - "pct_cuda_time": 1.0934181932573255, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.796, - "cuda_time_us": 8.833, - "pct_cuda_time": 0.12160410587665987, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.833, - "pct_cuda_time": 0.12160410587665987, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 29.97, - "cuda_time_us": 43.583, - "pct_cuda_time": 0.6000081225430167, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.583, - "pct_cuda_time": 0.6000081225430167, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 507.974, - "cuda_time_us": 210.56199999999998, - "pct_cuda_time": 2.8988116994906887, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.439, - "cuda_time_us": 3.52, - "pct_cuda_time": 0.04845991765944104, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.52, - "pct_cuda_time": 0.04845991765944104, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 358.786, - "cuda_time_us": 72.226, - "pct_cuda_time": 0.9943369354746558, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 27.451, - "cuda_time_us": 20.64, - "pct_cuda_time": 0.2841513353667225, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.64, - "pct_cuda_time": 0.2841513353667225, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 98.135, - "cuda_time_us": 3.744, - "pct_cuda_time": 0.05154373060140547, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.744, - "pct_cuda_time": 0.05154373060140547, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 170.858, - "cuda_time_us": 29.889999999999997, - "pct_cuda_time": 0.41149628944337857, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.304, - "pct_cuda_time": 0.03171921883163414, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.585, - "pct_cuda_time": 0.32469521534031737, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.496, - "pct_cuda_time": 0.03436248706760365, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.505, - "pct_cuda_time": 0.020719368203823512, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 29.27, - "cuda_time_us": 17.952, - "pct_cuda_time": 0.24714558006314935, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 17.952, - "pct_cuda_time": 0.24714558006314935, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.893, - "cuda_time_us": 3.36, - "pct_cuda_time": 0.046257194129466446, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.36, - "pct_cuda_time": 0.046257194129466446, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 101.54, - "cuda_time_us": 131.456, - "pct_cuda_time": 1.809757652227125, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 36.58, - "cuda_time_us": 79.264, - "pct_cuda_time": 1.0912292367494132, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.264, - "pct_cuda_time": 1.0912292367494132, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.923, - "cuda_time_us": 9.216, - "pct_cuda_time": 0.12687687532653655, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 9.216, - "pct_cuda_time": 0.12687687532653655, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 31.568, - "cuda_time_us": 42.976, - "pct_cuda_time": 0.5916515401511756, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 42.976, - "pct_cuda_time": 0.5916515401511756, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 499.84, - "cuda_time_us": 211.933, - "pct_cuda_time": 2.9176862867381583, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.661, - "cuda_time_us": 3.52, - "pct_cuda_time": 0.04845991765944104, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.52, - "pct_cuda_time": 0.04845991765944104, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 359.251, - "cuda_time_us": 73.086, - "pct_cuda_time": 1.0061765744482694, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 28.694, - "cuda_time_us": 20.8, - "pct_cuda_time": 0.2863540588966971, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.8, - "pct_cuda_time": 0.2863540588966971, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 110.097, - "cuda_time_us": 3.712, - "pct_cuda_time": 0.051103185895410554, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.712, - "pct_cuda_time": 0.051103185895410554, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 163.835, - "cuda_time_us": 30.078999999999997, - "pct_cuda_time": 0.4140982566131611, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.24, - "pct_cuda_time": 0.0308381294196443, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.615, - "pct_cuda_time": 0.32510822600218753, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.72, - "pct_cuda_time": 0.03744630000956808, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.020705601181761173, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 27.002, - "cuda_time_us": 18.495, - "pct_cuda_time": 0.25462107304300063, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.495, - "pct_cuda_time": 0.25462107304300063, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.287, - "cuda_time_us": 3.52, - "pct_cuda_time": 0.04845991765944104, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.52, - "pct_cuda_time": 0.04845991765944104, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 92.025, - "cuda_time_us": 131.80700000000002, - "pct_cuda_time": 1.8145898769710074, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 32.008, - "cuda_time_us": 79.775, - "pct_cuda_time": 1.0982641850232697, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.775, - "pct_cuda_time": 1.0982641850232697, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.151, - "cuda_time_us": 8.576, - "pct_cuda_time": 0.11806598120663817, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.576, - "pct_cuda_time": 0.11806598120663817, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 29.545, - "cuda_time_us": 43.456, - "pct_cuda_time": 0.5982597107410994, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.456, - "pct_cuda_time": 0.5982597107410994, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 472.827, - "cuda_time_us": 211.77700000000002, - "pct_cuda_time": 2.9155386312964335, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 13.771, - "cuda_time_us": 3.52, - "pct_cuda_time": 0.04845991765944104, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.52, - "pct_cuda_time": 0.04845991765944104, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 336.553, - "cuda_time_us": 72.929, - "pct_cuda_time": 1.0040151519844818, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 27.469, - "cuda_time_us": 20.736, - "pct_cuda_time": 0.28547296948470724, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.736, - "pct_cuda_time": 0.28547296948470724, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 96.158, - "cuda_time_us": 3.872, - "pct_cuda_time": 0.05330590942538515, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.872, - "pct_cuda_time": 0.05330590942538515, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 158.534, - "cuda_time_us": 29.857, - "pct_cuda_time": 0.41104197771532136, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.305, - "pct_cuda_time": 0.03173298585369648, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.584, - "pct_cuda_time": 0.32468144831825496, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.496, - "pct_cuda_time": 0.03436248706760365, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.472, - "pct_cuda_time": 0.020265056475766253, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 26.554, - "cuda_time_us": 18.464, - "pct_cuda_time": 0.25419429535906796, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.464, - "pct_cuda_time": 0.25419429535906796, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.557, - "cuda_time_us": 3.36, - "pct_cuda_time": 0.046257194129466446, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.36, - "pct_cuda_time": 0.046257194129466446, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 90.748, - "cuda_time_us": 131.96800000000002, - "pct_cuda_time": 1.8168063675230444, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 31.906, - "cuda_time_us": 79.808, - "pct_cuda_time": 1.098718496751327, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.808, - "pct_cuda_time": 1.098718496751327, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.123, - "cuda_time_us": 8.607, - "pct_cuda_time": 0.11849275889057075, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.607, - "pct_cuda_time": 0.11849275889057075, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 27.978, - "cuda_time_us": 43.553, - "pct_cuda_time": 0.5995951118811464, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.553, - "pct_cuda_time": 0.5995951118811464, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 465.851, - "cuda_time_us": 212.09299999999996, - "pct_cuda_time": 2.9198890102681325, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 13.815, - "cuda_time_us": 3.615, - "pct_cuda_time": 0.049767784755363455, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.615, - "pct_cuda_time": 0.049767784755363455, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 327.601, - "cuda_time_us": 72.606, - "pct_cuda_time": 0.9995684038583456, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 28.067, - "cuda_time_us": 20.448, - "pct_cuda_time": 0.281508067130753, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.448, - "pct_cuda_time": 0.281508067130753, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 95.273, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 150.169, - "cuda_time_us": 30.207, - "pct_cuda_time": 0.4158604354371408, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.336, - "pct_cuda_time": 0.03215976353762905, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.68, - "pct_cuda_time": 0.32600308243623977, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.687, - "pct_cuda_time": 0.03699198828151082, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.020705601181761173, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 25.891, - "cuda_time_us": 18.175, - "pct_cuda_time": 0.2502156259830514, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.175, - "pct_cuda_time": 0.2502156259830514, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.621, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 93.178, - "cuda_time_us": 132.54399999999998, - "pct_cuda_time": 1.8247361722309525, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 32.669, - "cuda_time_us": 80.0, - "pct_cuda_time": 1.1013617649872964, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 80.0, - "pct_cuda_time": 1.1013617649872964, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.37, - "cuda_time_us": 8.576, - "pct_cuda_time": 0.11806598120663817, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.576, - "pct_cuda_time": 0.11806598120663817, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 28.872, - "cuda_time_us": 43.968, - "pct_cuda_time": 0.6053084260370182, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.968, - "pct_cuda_time": 0.6053084260370182, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 499.384, - "cuda_time_us": 211.425, - "pct_cuda_time": 2.9106926395304895, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.364, - "cuda_time_us": 3.424, - "pct_cuda_time": 0.047138283541456286, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.424, - "pct_cuda_time": 0.047138283541456286, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 359.791, - "cuda_time_us": 71.937, - "pct_cuda_time": 0.9903582660986392, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 28.858, - "cuda_time_us": 20.383, - "pct_cuda_time": 0.28061321069670075, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.383, - "pct_cuda_time": 0.28061321069670075, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 101.205, - "cuda_time_us": 3.616, - "pct_cuda_time": 0.049781551777425805, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.616, - "pct_cuda_time": 0.049781551777425805, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 172.066, - "cuda_time_us": 29.698, - "pct_cuda_time": 0.4088530212074091, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.336, - "pct_cuda_time": 0.03215976353762905, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.425, - "pct_cuda_time": 0.32249249181034273, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.465, - "pct_cuda_time": 0.03393570938367107, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.472, - "pct_cuda_time": 0.020265056475766253, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 27.625, - "cuda_time_us": 18.24, - "pct_cuda_time": 0.25111048241710354, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.24, - "pct_cuda_time": 0.25111048241710354, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.23, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 94.501, - "cuda_time_us": 132.73600000000002, - "pct_cuda_time": 1.8273794404669226, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 33.611, - "cuda_time_us": 80.128, - "pct_cuda_time": 1.103123943811276, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 80.128, - "pct_cuda_time": 1.103123943811276, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.036, - "cuda_time_us": 8.832, - "pct_cuda_time": 0.12159033885459752, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.832, - "pct_cuda_time": 0.12159033885459752, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 28.716, - "cuda_time_us": 43.776, - "pct_cuda_time": 0.6026651578010487, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.776, - "pct_cuda_time": 0.6026651578010487, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 562.585, - "cuda_time_us": 211.138, - "pct_cuda_time": 2.9067415041985973, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.004, - "cuda_time_us": 3.392, - "pct_cuda_time": 0.04669773883546136, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.392, - "pct_cuda_time": 0.04669773883546136, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 422.281, - "cuda_time_us": 73.05799999999999, - "pct_cuda_time": 1.0057910978305238, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 28.108, - "cuda_time_us": 20.64, - "pct_cuda_time": 0.2841513353667225, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.64, - "pct_cuda_time": 0.2841513353667225, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 103.573, - "cuda_time_us": 3.936, - "pct_cuda_time": 0.05418699883737499, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.936, - "pct_cuda_time": 0.05418699883737499, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 233.512, - "cuda_time_us": 29.889999999999997, - "pct_cuda_time": 0.41149628944337857, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.24, - "pct_cuda_time": 0.0308381294196443, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.648, - "pct_cuda_time": 0.32556253773024485, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.497, - "pct_cuda_time": 0.034376254089665985, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.505, - "pct_cuda_time": 0.020719368203823512, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 28.396, - "cuda_time_us": 18.592, - "pct_cuda_time": 0.2559564741830477, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.592, - "pct_cuda_time": 0.2559564741830477, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.499, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 94.996, - "cuda_time_us": 131.36, - "pct_cuda_time": 1.808436018109141, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.486, - "cuda_time_us": 79.648, - "pct_cuda_time": 1.0965157732213522, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.648, - "pct_cuda_time": 1.0965157732213522, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.3, - "cuda_time_us": 8.512, - "pct_cuda_time": 0.11718489179464835, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.512, - "pct_cuda_time": 0.11718489179464835, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 28.743, - "cuda_time_us": 43.2, - "pct_cuda_time": 0.5947353530931401, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.2, - "pct_cuda_time": 0.5947353530931401, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 494.003, - "cuda_time_us": 212.735, - "pct_cuda_time": 2.928727438432156, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 13.805, - "cuda_time_us": 3.616, - "pct_cuda_time": 0.049781551777425805, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.616, - "pct_cuda_time": 0.049781551777425805, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 351.103, - "cuda_time_us": 74.239, - "pct_cuda_time": 1.0220499508861487, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 26.62, - "cuda_time_us": 21.408, - "pct_cuda_time": 0.29472440831060054, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 21.408, - "pct_cuda_time": 0.29472440831060054, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 98.807, - "cuda_time_us": 3.615, - "pct_cuda_time": 0.049767784755363455, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.615, - "pct_cuda_time": 0.049767784755363455, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 168.468, - "cuda_time_us": 29.983999999999998, - "pct_cuda_time": 0.4127903895172386, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.304, - "pct_cuda_time": 0.03171921883163414, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.456, - "pct_cuda_time": 0.3229192694942753, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.72, - "pct_cuda_time": 0.03744630000956808, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.020705601181761173, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 28.851, - "cuda_time_us": 19.232, - "pct_cuda_time": 0.26476736830294606, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 19.232, - "pct_cuda_time": 0.26476736830294606, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 17.192, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 97.399, - "cuda_time_us": 131.55200000000002, - "pct_cuda_time": 1.8110792863451106, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 35.901, - "cuda_time_us": 79.712, - "pct_cuda_time": 1.0973968626333421, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.712, - "pct_cuda_time": 1.0973968626333421, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.941, - "cuda_time_us": 8.64, - "pct_cuda_time": 0.11894707061862803, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.64, - "pct_cuda_time": 0.11894707061862803, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 29.163, - "cuda_time_us": 43.2, - "pct_cuda_time": 0.5947353530931401, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.2, - "pct_cuda_time": 0.5947353530931401, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 511.068, - "cuda_time_us": 213.28099999999998, - "pct_cuda_time": 2.9362442324781943, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.925, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 369.334, - "cuda_time_us": 73.69699999999999, - "pct_cuda_time": 1.0145882249283595, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 27.647, - "cuda_time_us": 21.6, - "pct_cuda_time": 0.29736767654657004, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 21.6, - "pct_cuda_time": 0.29736767654657004, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 118.266, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 165.676, - "cuda_time_us": 29.824999999999996, - "pct_cuda_time": 0.41060143300932644, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.24, - "pct_cuda_time": 0.0308381294196443, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.52, - "pct_cuda_time": 0.32380035890626513, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.592, - "pct_cuda_time": 0.035684121185588405, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.473, - "pct_cuda_time": 0.020278823497828596, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 27.38, - "cuda_time_us": 18.496, - "pct_cuda_time": 0.2546348400650629, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.496, - "pct_cuda_time": 0.2546348400650629, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.391, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 95.509, - "cuda_time_us": 132.48, - "pct_cuda_time": 1.8238550828189628, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 33.995, - "cuda_time_us": 80.288, - "pct_cuda_time": 1.1053266673412505, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 80.288, - "pct_cuda_time": 1.1053266673412505, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.668, - "cuda_time_us": 8.64, - "pct_cuda_time": 0.11894707061862803, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.64, - "pct_cuda_time": 0.11894707061862803, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 29.672, - "cuda_time_us": 43.552, - "pct_cuda_time": 0.5995813448590842, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.552, - "pct_cuda_time": 0.5995813448590842, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 541.273, - "cuda_time_us": 211.26, - "pct_cuda_time": 2.9084210808902027, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.488, - "cuda_time_us": 3.456, - "pct_cuda_time": 0.0475788282474512, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.456, - "pct_cuda_time": 0.0475788282474512, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 385.782, - "cuda_time_us": 72.733, - "pct_cuda_time": 1.001316815660263, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 28.487, - "cuda_time_us": 20.352, - "pct_cuda_time": 0.2801864330127682, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.352, - "pct_cuda_time": 0.2801864330127682, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 112.447, - "cuda_time_us": 3.616, - "pct_cuda_time": 0.049781551777425805, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.616, - "pct_cuda_time": 0.049781551777425805, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 177.292, - "cuda_time_us": 30.43, - "pct_cuda_time": 0.41893048135704286, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.656, - "pct_cuda_time": 0.03656521059757824, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.775, - "pct_cuda_time": 0.3273109495321621, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.495, - "pct_cuda_time": 0.034348720045541306, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.020705601181761173, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 37.39, - "cuda_time_us": 18.335, - "pct_cuda_time": 0.252418349513026, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.335, - "pct_cuda_time": 0.252418349513026, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 19.206, - "cuda_time_us": 3.423, - "pct_cuda_time": 0.04712451651939394, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.423, - "pct_cuda_time": 0.04712451651939394, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 105.583, - "cuda_time_us": 131.648, - "pct_cuda_time": 1.8124009204630949, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 37.715, - "cuda_time_us": 79.2, - "pct_cuda_time": 1.0903481473374235, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.2, - "pct_cuda_time": 1.0903481473374235, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 22.512, - "cuda_time_us": 9.6, - "pct_cuda_time": 0.13216341179847554, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 9.6, - "pct_cuda_time": 0.13216341179847554, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 32.204, - "cuda_time_us": 42.848, - "pct_cuda_time": 0.5898893613271959, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 42.848, - "pct_cuda_time": 0.5898893613271959, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 515.543, - "cuda_time_us": 211.70800000000003, - "pct_cuda_time": 2.9145887067741323, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.087, - "cuda_time_us": 3.36, - "pct_cuda_time": 0.046257194129466446, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.36, - "pct_cuda_time": 0.046257194129466446, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 370.764, - "cuda_time_us": 72.893, - "pct_cuda_time": 1.0035195391902376, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 31.42, - "cuda_time_us": 20.703, - "pct_cuda_time": 0.28501865775665, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.703, - "pct_cuda_time": 0.28501865775665, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 109.206, - "cuda_time_us": 3.968, - "pct_cuda_time": 0.0546275435433699, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.968, - "pct_cuda_time": 0.0546275435433699, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 169.081, - "cuda_time_us": 29.726999999999997, - "pct_cuda_time": 0.40925226484721694, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.24, - "pct_cuda_time": 0.0308381294196443, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.423, - "pct_cuda_time": 0.32246495776621803, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.56, - "pct_cuda_time": 0.03524357647959349, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.020705601181761173, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 29.092, - "cuda_time_us": 18.495, - "pct_cuda_time": 0.25462107304300063, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.495, - "pct_cuda_time": 0.25462107304300063, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 18.174, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 94.46, - "cuda_time_us": 132.127, - "pct_cuda_time": 1.8189953240309567, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 32.892, - "cuda_time_us": 79.487, - "pct_cuda_time": 1.0942992826693154, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.487, - "pct_cuda_time": 1.0942992826693154, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.915, - "cuda_time_us": 8.8, - "pct_cuda_time": 0.12114979414860261, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.8, - "pct_cuda_time": 0.12114979414860261, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 29.121, - "cuda_time_us": 43.84, - "pct_cuda_time": 0.6035462472130384, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.84, - "pct_cuda_time": 0.6035462472130384, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 480.118, - "cuda_time_us": 211.74400000000003, - "pct_cuda_time": 2.9150843195683764, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.279, - "cuda_time_us": 3.488, - "pct_cuda_time": 0.048019372953446125, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.488, - "pct_cuda_time": 0.048019372953446125, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 342.387, - "cuda_time_us": 72.063, - "pct_cuda_time": 0.9920929108784943, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 28.534, - "cuda_time_us": 20.416, - "pct_cuda_time": 0.281067522424758, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.416, - "pct_cuda_time": 0.281067522424758, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 103.099, - "cuda_time_us": 3.84, - "pct_cuda_time": 0.052865364719390226, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.84, - "pct_cuda_time": 0.052865364719390226, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 155.056, - "cuda_time_us": 29.759, - "pct_cuda_time": 0.4096928095532119, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.464, - "pct_cuda_time": 0.033921942361608726, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.263, - "pct_cuda_time": 0.3202622342362435, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.56, - "pct_cuda_time": 0.03524357647959349, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.472, - "pct_cuda_time": 0.020265056475766253, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 27.424, - "cuda_time_us": 18.048, - "pct_cuda_time": 0.24846721418113402, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.048, - "pct_cuda_time": 0.24846721418113402, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.258, - "cuda_time_us": 3.297, - "pct_cuda_time": 0.045389871739538956, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.297, - "pct_cuda_time": 0.045389871739538956, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 93.337, - "cuda_time_us": 132.89600000000002, - "pct_cuda_time": 1.829582163996897, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 32.284, - "cuda_time_us": 80.288, - "pct_cuda_time": 1.1053266673412505, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 80.288, - "pct_cuda_time": 1.1053266673412505, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.636, - "cuda_time_us": 8.608, - "pct_cuda_time": 0.1185065259126331, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.608, - "pct_cuda_time": 0.1185065259126331, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 28.066, - "cuda_time_us": 44.0, - "pct_cuda_time": 0.605748970743013, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 44.0, - "pct_cuda_time": 0.605748970743013, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 481.054, - "cuda_time_us": 210.942, - "pct_cuda_time": 2.9040431678743786, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.208, - "cuda_time_us": 3.584, - "pct_cuda_time": 0.049341007071430874, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.584, - "pct_cuda_time": 0.049341007071430874, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 337.538, - "cuda_time_us": 72.672, - "pct_cuda_time": 1.00047702731446, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 27.816, - "cuda_time_us": 20.896, - "pct_cuda_time": 0.2876756930146818, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.896, - "pct_cuda_time": 0.2876756930146818, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 96.11, - "cuda_time_us": 3.744, - "pct_cuda_time": 0.05154373060140547, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.744, - "pct_cuda_time": 0.05154373060140547, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 157.108, - "cuda_time_us": 29.696, - "pct_cuda_time": 0.40882548716328443, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.24, - "pct_cuda_time": 0.0308381294196443, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.488, - "pct_cuda_time": 0.3233598142002702, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.464, - "pct_cuda_time": 0.033921942361608726, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.020705601181761173, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 27.663, - "cuda_time_us": 18.336, - "pct_cuda_time": 0.2524321165350883, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.336, - "pct_cuda_time": 0.2524321165350883, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.857, - "cuda_time_us": 3.264, - "pct_cuda_time": 0.04493556001148169, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.264, - "pct_cuda_time": 0.04493556001148169, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 97.212, - "cuda_time_us": 131.422, - "pct_cuda_time": 1.8092895734770058, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.644, - "cuda_time_us": 79.775, - "pct_cuda_time": 1.0982641850232697, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.775, - "pct_cuda_time": 1.0982641850232697, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.397, - "cuda_time_us": 8.896, - "pct_cuda_time": 0.12247142826658738, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.896, - "pct_cuda_time": 0.12247142826658738, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 29.535, - "cuda_time_us": 42.751, - "pct_cuda_time": 0.5885539601871488, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 42.751, - "pct_cuda_time": 0.5885539601871488, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 565.151, - "cuda_time_us": 210.784, - "pct_cuda_time": 2.9018679783885286, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.256, - "cuda_time_us": 3.616, - "pct_cuda_time": 0.049781551777425805, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.616, - "pct_cuda_time": 0.049781551777425805, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 414.819, - "cuda_time_us": 72.16, - "pct_cuda_time": 0.9934283120185412, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 28.788, - "cuda_time_us": 20.448, - "pct_cuda_time": 0.281508067130753, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.448, - "pct_cuda_time": 0.281508067130753, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 110.451, - "cuda_time_us": 3.68, - "pct_cuda_time": 0.050662641189415644, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.68, - "pct_cuda_time": 0.050662641189415644, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 215.644, - "cuda_time_us": 29.759999999999998, - "pct_cuda_time": 0.4097065765752742, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.496, - "pct_cuda_time": 0.03436248706760365, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.136, - "pct_cuda_time": 0.31851382243432613, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.464, - "pct_cuda_time": 0.033921942361608726, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.664, - "pct_cuda_time": 0.022908324711735765, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 29.573, - "cuda_time_us": 18.272, - "pct_cuda_time": 0.25155102712309846, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.272, - "pct_cuda_time": 0.25155102712309846, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.856, - "cuda_time_us": 3.36, - "pct_cuda_time": 0.046257194129466446, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.36, - "pct_cuda_time": 0.046257194129466446, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 105.03, - "cuda_time_us": 131.648, - "pct_cuda_time": 1.8124009204630949, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 40.125, - "cuda_time_us": 79.84, - "pct_cuda_time": 1.0991590414573218, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.84, - "pct_cuda_time": 1.0991590414573218, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.768, - "cuda_time_us": 8.8, - "pct_cuda_time": 0.12114979414860261, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.8, - "pct_cuda_time": 0.12114979414860261, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 32.112, - "cuda_time_us": 43.008, - "pct_cuda_time": 0.5920920848571706, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.008, - "pct_cuda_time": 0.5920920848571706, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 484.206, - "cuda_time_us": 211.551, - "pct_cuda_time": 2.9124272843103443, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.696, - "cuda_time_us": 3.488, - "pct_cuda_time": 0.048019372953446125, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.488, - "pct_cuda_time": 0.048019372953446125, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 343.371, - "cuda_time_us": 72.83099999999999, - "pct_cuda_time": 1.0026659838223722, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 33.056, - "cuda_time_us": 20.704, - "pct_cuda_time": 0.2850324247787123, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.704, - "pct_cuda_time": 0.2850324247787123, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 99.733, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 154.962, - "cuda_time_us": 29.822999999999997, - "pct_cuda_time": 0.4105738989652017, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.272, - "pct_cuda_time": 0.031278674125639214, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.519, - "pct_cuda_time": 0.3237865918842028, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.528, - "pct_cuda_time": 0.034803031773598565, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.020705601181761173, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 25.962, - "cuda_time_us": 18.528, - "pct_cuda_time": 0.25507538477105784, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.528, - "pct_cuda_time": 0.25507538477105784, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.608, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 96.576, - "cuda_time_us": 131.904, - "pct_cuda_time": 1.8159252781110542, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 32.763, - "cuda_time_us": 79.776, - "pct_cuda_time": 1.0982779520453319, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.776, - "pct_cuda_time": 1.0982779520453319, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 19.99, - "cuda_time_us": 9.088, - "pct_cuda_time": 0.12511469650255685, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 9.088, - "pct_cuda_time": 0.12511469650255685, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 29.77, - "cuda_time_us": 43.04, - "pct_cuda_time": 0.5925326295631654, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.04, - "pct_cuda_time": 0.5925326295631654, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 483.664, - "cuda_time_us": 212.127, - "pct_cuda_time": 2.920357089018253, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.093, - "cuda_time_us": 3.52, - "pct_cuda_time": 0.04845991765944104, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.52, - "pct_cuda_time": 0.04845991765944104, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 342.872, - "cuda_time_us": 72.512, - "pct_cuda_time": 0.9982743037844855, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 27.648, - "cuda_time_us": 20.384, - "pct_cuda_time": 0.2806269777187631, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.384, - "pct_cuda_time": 0.2806269777187631, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 95.109, - "cuda_time_us": 3.584, - "pct_cuda_time": 0.049341007071430874, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.584, - "pct_cuda_time": 0.049341007071430874, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 158.672, - "cuda_time_us": 30.144, - "pct_cuda_time": 0.4149931130472132, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.304, - "pct_cuda_time": 0.03171921883163414, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.776, - "pct_cuda_time": 0.32732471655422446, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.56, - "pct_cuda_time": 0.03524357647959349, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.020705601181761173, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 26.283, - "cuda_time_us": 18.4, - "pct_cuda_time": 0.2533132059470782, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.4, - "pct_cuda_time": 0.2533132059470782, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.167, - "cuda_time_us": 3.488, - "pct_cuda_time": 0.048019372953446125, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.488, - "pct_cuda_time": 0.048019372953446125, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 96.522, - "cuda_time_us": 132.607, - "pct_cuda_time": 1.8256034946208803, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.51, - "cuda_time_us": 80.639, - "pct_cuda_time": 1.1101588920851324, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 80.639, - "pct_cuda_time": 1.1101588920851324, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.741, - "cuda_time_us": 8.64, - "pct_cuda_time": 0.11894707061862803, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.64, - "pct_cuda_time": 0.11894707061862803, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 30.238, - "cuda_time_us": 43.328, - "pct_cuda_time": 0.5964975319171197, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.328, - "pct_cuda_time": 0.5964975319171197, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 520.5, - "cuda_time_us": 211.358, - "pct_cuda_time": 2.9097702490523125, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.423, - "cuda_time_us": 3.552, - "pct_cuda_time": 0.048900462365435965, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.552, - "pct_cuda_time": 0.048900462365435965, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 378.082, - "cuda_time_us": 72.92699999999999, - "pct_cuda_time": 1.003987617940357, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 27.63, - "cuda_time_us": 20.608, - "pct_cuda_time": 0.2837107906607276, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.608, - "pct_cuda_time": 0.2837107906607276, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 101.265, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 170.257, - "cuda_time_us": 29.823, - "pct_cuda_time": 0.4105738989652018, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.4, - "pct_cuda_time": 0.033040852949618886, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.393, - "pct_cuda_time": 0.3220519471043478, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.527, - "pct_cuda_time": 0.03478926475153623, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.503, - "pct_cuda_time": 0.02069183415969883, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 49.754, - "cuda_time_us": 18.72, - "pct_cuda_time": 0.25771865300702734, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.72, - "pct_cuda_time": 0.25771865300702734, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.245, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.328, - "pct_cuda_time": 0.04581664942347153, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 97.28, - "cuda_time_us": 131.551, - "pct_cuda_time": 1.8110655193230476, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 36.124, - "cuda_time_us": 79.968, - "pct_cuda_time": 1.1009212202813015, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.968, - "pct_cuda_time": 1.1009212202813015, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 20.274, - "cuda_time_us": 8.704, - "pct_cuda_time": 0.11982816003061784, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.704, - "pct_cuda_time": 0.11982816003061784, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 29.735, - "cuda_time_us": 42.879, - "pct_cuda_time": 0.5903161390111284, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 42.879, - "pct_cuda_time": 0.5903161390111284, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 514.753, - "cuda_time_us": 212.28699999999998, - "pct_cuda_time": 2.922559812548227, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 14.005, - "cuda_time_us": 3.616, - "pct_cuda_time": 0.049781551777425805, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.616, - "pct_cuda_time": 0.049781551777425805, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 363.538, - "cuda_time_us": 73.27799999999999, - "pct_cuda_time": 1.0088198426842387, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 34.737, - "cuda_time_us": 21.28, - "pct_cuda_time": 0.2929622294866209, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 21.28, - "pct_cuda_time": 0.2929622294866209, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 109.275, - "cuda_time_us": 3.616, - "pct_cuda_time": 0.049781551777425805, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.616, - "pct_cuda_time": 0.049781551777425805, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 161.711, - "cuda_time_us": 30.046999999999997, - "pct_cuda_time": 0.4136577119071661, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.464, - "pct_cuda_time": 0.033921942361608726, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.519, - "pct_cuda_time": 0.3237865918842028, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.56, - "pct_cuda_time": 0.03524357647959349, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.504, - "pct_cuda_time": 0.020705601181761173, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 28.658, - "cuda_time_us": 18.335, - "pct_cuda_time": 0.252418349513026, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.335, - "pct_cuda_time": 0.252418349513026, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 18.325, - "cuda_time_us": 3.393, - "pct_cuda_time": 0.046711505857523705, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.393, - "pct_cuda_time": 0.046711505857523705, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 104.35, - "cuda_time_us": 132.0, - "pct_cuda_time": 1.817246912229039, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 35.599, - "cuda_time_us": 79.904, - "pct_cuda_time": 1.1000401308693115, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 79.904, - "pct_cuda_time": 1.1000401308693115, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.917, - "cuda_time_us": 8.928, - "pct_cuda_time": 0.12291197297258229, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.928, - "pct_cuda_time": 0.12291197297258229, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 35.428, - "cuda_time_us": 43.168, - "pct_cuda_time": 0.5942948083871451, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 43.168, - "pct_cuda_time": 0.5942948083871451, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "LlamaDecoderLayer", - "cpu_time_us": 525.645, - "cuda_time_us": 211.199, - "pct_cuda_time": 2.9075812925444002, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.532, - "cuda_time_us": 3.488, - "pct_cuda_time": 0.048019372953446125, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.488, - "pct_cuda_time": 0.048019372953446125, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaAttention", - "cpu_time_us": 376.326, - "cuda_time_us": 72.607, - "pct_cuda_time": 0.9995821708804078, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "QKVParallelLinear(weight=bfloat16[6144, 4096])", - "cpu_time_us": 30.327, - "cuda_time_us": 20.703, - "pct_cuda_time": 0.28501865775665, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 20.703, - "pct_cuda_time": 0.28501865775665, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 6144]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 6144]) <- linear(bfloat16[1, 4096], bfloat16[6144, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Llama3RotaryEmbedding", - "cpu_time_us": 111.715, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::rotary_embedding_kernel(long const*, c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, int, long, long, int, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.776, - "pct_cuda_time": 0.051984275307400386, - "trace": "_C::rotary_embedding(int64[1], bfloat16[1, 4096], bfloat16[1, 1024], 128, bfloat16[131072, 128], True)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Attention", - "cpu_time_us": 173.146, - "cuda_time_us": 30.016, - "pct_cuda_time": 0.4132309342232336, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0>(__nv_bfloat16 const*, __nv_bfloat16 const*, __nv_bfloat16*, __nv_bfloat16*, long const*, int, int, int, int, int, int, float const*, float const*)", - "cpu_time_us": 0, - "cuda_time_us": 2.336, - "pct_cuda_time": 0.03215976353762905, - "trace": "_C_cache_ops::reshape_and_cache_flash(bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], int64[1], None, float32[], float32[]) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > > >(flash::enable_sm90_or_later, cute::C<1>, cute::C<1> >, cute::tuple, cute::C<128>, cute::C<128> >, cutlass::bfloat16_t, float, cutlass::arch::Sm90, true, false, false, true, true, false, true, true, true, true, false>, flash::CollectiveEpilogueFwd, cute::C<128>, cute::C<128> >, cute::tuple, cute::C<1>, cute::C<1> >, float, cutlass::arch::Sm90, 256, true, true, false>, flash::VarlenDynamicPersistentTileScheduler<128, 256, 128, true, true, true> > >::Params)", - "cpu_time_us": 0, - "cuda_time_us": 23.648, - "pct_cuda_time": 0.32556253773024485, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void cutlass::device_kernel, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80> >(flash::FlashAttnFwdCombine, cute::C<128> >, 5, 256, 1, false, false, cutlass::bfloat16_t, float, cutlass::arch::Sm80>::Params)", - "cpu_time_us": 0, - "cuda_time_us": 2.527, - "pct_cuda_time": 0.03478926475153623, - "trace": "_vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor, at::detail::Array >(int, at::native::FillFunctor, at::detail::Array)", - "cpu_time_us": 0, - "cuda_time_us": 1.505, - "pct_cuda_time": 0.020719368203823512, - "trace": "fill_(int32[1], 0) <- zero_(int32[1]) <- zeros(None, 3, 0, None, None) <- _vllm_fa3_C::fwd(bfloat16[1, 1, 32, 128], bfloat16[28102, 16, 8, 128], bfloat16[28102, 16, 8, 128], None, None, bfloat16[1, 1, 32, 128], None, None, None, None, int32[1], None, None, int32[1, 257], None, None, None, None, None, None, None, 0.08838834764831845, True, -1, -1, 0, 0.0, True, 0, None, 0) <- vllm::unified_attention_with_output(bfloat16[1, 32, 128], bfloat16[1, 8, 128], bfloat16[1, 8, 128], bfloat16[1, 32, 128], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 4096])", - "cpu_time_us": 27.844, - "cuda_time_us": 18.112, - "pct_cuda_time": 0.24934830359312388, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void gemv2T_kernel_val, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float> >(cublasGemvParamsEx, cublasGemvTensorStridedBatched<__nv_bfloat16 const>, cublasGemvTensorStridedBatched<__nv_bfloat16>, float>, float, float)", - "cpu_time_us": 0, - "cuda_time_us": 18.112, - "pct_cuda_time": 0.24934830359312388, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 4096]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 4096]) <- linear(bfloat16[1, 4096], bfloat16[4096, 4096], None)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 16.427, - "cuda_time_us": 3.552, - "pct_cuda_time": 0.048900462365435965, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.552, - "pct_cuda_time": 0.048900462365435965, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "LlamaMLP", - "cpu_time_us": 103.171, - "cuda_time_us": 131.55200000000002, - "pct_cuda_time": 1.8110792863451106, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "MergedColumnParallelLinear(weight=bfloat16[28672, 4096])", - "cpu_time_us": 34.067, - "cuda_time_us": 78.816, - "pct_cuda_time": 1.0850616108654845, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 78.816, - "pct_cuda_time": 1.0850616108654845, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 28672]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 28672]) <- linear(bfloat16[1, 4096], bfloat16[28672, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "SiluAndMul", - "cpu_time_us": 21.306, - "cuda_time_us": 8.736, - "pct_cuda_time": 0.12026870473661277, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void vllm::act_and_mul_kernel(c10::BFloat16 const&)), true>(c10::BFloat16*, c10::BFloat16 const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 8.736, - "pct_cuda_time": 0.12026870473661277, - "trace": "_C::silu_and_mul(bfloat16[1, 14336], bfloat16[1, 28672])" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "RowParallelLinear(weight=bfloat16[4096, 14336])", - "cpu_time_us": 36.455, - "cuda_time_us": 44.0, - "pct_cuda_time": 0.605748970743013, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 44.0, - "pct_cuda_time": 0.605748970743013, - "trace": "mm(bfloat16[1, 14336], bfloat16[14336, 4096]) <- matmul(bfloat16[1, 14336], bfloat16[14336, 4096]) <- linear(bfloat16[1, 14336], bfloat16[4096, 14336], None)" - }, - "children": [] - } - ] - } - ] - } - ] - }, - { - "entry": { - "name": "RMSNorm(weight=bfloat16[4096])", - "cpu_time_us": 15.235, - "cuda_time_us": 3.456, - "pct_cuda_time": 0.0475788282474512, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "std::enable_if<(((8)>(0)))&&vllm::_typeConvert::exists, void>::type vllm::fused_add_rms_norm_kernel(c10::BFloat16*, c10::BFloat16*, c10::BFloat16 const*, float, int, int)", - "cpu_time_us": 0, - "cuda_time_us": 3.456, - "pct_cuda_time": 0.0475788282474512, - "trace": "_C::fused_add_rms_norm(bfloat16[1, 4096], bfloat16[1, 4096], bfloat16[4096], 1e-05)" - }, - "children": [] - } - ] - } - ] - }, - { - "entry": { - "name": "LogitsProcessor", - "cpu_time_us": 94.129, - "cuda_time_us": 347.518, - "pct_cuda_time": 4.784287973060691, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "void at::native::(anonymous namespace)::indexSelectSmallIndex(at::cuda::detail::TensorInfo, at::cuda::detail::TensorInfo, at::cuda::detail::TensorInfo, int, int, unsigned int, long)", - "cpu_time_us": 0, - "cuda_time_us": 2.624, - "pct_cuda_time": 0.03612466589158332, - "trace": "index_select(bfloat16[1, 4096], 0, int64[1])" - }, - "children": [] - }, - { - "entry": { - "name": "Memset (Device)", - "cpu_time_us": 0, - "cuda_time_us": 0.735, - "pct_cuda_time": 0.010118761215820785, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 128256]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 128256]) <- linear(bfloat16[1, 4096], bfloat16[128256, 4096], None)" - }, - "children": [] - }, - { - "entry": { - "name": "sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off_kernel__5x_cublas", - "cpu_time_us": 0, - "cuda_time_us": 344.159, - "pct_cuda_time": 4.7380445459532865, - "trace": "mm(bfloat16[1, 4096], bfloat16[4096, 128256]) <- matmul(bfloat16[1, 4096], bfloat16[4096, 128256]) <- linear(bfloat16[1, 4096], bfloat16[128256, 4096], None)" - }, - "children": [] - } - ] - }, - { - "entry": { - "name": "Sampler", - "cpu_time_us": 684.941, - "cuda_time_us": 124.28700000000002, - "pct_cuda_time": 1.7110618710622016, - "trace": "" - }, - "children": [ - { - "entry": { - "name": "Memcpy HtoD (Pinned -> Device)", - "cpu_time_us": 0, - "cuda_time_us": 2.815, - "pct_cuda_time": 0.03875416710549049, - "trace": "copy_(bfloat16[1], bfloat16[1], True) <- _to_copy(bfloat16[1], 15, 0, None, None, True, None) <- to(bfloat16[1], 15, 0, None, None, True, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "Memcpy HtoD (Pinned -> Device)", - "cpu_time_us": 0, - "cuda_time_us": 2.208, - "pct_cuda_time": 0.03039758471364938, - "trace": "copy_(bfloat16[1], bfloat16[1], True) <- _to_copy(bfloat16[1], 15, 0, None, None, True, None) <- to(bfloat16[1], 15, 0, None, None, True, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "Memcpy HtoD (Pinned -> Device)", - "cpu_time_us": 0, - "cuda_time_us": 2.208, - "pct_cuda_time": 0.03039758471364938, - "trace": "copy_(int32[1], int32[1], True) <- _to_copy(int32[1], 3, 0, None, None, True, None) <- to(int32[1], 3, 0, None, None, True, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "Memcpy HtoD (Pinned -> Device)", - "cpu_time_us": 0, - "cuda_time_us": 2.208, - "pct_cuda_time": 0.03039758471364938, - "trace": "copy_(bfloat16[1], bfloat16[1], True) <- _to_copy(bfloat16[1], 15, 0, None, None, True, None) <- to(bfloat16[1], 15, 0, None, None, True, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "Memcpy HtoD (Pinned -> Device)", - "cpu_time_us": 0, - "cuda_time_us": 2.24, - "pct_cuda_time": 0.0308381294196443, - "trace": "copy_(bfloat16[1], bfloat16[1], True) <- _to_copy(bfloat16[1], 15, 0, None, None, True, None) <- to(bfloat16[1], 15, 0, None, None, True, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "Memcpy HtoD (Pinned -> Device)", - "cpu_time_us": 0, - "cuda_time_us": 2.208, - "pct_cuda_time": 0.03039758471364938, - "trace": "copy_(bfloat16[1], bfloat16[1], True) <- _to_copy(bfloat16[1], 15, 0, None, None, True, None) <- to(bfloat16[1], 15, 0, None, None, True, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "Memcpy HtoD (Pinned -> Device)", - "cpu_time_us": 0, - "cuda_time_us": 2.144, - "pct_cuda_time": 0.02951649530165954, - "trace": "copy_(bfloat16[1], bfloat16[1], True) <- _to_copy(bfloat16[1], 15, 0, None, None, True, None) <- to(bfloat16[1], 15, 0, None, None, True, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::unrolled_elementwise_kernel, TrivialOffsetCalculator<1, unsigned int>, TrivialOffsetCalculator<1, unsigned int>, at::native::memory::LoadWithCast<1>, at::native::memory::StoreWithCast<1> >(int, at::native::direct_copy_kernel_cuda(at::TensorIteratorBase&)::{lambda()#3}::operator()() const::{lambda()#7}::operator()() const::{lambda(float)#1}, at::detail::Array, TrivialOffsetCalculator<1, unsigned int>, TrivialOffsetCalculator<1, unsigned int>, at::native::memory::LoadWithCast<1>, at::native::memory::StoreWithCast<1>)", - "cpu_time_us": 0, - "cuda_time_us": 4.192, - "pct_cuda_time": 0.057711356485334334, - "trace": "copy_(float32[1, 128256], bfloat16[1, 128256], False) <- _to_copy(bfloat16[1, 128256], 6, None, None, None, False, None) <- to(bfloat16[1, 128256], 6, False, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::elementwise_kernel<128, 4, at::native::gpu_kernel_impl > >(at::TensorIteratorBase&, at::native::BinaryFunctor > const&)::{lambda(int)#1}>(int, at::native::gpu_kernel_impl > >(at::TensorIteratorBase&, at::native::BinaryFunctor > const&)::{lambda(int)#1})", - "cpu_time_us": 0, - "cuda_time_us": 4.512, - "pct_cuda_time": 0.062116803545283504, - "trace": "div_(float32[1, 128256], bfloat16[1, 1])" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::(anonymous namespace)::cunn_SoftMaxForward<4, float, float, float, at::native::(anonymous namespace)::SoftMaxForwardEpilogue>(float*, float const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 34.08, - "pct_cuda_time": 0.46918011188458825, - "trace": "_softmax(float32[1, 128256], -1, False) <- softmax(float32[1, 128256], -1, 6)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::(anonymous namespace)::cunn_SoftMaxForward<4, float, float, float, at::native::(anonymous namespace)::LogSoftMaxForwardEpilogue>(float*, float const*, int)", - "cpu_time_us": 0, - "cuda_time_us": 27.584, - "pct_cuda_time": 0.3797495365676198, - "trace": "_log_softmax(float32[1, 128256], -1, False) <- log_softmax(float32[1, 128256], -1, 6)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::unrolled_elementwise_kernel, TrivialOffsetCalculator<1, unsigned int>, TrivialOffsetCalculator<1, unsigned int>, at::native::memory::LoadWithCast<1>, at::native::memory::StoreWithCast<1> >(int, at::native::direct_copy_kernel_cuda(at::TensorIteratorBase&)::{lambda()#3}::operator()() const::{lambda()#4}::operator()() const::{lambda(long)#1}, at::detail::Array, TrivialOffsetCalculator<1, unsigned int>, TrivialOffsetCalculator<1, unsigned int>, at::native::memory::LoadWithCast<1>, at::native::memory::StoreWithCast<1>)", - "cpu_time_us": 0, - "cuda_time_us": 1.888, - "pct_cuda_time": 0.025992137653700193, - "trace": "copy_(int64[1], int32[1], False) <- _to_copy(int32[1], 4, None, None, None, False, None) <- to(int32[1], 4, False, False, None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::index_elementwise_kernel<128, 4, at::native::gpu_index_kernel >(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef)::{lambda(char*, char const*, long)#1}>(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef, at::native::index_kernel_impl >(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef)::{lambda(char*, char const*, long)#1} const&)::{lambda(int)#1}>(long, at::native::gpu_index_kernel >(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef)::{lambda(char*, char const*, long)#1}>(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef, at::native::index_kernel_impl >(at::TensorIteratorBase&, c10::ArrayRef, c10::ArrayRef)::{lambda(char*, char const*, long)#1} const&)::{lambda(int)#1})", - "cpu_time_us": 0, - "cuda_time_us": 4.64, - "pct_cuda_time": 0.06387898236926319, - "trace": "index(float32[1, 128256], None)" - }, - "children": [] - }, - { - "entry": { - "name": "void at::native::reduce_kernel<512, 1, at::native::ReduceOp, unsigned int, long, 4> >(at::native::ReduceOp, unsigned int, long, 4>)", - "cpu_time_us": 0, - "cuda_time_us": 28.576, - "pct_cuda_time": 0.3934064224534623, - "trace": "argmax(float32[1, 128256], -1, False)" - }, - "children": [] - }, - { - "entry": { - "name": "Memcpy DtoH (Device -> Pageable)", - "cpu_time_us": 0, - "cuda_time_us": 2.784, - "pct_cuda_time": 0.03832738942155792, - "trace": "copy_(int64[1], int64[1], False) <- _to_copy(int64[1], 4, 0, None, None, False, None) <- to(int64[1], 4, 0, None, None, False, False, None)" - }, - "children": [] - } - ] - } - ] - } -} \ No newline at end of file