{ "2005.14165": { "arxivId": "2005.14165", "title": "Language Models are Few-Shot Learners" }, "1910.10683": { "arxivId": "1910.10683", "title": "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer" }, "1707.06347": { "arxivId": "1707.06347", "title": "Proximal Policy Optimization Algorithms" }, "2112.10752": { "arxivId": "2112.10752", "title": "High-Resolution Image Synthesis with Latent Diffusion Models" }, "1910.13461": { "arxivId": "1910.13461", "title": "BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension" }, "2203.02155": { "arxivId": "2203.02155", "title": "Training language models to follow instructions with human feedback" }, "1506.02142": { "arxivId": "1506.02142", "title": "Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning" }, "1612.01474": { "arxivId": "1612.01474", "title": "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles" }, "2204.02311": { "arxivId": "2204.02311", "title": "PaLM: Scaling Language Modeling with Pathways" }, "2005.11401": { "arxivId": "2005.11401", "title": "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks" }, "2004.05150": { "arxivId": "2004.05150", "title": "Longformer: The Long-Document Transformer" }, "2001.08361": { "arxivId": "2001.08361", "title": "Scaling Laws for Neural Language Models" }, "2205.11916": { "arxivId": "2205.11916", "title": "Large Language Models are Zero-Shot Reasoners" }, "2205.01068": { "arxivId": "2205.01068", "title": "OPT: Open Pre-trained Transformer Language Models" }, "2004.04906": { "arxivId": "2004.04906", "title": "Dense Passage Retrieval for Open-Domain Question Answering" }, "2301.12597": { "arxivId": "2301.12597", "title": "BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models" }, "1904.09751": { "arxivId": "1904.09751", "title": "The Curious Case of Neural Text Degeneration" }, "2302.05543": { "arxivId": "2302.05543", "title": "Adding Conditional Control to Text-to-Image Diffusion Models" }, "2009.03300": { "arxivId": "2009.03300", "title": "Measuring Massive Multitask Language Understanding" }, "2210.11416": { "arxivId": "2210.11416", "title": "Scaling Instruction-Finetuned Language Models" }, "1706.03741": { "arxivId": "1706.03741", "title": "Deep Reinforcement Learning from Human Preferences" }, "2304.08485": { "arxivId": "2304.08485", "title": "Visual Instruction Tuning" }, "2303.12712": { "arxivId": "2303.12712", "title": "Sparks of Artificial General Intelligence: Early experiments with GPT-4" }, "1909.01066": { "arxivId": "1909.01066", "title": "Language Models as Knowledge Bases?" }, "1809.09600": { "arxivId": "1809.09600", "title": "HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering" }, "1506.03099": { "arxivId": "1506.03099", "title": "Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks" }, "1912.08777": { "arxivId": "1912.08777", "title": "PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization" }, "2002.08909": { "arxivId": "2002.08909", "title": "REALM: Retrieval-Augmented Language Model Pre-Training" }, "2101.00027": { "arxivId": "2101.00027", "title": "The Pile: An 800GB Dataset of Diverse Text for Language Modeling" }, "2210.03629": { "arxivId": "2210.03629", "title": "ReAct: Synergizing Reasoning and Acting in Language Models" }, "1511.06732": { "arxivId": "1511.06732", "title": "Sequence Level Training with Recurrent Neural Networks" }, "2009.01325": { "arxivId": "2009.01325", "title": "Learning to summarize from human feedback" }, "2012.07805": { "arxivId": "2012.07805", "title": "Extracting Training Data from Large Language Models" }, "1808.08745": { "arxivId": "1808.08745", "title": "Don\u2019t Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization" }, "1805.04833": { "arxivId": "1805.04833", "title": "Hierarchical Neural Story Generation" }, "2109.07958": { "arxivId": "2109.07958", "title": "TruthfulQA: Measuring How Models Mimic Human Falsehoods" }, "2302.04023": { "arxivId": "2302.04023", "title": "A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity" }, "2305.10601": { "arxivId": "2305.10601", "title": "Tree of Thoughts: Deliberate Problem Solving with Large Language Models" }, "1905.09418": { "arxivId": "1905.09418", "title": "Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned" }, "2303.17651": { "arxivId": "2303.17651", "title": "Self-Refine: Iterative Refinement with Self-Feedback" }, "2307.03172": { "arxivId": "2307.03172", "title": "Lost in the Middle: How Language Models Use Long Contexts" }, "2202.05262": { "arxivId": "2202.05262", "title": "Locating and Editing Factual Associations in GPT" }, "1912.02164": { "arxivId": "1912.02164", "title": "Plug and Play Language Models: A Simple Approach to Controlled Text Generation" }, "1811.10830": { "arxivId": "1811.10830", "title": "From Recognition to Cognition: Visual Commonsense Reasoning" }, "2112.04359": { "arxivId": "2112.04359", "title": "Ethical and social risks of harm from Language Models" }, "2002.08910": { "arxivId": "2002.08910", "title": "How Much Knowledge Can You Pack into the Parameters of a Language Model?" }, "2108.10904": { "arxivId": "2108.10904", "title": "SimVLM: Simple Visual Language Model Pretraining with Weak Supervision" }, "1910.12840": { "arxivId": "1910.12840", "title": "Evaluating the Factual Consistency of Abstractive Text Summarization" }, "2306.01116": { "arxivId": "2306.01116", "title": "The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only" }, "2211.09085": { "arxivId": "2211.09085", "title": "Galactica: A Large Language Model for Science" }, "2007.12626": { "arxivId": "2007.12626", "title": "SummEval: Re-evaluating Summarization Evaluation" }, "2305.11206": { "arxivId": "2305.11206", "title": "LIMA: Less Is More for Alignment" }, "2012.14913": { "arxivId": "2012.14913", "title": "Transformer Feed-Forward Layers Are Key-Value Memories" }, "2207.05221": { "arxivId": "2207.05221", "title": "Language Models (Mostly) Know What They Know" }, "2104.07567": { "arxivId": "2104.07567", "title": "Retrieval Augmentation Reduces Hallucination in Conversation" }, "1908.04319": { "arxivId": "1908.04319", "title": "Neural Text Generation with Unlikelihood Training" }, "1907.09190": { "arxivId": "1907.09190", "title": "ELI5: Long Form Question Answering" }, "2107.06499": { "arxivId": "2107.06499", "title": "Deduplicating Training Data Makes Language Models Better" }, "2304.03277": { "arxivId": "2304.03277", "title": "Instruction Tuning with GPT-4" }, "2012.05345": { "arxivId": "2012.05345", "title": "Data and its (dis)contents: A survey of dataset development and use in machine learning research" }, "2210.03350": { "arxivId": "2210.03350", "title": "Measuring and Narrowing the Compositionality Gap in Language Models" }, "2004.04228": { "arxivId": "2004.04228", "title": "Asking and Answering Questions to Evaluate the Factual Consistency of Summaries" }, "2002.06353": { "arxivId": "2002.06353", "title": "UniViLM: A Unified Video and Language Pre-Training Model for Multimodal Understanding and Generation" }, "2104.08164": { "arxivId": "2104.08164", "title": "Editing Factual Knowledge in Language Models" }, "2305.01937": { "arxivId": "2305.01937", "title": "Can Large Language Models Be an Alternative to Human Evaluations?" }, "2305.14251": { "arxivId": "2305.14251", "title": "FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation" }, "2302.00093": { "arxivId": "2302.00093", "title": "Large Language Models Can Be Easily Distracted by Irrelevant Context" }, "2210.07229": { "arxivId": "2210.07229", "title": "Mass-Editing Memory in a Transformer" }, "2104.05240": { "arxivId": "2104.05240", "title": "Factual Probing Is [MASK]: Learning vs. Learning to Recall" }, "2305.14325": { "arxivId": "2305.14325", "title": "Improving Factuality and Reasoning in Language Models through Multiagent Debate" }, "2305.08322": { "arxivId": "2305.08322", "title": "C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models" }, "2005.03754": { "arxivId": "2005.03754", "title": "FEQA: A Question Answering Evaluation Framework for Faithfulness Assessment in Abstractive Summarization" }, "2302.00083": { "arxivId": "2302.00083", "title": "In-Context Retrieval-Augmented Language Models" }, "1711.03953": { "arxivId": "1711.03953", "title": "Breaking the Softmax Bottleneck: A High-Rank RNN Language Model" }, "2108.11896": { "arxivId": "2108.11896", "title": "A Survey on Automated Fact-Checking" }, "2212.10511": { "arxivId": "2212.10511", "title": "When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories" }, "2308.10792": { "arxivId": "2308.10792", "title": "Instruction Tuning for Large Language Models: A Survey" }, "2303.04048": { "arxivId": "2303.04048", "title": "Is ChatGPT a Good NLG Evaluator? A Preliminary Study" }, "2301.13848": { "arxivId": "2301.13848", "title": "Benchmarking Large Language Models for News Summarization" }, "2309.05463": { "arxivId": "2309.05463", "title": "Textbooks Are All You Need II: phi-1.5 technical report" }, "2306.05424": { "arxivId": "2306.05424", "title": "Video-ChatGPT: Towards Detailed Video Understanding via Large Vision and Language Models" }, "2004.14373": { "arxivId": "2004.14373", "title": "ToTTo: A Controlled Table-To-Text Generation Dataset" }, "2306.03341": { "arxivId": "2306.03341", "title": "Inference-Time Intervention: Eliciting Truthful Answers from a Language Model" }, "2111.09525": { "arxivId": "2111.09525", "title": "SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization" }, "2210.02406": { "arxivId": "2210.02406", "title": "Decomposed Prompting: A Modular Approach for Solving Complex Tasks" }, "2104.13346": { "arxivId": "2104.13346", "title": "Understanding Factuality in Abstractive Summarization with FRANK: A Benchmark for Factuality Metrics" }, "2303.08896": { "arxivId": "2303.08896", "title": "SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models" }, "2209.10063": { "arxivId": "2209.10063", "title": "Generate rather than Retrieve: Large Language Models are Strong Context Generators" }, "2310.01798": { "arxivId": "2310.01798", "title": "Large Language Models Cannot Self-Correct Reasoning Yet" }, "2211.08411": { "arxivId": "2211.08411", "title": "Large Language Models Struggle to Learn Long-Tail Knowledge" }, "2212.10509": { "arxivId": "2212.10509", "title": "Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions" }, "2206.06520": { "arxivId": "2206.06520", "title": "Memory-Based Model Editing at Scale" }, "2309.05922": { "arxivId": "2309.05922", "title": "A Survey of Hallucination in Large Foundation Models" }, "2212.03827": { "arxivId": "2212.03827", "title": "Discovering Latent Knowledge in Language Models Without Supervision" }, "2210.15097": { "arxivId": "2210.15097", "title": "Contrastive Decoding: Open-ended Text Generation as Optimization" }, "2305.11738": { "arxivId": "2305.11738", "title": "CRITIC: Large Language Models Can Self-Correct with Tool-Interactive Critiquing" }, "2212.09597": { "arxivId": "2212.09597", "title": "Reasoning with Language Model Prompting: A Survey" }, "2212.12017": { "arxivId": "2212.12017", "title": "OPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization" }, "2103.12693": { "arxivId": "2103.12693", "title": "QuestEval: Summarization Asks for Fact-based Evaluation" }, "2206.05802": { "arxivId": "2206.05802", "title": "Self-critiquing models for assisting human evaluators" }, "1909.03242": { "arxivId": "1909.03242", "title": "MultiFC: A Real-World Multi-Domain Dataset for Evidence-Based Fact Checking of Claims" }, "2306.13063": { "arxivId": "2306.13063", "title": "Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs" }, "2304.13734": { "arxivId": "2304.13734", "title": "The Internal State of an LLM Knows When its Lying" }, "1906.06755": { "arxivId": "1906.06755", "title": "Theoretical Limitations of Self-Attention in Neural Sequence Models" }, "2210.08726": { "arxivId": "2210.08726", "title": "RARR: Researching and Revising What Language Models Say, Using Language Models" }, "2308.05374": { "arxivId": "2308.05374", "title": "Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models' Alignment" }, "2305.13172": { "arxivId": "2305.13172", "title": "Editing Large Language Models: Problems, Methods, and Opportunities" }, "2305.13534": { "arxivId": "2305.13534", "title": "How Language Model Hallucinations Can Snowball" }, "2304.09848": { "arxivId": "2304.09848", "title": "Evaluating Verifiability in Generative Search Engines" }, "2303.14070": { "arxivId": "2303.14070", "title": "ChatDoctor: A Medical Chat Model Fine-tuned on LLaMA Model using Medical Domain Knowledge" }, "2309.12288": { "arxivId": "2309.12288", "title": "The Reversal Curse: LLMs trained on \"A is B\" fail to learn \"B is A\"" }, "1905.13322": { "arxivId": "1905.13322", "title": "Assessing The Factual Accuracy of Generated Text" }, "2112.08542": { "arxivId": "2112.08542", "title": "QAFactEval: Improved QA-Based Factual Consistency Evaluation for Summarization" }, "2206.04624": { "arxivId": "2206.04624", "title": "Factuality Enhanced Language Models for Open-Ended Text Generation" }, "2301.13379": { "arxivId": "2301.13379", "title": "Faithful Chain-of-Thought Reasoning" }, "2308.03188": { "arxivId": "2308.03188", "title": "Automatically Correcting Large Language Models: Surveying the landscape of diverse self-correction strategies" }, "2004.05773": { "arxivId": "2004.05773", "title": "Generating Fact Checking Explanations" }, "2112.12870": { "arxivId": "2112.12870", "title": "Measuring Attribution in Natural Language Generation Models" }, "2005.03642": { "arxivId": "2005.03642", "title": "On Exposure Bias, Hallucination and Domain Shift in Neural Machine Translation" }, "2004.00345": { "arxivId": "2004.00345", "title": "Editable Neural Networks" }, "2102.09130": { "arxivId": "2102.09130", "title": "Entity-level Factual Consistency of Abstractive Text Summarization" }, "2305.14552": { "arxivId": "2305.14552", "title": "Sources of Hallucination by Large Language Models on Inference Tasks" }, "1908.10090": { "arxivId": "1908.10090", "title": "On NMT Search Errors and Model Errors: Cat Got Your Tongue?" }, "1908.04942": { "arxivId": "1908.04942", "title": "Reinforcement Learning Based Graph-to-Sequence Model for Natural Question Generation" }, "2306.14565": { "arxivId": "2306.14565", "title": "Mitigating Hallucination in Large Multi-Modal Models via Robust Instruction Tuning" }, "2104.04302": { "arxivId": "2104.04302", "title": "Annotating and Modeling Fine-grained Factuality in Summarization" }, "2103.15025": { "arxivId": "2103.15025", "title": "On Hallucination and Predictive Uncertainty in Conditional Language Generation" }, "2305.14795": { "arxivId": "2305.14795", "title": "MQuAKE: Assessing Knowledge Editing in Language Models via Multi-Hop Questions" }, "2301.00303": { "arxivId": "2301.00303", "title": "Rethinking with Retrieval: Faithful Large Language Model Inference" }, "2010.05478": { "arxivId": "2010.05478", "title": "Evaluating Factuality in Generation with Dependency-level Entailment" }, "2307.13528": { "arxivId": "2307.13528", "title": "FacTool: Factuality Detection in Generative AI - A Tool Augmented Framework for Multi-Task and Multi-Domain Scenarios" }, "2305.14739": { "arxivId": "2305.14739", "title": "Trusting Your Evidence: Hallucinate Less with Context-aware Decoding" }, "2104.08202": { "arxivId": "2104.08202", "title": "Q^{2}: Evaluating Factual Consistency in Knowledge-Grounded Dialogues via Question Generation and Question Answering" }, "2010.02650": { "arxivId": "2010.02650", "title": "If Beam Search Is the Answer, What Was the Question?" }, "2010.06189": { "arxivId": "2010.06189", "title": "X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained Language Models" }, "2301.09785": { "arxivId": "2301.09785", "title": "Transformer-Patcher: One Mistake worth One Neuron" }, "2310.07521": { "arxivId": "2310.07521", "title": "Survey on Factuality in Large Language Models: Knowledge, Retrieval and Domain-Specificity" }, "2310.03214": { "arxivId": "2310.03214", "title": "FreshLLMs: Refreshing Large Language Models with Search Engine Augmentation" }, "2211.05110": { "arxivId": "2211.05110", "title": "Large Language Models with Controllable Working Memory" }, "2104.08455": { "arxivId": "2104.08455", "title": "Neural Path Hunter: Reducing Hallucination in Dialogue Systems via Path Grounding" }, "2305.15294": { "arxivId": "2305.15294", "title": "Enhancing Retrieval-Augmented Large Language Models with Iterative Retrieval-Generation Synergy" }, "2303.09540": { "arxivId": "2303.09540", "title": "SemDeDup: Data-efficient learning at web-scale through semantic deduplication" }, "2207.13332": { "arxivId": "2207.13332", "title": "RealTime QA: What's the Answer Right Now?" }, "2204.06092": { "arxivId": "2204.06092", "title": "ASQA: Factoid Questions Meet Long-Form Answers" }, "2305.03268": { "arxivId": "2305.03268", "title": "Verify-and-Edit: A Knowledge-Enhanced Chain-of-Thought Framework" }, "2307.03987": { "arxivId": "2307.03987", "title": "A Stitch in Time Saves Nine: Detecting and Mitigating Hallucinations of LLMs by Validating Low-Confidence Generation" }, "1911.01214": { "arxivId": "1911.01214", "title": "A Richly Annotated Corpus for Different Tasks in Automated Fact-Checking" }, "2212.07919": { "arxivId": "2212.07919", "title": "ROSCOE: A Suite of Metrics for Scoring Step-by-Step Reasoning" }, "2304.02554": { "arxivId": "2304.02554", "title": "Human-like Summarization Evaluation with ChatGPT" }, "2211.11031": { "arxivId": "2211.11031", "title": "Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors" }, "2310.04408": { "arxivId": "2310.04408", "title": "RECOMP: Improving Retrieval-Augmented LMs with Compression and Selective Augmentation" }, "2104.14839": { "arxivId": "2104.14839", "title": "The Factual Inconsistency Problem in Abstractive Text Summarization: A Survey" }, "2205.10487": { "arxivId": "2205.10487", "title": "Scaling Laws and Interpretability of Learning from Repeated Data" }, "2310.01469": { "arxivId": "2310.01469", "title": "LLM Lies: Hallucinations are not Bugs, but Features as Adversarial Examples" }, "2307.11019": { "arxivId": "2307.11019", "title": "Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation" }, "2304.04675": { "arxivId": "2304.04675", "title": "Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis" }, "1910.08684": { "arxivId": "1910.08684", "title": "Sticking to the Facts: Confident Decoding for Faithful Data-to-Text Generation" }, "2310.14566": { "arxivId": "2310.14566", "title": "HallusionBench: You See What You Think? Or You Think What You See? An Image-Context Reasoning Benchmark Challenging for GPT-4V(ision), LLaVA-1.5, and Other Multi-modality Models" }, "2305.13281": { "arxivId": "2305.13281", "title": "LM vs LM: Detecting Factual Errors via Cross Examination" }, "2010.05873": { "arxivId": "2010.05873", "title": "Controlled Hallucinations: Learning to Generate Faithfully from Noisy Data" }, "2005.00969": { "arxivId": "2005.00969", "title": "Towards Faithful Neural Table-to-Text Generation with Content-Matching Constraints" }, "2307.16877": { "arxivId": "2307.16877", "title": "Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering" }, "2309.15402": { "arxivId": "2309.15402", "title": "Navigate through Enigmatic Labyrinth A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future" }, "2004.10450": { "arxivId": "2004.10450", "title": "Trading Off Diversity and Quality in Natural Language Generation" }, "2205.12854": { "arxivId": "2205.12854", "title": "Understanding Factual Errors in Summarization: Errors, Summarizers, Datasets, Error Detectors" }, "2305.01879": { "arxivId": "2305.01879", "title": "SCOTT: Self-Consistent Chain-of-Thought Distillation" }, "2305.18248": { "arxivId": "2305.18248", "title": "Do Language Models Know When They\u2019re Hallucinating References?" }, "2210.03329": { "arxivId": "2210.03329", "title": "Calibrating Factual Knowledge in Pretrained Language Models" }, "2310.12397": { "arxivId": "2310.12397", "title": "GPT-4 Doesn't Know It's Wrong: An Analysis of Iterative Prompting for Reasoning Problems" }, "2305.06849": { "arxivId": "2305.06849", "title": "WebCPM: Interactive Web Search for Chinese Long-form Question Answering" }, "2209.15430": { "arxivId": "2209.15430", "title": "Relative representations enable zero-shot latent space communication" }, "2310.08118": { "arxivId": "2310.08118", "title": "Can Large Language Models Really Improve by Self-critiquing Their Own Plans?" }, "2306.04136": { "arxivId": "2306.04136", "title": "Knowledge-Augmented Language Model Prompting for Zero-Shot Knowledge Graph Question Answering" }, "2307.06908": { "arxivId": "2307.06908", "title": "Generating Benchmarks for Factuality Evaluation of Language Models" }, "2305.14002": { "arxivId": "2305.14002", "title": "Improving Language Models via Plug-and-Play Retrieval Feedback" }, "2303.15621": { "arxivId": "2303.15621", "title": "ChatGPT as a Factual Inconsistency Evaluator for Text Summarization" }, "2204.01171": { "arxivId": "2204.01171", "title": "Why Exposure Bias Matters: An Imitation Learning Perspective of Error Accumulation in Language Generation" }, "2202.12172": { "arxivId": "2202.12172", "title": "Overcoming a Theoretical Limitation of Self-Attention" }, "2304.00740": { "arxivId": "2304.00740", "title": "Inspecting and Editing Knowledge Representations in Language Models" }, "2305.11859": { "arxivId": "2305.11859", "title": "Complex Claim Verification with Evidence Retrieved in the Wild" }, "2010.07882": { "arxivId": "2010.07882", "title": "Understanding Neural Abstractive Summarization Models via Uncertainty" }, "2205.02832": { "arxivId": "2205.02832", "title": "Entity Cloze By Date: What LMs Know About Unseen Entities" }, "2203.16747": { "arxivId": "2203.16747", "title": "How Pre-trained Language Models Capture Factual Knowledge? A Causal-Inspired Analysis" }, "2210.13210": { "arxivId": "2210.13210", "title": "Mutual Information Alleviates Hallucinations in Abstractive Summarization" }, "2304.10513": { "arxivId": "2304.10513", "title": "Why Does ChatGPT Fall Short in Answering Questions Faithfully?" }, "2309.15840": { "arxivId": "2309.15840", "title": "How to Catch an AI Liar: Lie Detection in Black-Box LLMs by Asking Unrelated Questions" }, "2208.05309": { "arxivId": "2208.05309", "title": "Looking for a Needle in a Haystack: A Comprehensive Study of Hallucinations in Neural Machine Translation" }, "2105.11098": { "arxivId": "2105.11098", "title": "Prevent the Language Model from being Overconfident in Neural Machine Translation" }, "2305.14908": { "arxivId": "2305.14908", "title": "PURR: Efficiently Editing Language Model Hallucinations by Denoising Language Model Corruptions" }, "2302.02463": { "arxivId": "2302.02463", "title": "Nationality Bias in Text Generation" }, "2307.00175": { "arxivId": "2307.00175", "title": "Still No Lie Detector for Language Models: Probing Empirical and Conceptual Roadblocks" }, "2305.14869": { "arxivId": "2305.14869", "title": "CAR: Conceptualization-Augmented Reasoner for Zero-Shot Commonsense Question Answering" }, "2311.01740": { "arxivId": "2311.01740", "title": "SAC3: Reliable Hallucination Detection in Black-Box Language Models via Semantic-aware Cross-check Consistency" }, "2310.06271": { "arxivId": "2310.06271", "title": "Towards Mitigating Hallucination in Large Language Models via Self-Reflection" }, "2306.00946": { "arxivId": "2306.00946", "title": "Exposing Attention Glitches with Flip-Flop Language Modeling" }, "2305.13669": { "arxivId": "2305.13669", "title": "Mitigating Language Model Hallucination with Interactive Question-Knowledge Alignment" }, "2110.05456": { "arxivId": "2110.05456", "title": "Rome was built in 1776: A Case Study on Factual Correctness in Knowledge-Grounded Response Generation" }, "2310.03951": { "arxivId": "2310.03951", "title": "Chain of Natural Language Inference for Reducing Large Language Model Ungrounded Hallucinations" }, "2210.02889": { "arxivId": "2210.02889", "title": "A Distributional Lens for Multi-Aspect Controllable Text Generation" }, "2310.06498": { "arxivId": "2310.06498", "title": "A New Benchmark and Reverse Validation Method for Passage-level Hallucination Detection" }, "2308.09954": { "arxivId": "2308.09954", "title": "Eva-KELLM: A New Benchmark for Evaluating Knowledge Editing of LLMs" }, "2308.09729": { "arxivId": "2308.09729", "title": "MindMap: Knowledge Graph Prompting Sparks Graph of Thoughts in Large Language Models" }, "2306.01200": { "arxivId": "2306.01200", "title": "Multi-Dimensional Evaluation of Text Summarization with In-Context Learning" }, "2305.14540": { "arxivId": "2305.14540", "title": "LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond" }, "2310.05338": { "arxivId": "2310.05338", "title": "Negative Object Presence Evaluation (NOPE) to Measure Object Hallucination in Vision-Language Models" }, "2203.05227": { "arxivId": "2203.05227", "title": "Faithfulness in Natural Language Generation: A Systematic Survey of Analysis, Evaluation and Optimization Methods" }, "2310.12150": { "arxivId": "2310.12150", "title": "Understanding Retrieval Augmentation for Long-Form Question Answering" }, "2308.12674": { "arxivId": "2308.12674", "title": "Improving Translation Faithfulness of Large Language Models via Augmenting Instructions" }, "2309.13345": { "arxivId": "2309.13345", "title": "BAMBOO: A Comprehensive Benchmark for Evaluating Long Text Modeling Capacities of Large Language Models" }, "2310.09044": { "arxivId": "2310.09044", "title": "KCTS: Knowledge-Constrained Tree Search Decoding with Token-Level Hallucination Detection" }, "2310.01387": { "arxivId": "2310.01387", "title": "It\u2019s MBR All the Way Down: Modern Generation Techniques Through the Lens of Minimum Bayes Risk" }, "2210.01877": { "arxivId": "2210.01877", "title": "Towards Improving Faithfulness in Abstractive Summarization" }, "2309.09117": { "arxivId": "2309.09117", "title": "Contrastive Decoding Improves Reasoning in Large Language Models" }, "2310.11958": { "arxivId": "2310.11958", "title": "Emptying the Ocean with a Spoon: Should We Edit Models?" }, "2310.17918": { "arxivId": "2310.17918", "title": "Knowing What LLMs DO NOT Know: A Simple Yet Effective Self-Detection Method" }, "2308.11914": { "arxivId": "2308.11914", "title": "Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs" }, "2302.06729": { "arxivId": "2302.06729", "title": "STREET: A Multi-Task Structured Reasoning and Explanation Benchmark" }, "2208.00399": { "arxivId": "2208.00399", "title": "Neural Knowledge Bank for Pretrained Transformers" }, "2310.18344": { "arxivId": "2310.18344", "title": "Chainpoll: A high efficacy method for LLM hallucination detection" }, "2005.11739": { "arxivId": "2005.11739", "title": "Adversarial NLI for Factual Correctness in Text Summarisation Models" }, "2212.08307": { "arxivId": "2212.08307", "title": "Controllable Text Generation via Probability Density Estimation in the Latent Space" }, "2302.05578": { "arxivId": "2302.05578", "title": "Characterizing Attribution and Fluency Tradeoffs for Retrieval-Augmented Large Language Models" }, "2308.10173": { "arxivId": "2308.10173", "title": "FoodGPT: A Large Language Model in Food Testing Domain with Incremental Pre-training and Knowledge Graph Prompt" }, "2310.11877": { "arxivId": "2310.11877", "title": "The Curious Case of Hallucinatory Unanswerablity: Finding Truths in the Hidden States of Over-Confident Large Language Models" }, "2306.13781": { "arxivId": "2306.13781", "title": "Retrieving Supporting Evidence for LLMs Generated Answers" }, "2310.13189": { "arxivId": "2310.13189", "title": "Fast and Accurate Factual Inconsistency Detection Over Long Documents" }, "2309.04041": { "arxivId": "2309.04041", "title": "Evaluation and Mitigation of Agnosia in Multimodal Large Language Models" }, "2307.09288": { "arxivId": "2307.09288", "title": "Llama 2: Open Foundation and Fine-Tuned Chat Models" }, "1910.01108": { "arxivId": "1910.01108", "title": "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter" }, "1909.11942": { "arxivId": "1909.11942", "title": "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations" }, "2104.08691": { "arxivId": "2104.08691", "title": "The Power of Scale for Parameter-Efficient Prompt Tuning" }, "2211.05100": { "arxivId": "2211.05100", "title": "BLOOM: A 176B-Parameter Open-Access Multilingual Language Model" }, "2212.10560": { "arxivId": "2212.10560", "title": "Self-Instruct: Aligning Language Models with Self-Generated Instructions" }, "2304.12244": { "arxivId": "2304.12244", "title": "WizardLM: Empowering Large Language Models to Follow Complex Instructions" }, "2302.11382": { "arxivId": "2302.11382", "title": "A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT" }, "2006.06195": { "arxivId": "2006.06195", "title": "Large-Scale Adversarial Training for Vision-and-Language Representation Learning" }, "2302.12813": { "arxivId": "2302.12813", "title": "Check Your Facts and Try Again: Improving Large Language Models with External Knowledge and Automated Feedback" }, "2305.03047": { "arxivId": "2305.03047", "title": "Principle-Driven Self-Alignment of Language Models from Scratch with Minimal Human Supervision" }, "2210.09150": { "arxivId": "2210.09150", "title": "Prompting GPT-3 To Be Reliable" }, "2311.08401": { "arxivId": "2311.08401", "title": "Fine-tuning Language Models for Factuality" }, "2309.03883": { "arxivId": "2309.03883", "title": "DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models" }, "2310.04988": { "arxivId": "2310.04988", "title": "The Troubling Emergence of Hallucination in Large Language Models - An Extensive Definition, Quantification, and Prescriptive Remediations" }, "2303.08518": { "arxivId": "2303.08518", "title": "UPRISE: Universal Prompt Retrieval for Improving Zero-Shot Evaluation" }, "2212.01588": { "arxivId": "2212.01588", "title": "RHO ($\u03c1$): Reducing Hallucination in Open-domain Dialogues with Knowledge Grounding" }, "2311.10081": { "arxivId": "2311.10081", "title": "DRESS : Instructing Large Vision-Language Models to Align and Interact with Humans via Natural Language Feedback" }, "2306.06085": { "arxivId": "2306.06085", "title": "Trapping LLM Hallucinations Using Tagged Context Prompts" }, "2305.13632": { "arxivId": "2305.13632", "title": "Detecting and Mitigating Hallucinations in Multilingual Summarisation" }, "2311.09114": { "arxivId": "2311.09114", "title": "Ever: Mitigating Hallucination in Large Language Models through Real-Time Verification and Rectification" }, "2311.09677": { "arxivId": "2311.09677", "title": "R-Tuning: Instructing Large Language Models to Say \u2018I Don\u2019t Know\u2019" }, "2310.06827": { "arxivId": "2310.06827", "title": "Teaching Language Models to Hallucinate Less with Synthetic Tasks" }, "2308.11764": { "arxivId": "2308.11764", "title": "Halo: Estimation and Reduction of Hallucinations in Open-Source Weak Large Language Models" }, "2212.05765": { "arxivId": "2212.05765", "title": "Information-Theoretic Text Hallucination Reduction for Video-grounded Dialogue" }, "2108.13759": { "arxivId": "2108.13759", "title": "Enjoy the Salience: Towards Better Transformer-based Faithful Explanations with Word Salience" }, "2305.14623": { "arxivId": "2305.14623", "title": "Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models" }, "2310.17119": { "arxivId": "2310.17119", "title": "FLEEK: Factual Error Detection and Correction with Evidence Retrieved from External Knowledge" }, "1706.03762": { "arxivId": "1706.03762", "title": "Attention is All you Need" }, "1810.04805": { "arxivId": "1810.04805", "title": "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" }, "1609.02907": { "arxivId": "1609.02907", "title": "Semi-Supervised Classification with Graph Convolutional Networks" }, "1409.3215": { "arxivId": "1409.3215", "title": "Sequence to Sequence Learning with Neural Networks" }, "1703.06103": { "arxivId": "1703.06103", "title": "Modeling Relational Data with Graph Convolutional Networks" }, "2107.03374": { "arxivId": "2107.03374", "title": "Evaluating Large Language Models Trained on Code" }, "1702.08734": { "arxivId": "1702.08734", "title": "Billion-Scale Similarity Search with GPUs" }, "1511.05493": { "arxivId": "1511.05493", "title": "Gated Graph Sequence Neural Networks" }, "1906.02691": { "arxivId": "1906.02691", "title": "An Introduction to Variational Autoencoders" }, "1704.00051": { "arxivId": "1704.00051", "title": "Reading Wikipedia to Answer Open-Domain Questions" }, "2203.15556": { "arxivId": "2203.15556", "title": "Training Compute-Optimal Large Language Models" }, "2201.08239": { "arxivId": "2201.08239", "title": "LaMDA: Language Models for Dialog Applications" }, "2004.13637": { "arxivId": "2004.13637", "title": "Recipes for Building an Open-Domain Chatbot" }, "2007.01282": { "arxivId": "2007.01282", "title": "Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering" }, "1906.00300": { "arxivId": "1906.00300", "title": "Latent Retrieval for Weakly Supervised Open Domain Question Answering" }, "2112.04426": { "arxivId": "2112.04426", "title": "Improving language models by retrieving from trillions of tokens" }, "2112.09118": { "arxivId": "2112.09118", "title": "Unsupervised Dense Information Retrieval with Contrastive Learning" }, "2208.03299": { "arxivId": "2208.03299", "title": "Few-shot Learning with Retrieval Augmented Language Models" }, "1809.00782": { "arxivId": "1809.00782", "title": "Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text" }, "1904.09537": { "arxivId": "1904.09537", "title": "PullNet: Open Domain Question Answering with Iterative Retrieval on Knowledge Bases and Text" }, "2107.07566": { "arxivId": "2107.07566", "title": "Internet-Augmented Dialogue Generation" }, "2010.07079": { "arxivId": "2010.07079", "title": "Recipes for Safety in Open-domain Chatbots" }, "1911.03842": { "arxivId": "1911.03842", "title": "Queens Are Powerful Too: Mitigating Gender Bias in Dialogue Generation" }, "2203.13224": { "arxivId": "2203.13224", "title": "Language Models that Seek for Knowledge: Modular Search & Generation for Dialogue and Prompt Completion" }, "2205.12393": { "arxivId": "2205.12393", "title": "Fine-tuned Language Models are Continual Learners" }, "2302.13971": { "arxivId": "2302.13971", "title": "LLaMA: Open and Efficient Foundation Language Models" }, "2202.03629": { "arxivId": "2202.03629", "title": "Survey of Hallucination in Natural Language Generation" }, "2307.05782": { "arxivId": "2307.05782", "title": "Large Language Models" }, "2309.01219": { "arxivId": "2309.01219", "title": "Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models" }, "2311.05232": { "arxivId": "2311.05232", "title": "A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions" }, "2308.07201": { "arxivId": "2308.07201", "title": "ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate" }, "2305.19118": { "arxivId": "2305.19118", "title": "Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate" }, "2305.11747": { "arxivId": "2305.11747", "title": "HaluEval: A Large-Scale Hallucination Evaluation Benchmark for Large Language Models" }, "2401.01313": { "arxivId": "2401.01313", "title": "A Comprehensive Survey of Hallucination Mitigation Techniques in Large Language Models" }, "2307.07697": { "arxivId": "2307.07697", "title": "Think-on-Graph: Deep and Responsible Reasoning of Large Language Model with Knowledge Graph" }, "2307.15343": { "arxivId": "2307.15343", "title": "Med-HALT: Medical Domain Hallucination Test for Large Language Models" }, "2206.08932": { "arxivId": "2206.08932", "title": "Putting GPT-3's Creativity to the (Alternative Uses) Test" }, "2309.06794": { "arxivId": "2309.06794", "title": "Cognitive Mirage: A Review of Hallucinations in Large Language Models" }, "2311.07914": { "arxivId": "2311.07914", "title": "Can Knowledge Graphs Reduce Hallucinations in LLMs? : A Survey" }, "2312.02519": { "arxivId": "2312.02519", "title": "Creative Agents: Empowering Agents with Imagination for Creative Tasks" }, "1405.0312": { "arxivId": "1405.0312", "title": "Microsoft COCO: Common Objects in Context" }, "2108.07258": { "arxivId": "2108.07258", "title": "On the Opportunities and Risks of Foundation Models" }, "1705.00754": { "arxivId": "1705.00754", "title": "Dense-Captioning Events in Videos" }, "2305.10355": { "arxivId": "2305.10355", "title": "Evaluating Object Hallucination in Large Vision-Language Models" }, "2305.06355": { "arxivId": "2305.06355", "title": "VideoChat: Chat-Centric Video Understanding" }, "1809.02156": { "arxivId": "1809.02156", "title": "Object Hallucination in Image Captioning" }, "2306.16092": { "arxivId": "2306.16092", "title": "Chatlaw: A Multi-Agent Collaborative Legal Assistant with Knowledge Graph Enhanced Mixture-of-Experts Large Language Model" }, "2308.06394": { "arxivId": "2308.06394", "title": "Detecting and Preventing Hallucinations in Large Vision Language Models" }, "2305.15852": { "arxivId": "2305.15852", "title": "Self-contradictory Hallucinations of Large Language Models: Evaluation, Detection and Mitigation" }, "2210.07688": { "arxivId": "2210.07688", "title": "Plausible May Not Be Faithful: Probing Object Hallucination in Vision-Language Pre-training" }, "2307.16372": { "arxivId": "2307.16372", "title": "LP-MusicCaps: LLM-Based Pseudo Music Captioning" }, "2305.13269": { "arxivId": "2305.13269", "title": "Chain of Knowledge: A Framework for Grounding Large Language Models with Structured Knowledge Bases" }, "2304.14406": { "arxivId": "2304.14406", "title": "Putting People in Their Place: Affordance-Aware Human Insertion into Scenes" }, "2305.14224": { "arxivId": "2305.14224", "title": "mmT5: Modular Multilingual Pre-Training Solves Source Language Hallucinations" }, "2307.12168": { "arxivId": "2307.12168", "title": "Hallucination Improves the Performance of Unsupervised Visual Representation Learning" }, "2307.02185": { "arxivId": "2307.02185", "title": "Citation: A Key to Building Responsible and Accountable Large Language Models" }, "2312.10997": { "arxivId": "2312.10997", "title": "Retrieval-Augmented Generation for Large Language Models: A Survey" }, "2312.14925": { "arxivId": "2312.14925", "title": "A Survey of Reinforcement Learning from Human Feedback" }, "2310.13595": { "arxivId": "2310.13595", "title": "The History and Risks of Reinforcement Learning and Human Feedback" }, "2201.11903": { "arxivId": "2201.11903", "title": "Chain of Thought Prompting Elicits Reasoning in Large Language Models" }, "1911.02116": { "arxivId": "1911.02116", "title": "Unsupervised Cross-lingual Representation Learning at Scale" }, "2109.01652": { "arxivId": "2109.01652", "title": "Finetuned Language Models Are Zero-Shot Learners" }, "2306.05685": { "arxivId": "2306.05685", "title": "Judging LLM-as-a-judge with MT-Bench and Chatbot Arena" }, "2204.05862": { "arxivId": "2204.05862", "title": "Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback" }, "2110.08207": { "arxivId": "2110.08207", "title": "Multitask Prompted Training Enables Zero-Shot Task Generalization" }, "2305.06500": { "arxivId": "2305.06500", "title": "InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning" }, "2304.10592": { "arxivId": "2304.10592", "title": "MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models" }, "2210.02414": { "arxivId": "2210.02414", "title": "GLM-130B: An Open Bilingual Pre-trained Model" }, "2104.08786": { "arxivId": "2104.08786", "title": "Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity" }, "2005.00661": { "arxivId": "2005.00661", "title": "On Faithfulness and Factuality in Abstractive Summarization" }, "2202.03052": { "arxivId": "2202.03052", "title": "OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework" }, "2304.14178": { "arxivId": "2304.14178", "title": "mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality" }, "2106.11520": { "arxivId": "2106.11520", "title": "BARTScore: Evaluating Generated Text as Text Generation" }, "2106.07139": { "arxivId": "2106.07139", "title": "Pre-Trained Models: Past, Present and Future" }, "2211.12588": { "arxivId": "2211.12588", "title": "Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks" }, "2301.12652": { "arxivId": "2301.12652", "title": "REPLUG: Retrieval-Augmented Black-Box Language Models" }, "2212.10403": { "arxivId": "2212.10403", "title": "Towards Reasoning in Large Language Models: A Survey" }, "2305.17926": { "arxivId": "2305.17926", "title": "Large Language Models are not Fair Evaluators" }, "2305.15334": { "arxivId": "2305.15334", "title": "Gorilla: Large Language Model Connected with Massive APIs" }, "2211.10435": { "arxivId": "2211.10435", "title": "PAL: Program-aided Language Models" }, "2302.09210": { "arxivId": "2302.09210", "title": "How Good Are GPT Models at Machine Translation? A Comprehensive Evaluation" }, "2306.13549": { "arxivId": "2306.13549", "title": "A Survey on Multimodal Large Language Models" }, "2212.04089": { "arxivId": "2212.04089", "title": "Editing Models with Task Arithmetic" }, "2303.11366": { "arxivId": "2303.11366", "title": "Reflexion: an autonomous agent with dynamic memory and self-reflection" }, "2203.16804": { "arxivId": "2203.16804", "title": "BRIO: Bringing Order to Abstractive Summarization" }, "2010.04389": { "arxivId": "2010.04389", "title": "A Survey of Knowledge-enhanced Text Generation" }, "2307.12966": { "arxivId": "2307.12966", "title": "Aligning Large Language Models with Human: A Survey" }, "2305.14627": { "arxivId": "2305.14627", "title": "Enabling Large Language Models to Generate Text with Citations" }, "2203.11147": { "arxivId": "2203.11147", "title": "Teaching language models to support answers with verified quotes" }, "2205.05055": { "arxivId": "2205.05055", "title": "Data Distributional Properties Drive Emergent In-Context Learning in Transformers" }, "2104.06683": { "arxivId": "2104.06683", "title": "The Curious Case of Hallucinations in Neural Machine Translation" }, "2204.07931": { "arxivId": "2204.07931", "title": "On the Origin of Hallucinations in Conversational Models: Is it the Datasets or the Models?" }, "2210.06774": { "arxivId": "2210.06774", "title": "Re3: Generating Longer Stories With Recursive Reprompting and Revision" }, "2306.03823": { "arxivId": "2306.03823", "title": "Transformative Effects of ChatGPT on Modern Education: Emerging Era of AI Chatbots" }, "2307.08701": { "arxivId": "2307.08701", "title": "AlpaGasus: Training A Better Alpaca with Fewer Data" }, "2305.06983": { "arxivId": "2305.06983", "title": "Active Retrieval Augmented Generation" }, "2109.09784": { "arxivId": "2109.09784", "title": "Hallucinated but Factual! Inspecting the Factuality of Hallucinations in Abstractive Summarization" }, "2302.02676": { "arxivId": "2302.02676", "title": "Chain of Hindsight Aligns Language Models with Feedback" }, "2303.16104": { "arxivId": "2303.16104", "title": "Hallucinations in Large Multilingual Translation Models" }, "2304.09667": { "arxivId": "2304.09667", "title": "GeneGPT: Augmenting Large Language Models with Domain Tools for Improved Access to Biomedical Information" }, "2303.14186": { "arxivId": "2303.14186", "title": "TRAK: Attributing Model Behavior at Scale" }, "2004.14589": { "arxivId": "2004.14589", "title": "Improved Natural Language Generation via Loss Truncation" }, "2308.06259": { "arxivId": "2308.06259", "title": "Self-Alignment with Instruction Backtranslation" }, "2204.10757": { "arxivId": "2204.10757", "title": "FaithDial: A Faithful Benchmark for Information-Seeking Dialogue" }, "2105.00071": { "arxivId": "2105.00071", "title": "Evaluating Attribution in Dialogue Systems: The BEGIN Benchmark" }, "2307.02762": { "arxivId": "2307.02762", "title": "PRD: Peer Rank and Discussion Improve Large Language Model based Evaluations" }, "2211.08412": { "arxivId": "2211.08412", "title": "Evaluating the Factual Consistency of Large Language Models Through News Summarization" }, "2307.05300": { "arxivId": "2307.05300", "title": "Unleashing the Emergent Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration" }, "2205.01703": { "arxivId": "2205.01703", "title": "Improving In-Context Few-Shot Learning via Self-Supervised Training" }, "2308.15126": { "arxivId": "2308.15126", "title": "Evaluation and Analysis of Hallucination in Large Vision-Language Models" }, "2212.10400": { "arxivId": "2212.10400", "title": "Contrastive Learning Reduces Hallucination in Conversations" }, "2308.04371": { "arxivId": "2308.04371", "title": "Cumulative Reasoning with Large Language Models" }, "2306.07799": { "arxivId": "2306.07799", "title": "ChatGPT vs Human-authored Text: Insights into Controllable Text Summarization and Sentence Style Transfer" }, "2303.01911": { "arxivId": "2303.01911", "title": "Investigating the Translation Performance of a Large Multilingual Language Model: the Case of BLOOM" }, "2210.16257": { "arxivId": "2210.16257", "title": "Solving Math Word Problems via Cooperative Reasoning induced Language Models" }, "2306.09296": { "arxivId": "2306.09296", "title": "KoLA: Carefully Benchmarking World Knowledge of Large Language Models" }, "2308.14346": { "arxivId": "2308.14346", "title": "DISC-MedLLM: Bridging General Large Language Models and Real-World Medical Consultation" }, "2306.05212": { "arxivId": "2306.05212", "title": "RETA-LLM: A Retrieval-Augmented Large Language Model Toolkit" }, "2305.13168": { "arxivId": "2305.13168", "title": "LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities" }, "2112.07924": { "arxivId": "2112.07924", "title": "Knowledge-Grounded Dialogue Generation with a Unified Knowledge Representation" }, "2110.01705": { "arxivId": "2110.01705", "title": "Let there be a clock on the beach: Reducing Object Hallucination in Image Captioning" }, "2304.13714": { "arxivId": "2304.13714", "title": "Evaluation of GPT-3.5 and GPT-4 for supporting real-world information needs in healthcare delivery" }, "2309.00667": { "arxivId": "2309.00667", "title": "Taken out of context: On measuring situational awareness in LLMs" }, "2308.07269": { "arxivId": "2308.07269", "title": "EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models" }, "2307.09476": { "arxivId": "2307.09476", "title": "Overthinking the Truth: Understanding how Language Models Process False Demonstrations" }, "2305.13252": { "arxivId": "2305.13252", "title": "\u201cAccording to . . . \u201d: Prompting Language Models Improves Quoting from Pre-Training Data" }, "2308.02357": { "arxivId": "2308.02357", "title": "Text2KGBench: A Benchmark for Ontology-Driven Knowledge Graph Generation from Text" }, "2305.04757": { "arxivId": "2305.04757", "title": "Augmented Large Language Models with Parametric Knowledge Guiding" }, "2306.01150": { "arxivId": "2306.01150", "title": "Did You Read the Instructions? Rethinking the Effectiveness of Task Definitions in Instruction Learning" }, "2305.07982": { "arxivId": "2305.07982", "title": "Zero-shot Faithful Factual Error Correction" }, "2302.12832": { "arxivId": "2302.12832", "title": "Fluid Transformers and Creative Analogies: Exploring Large Language Models\u2019 Capacity for Augmenting Cross-Domain Analogical Creativity" }, "2301.04449": { "arxivId": "2301.04449", "title": "Diving Deep into Modes of Fact Hallucinations in Dialogue Systems" }, "2303.17574": { "arxivId": "2303.17574", "title": "Elastic Weight Removal for Faithful and Abstractive Dialogue Generation" }, "2303.03919": { "arxivId": "2303.03919", "title": "Data Portraits: Recording Foundation Model Training Data" }, "2308.11761": { "arxivId": "2308.11761", "title": "KnowledGPT: Enhancing Large Language Models with Retrieval and Storage Access on Knowledge Bases" }, "2205.12600": { "arxivId": "2205.12600", "title": "ORCA: Interpreting Prompted Language Models via Locating Supporting Data Evidence in the Ocean of Pretraining Data" }, "2109.14776": { "arxivId": "2109.14776", "title": "Measuring Sentence-Level and Aspect-Level (Un)certainty in Science Communications" }, "2308.01906": { "arxivId": "2308.01906", "title": "Reasoning in Large Language Models Through Symbolic Math Word Problems" }, "2305.11746": { "arxivId": "2305.11746", "title": "HalOmi: A Manually Annotated Benchmark for Multilingual Hallucination and Omission Detection in Machine Translation" }, "2308.03729": { "arxivId": "2308.03729", "title": "Tiny LVLM-eHub: Early Multimodal Experiments with Bard" }, "2305.16519": { "arxivId": "2305.16519", "title": "The Dangers of trusting Stochastic Parrots: Faithfulness and Trust in Open-domain Conversational Question Answering" }, "2204.13761": { "arxivId": "2204.13761", "title": "Faithful to the Document or to the World? Mitigating Hallucinations via Entity-linked Knowledge in Abstractive Summarization" }, "2110.04374": { "arxivId": "2110.04374", "title": "A Few More Examples May Be Worth Billions of Parameters" }, "2302.05852": { "arxivId": "2302.05852", "title": "\u201cWhy is this misleading?\u201d: Detecting News Headline Hallucinations with Explanations" }, "2308.15452": { "arxivId": "2308.15452", "title": "When Do Program-of-Thoughts Work for Reasoning?" }, "2307.14712": { "arxivId": "2307.14712", "title": "Evaluating Generative Models for Graph-to-Text Generation" }, "2306.06264": { "arxivId": "2306.06264", "title": "Measuring and Modifying Factual Knowledge in Large Language Models" }, "2305.13712": { "arxivId": "2305.13712", "title": "Knowledge of Knowledge: Exploring Known-Unknowns Uncertainty with Large Language Models" }, "2305.11595": { "arxivId": "2305.11595", "title": "Examining the Inter-Consistency of Large Language Models: An In-depth Analysis via Debate" }, "2305.13888": { "arxivId": "2305.13888", "title": "PaD: Program-aided Distillation Can Teach Small Models Reasoning Better than Chain-of-thought Fine-tuning" }, "2306.11520": { "arxivId": "2306.11520", "title": "Hallucination is the last thing you need" }, "1906.08237": { "arxivId": "1906.08237", "title": "XLNet: Generalized Autoregressive Pretraining for Language Understanding" }, "1904.09675": { "arxivId": "1904.09675", "title": "BERTScore: Evaluating Text Generation with BERT" }, "1804.08771": { "arxivId": "1804.08771", "title": "A Call for Clarity in Reporting BLEU Scores" }, "1602.06023": { "arxivId": "1602.06023", "title": "Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond" }, "1511.06349": { "arxivId": "1511.06349", "title": "Generating Sentences from a Continuous Space" }, "1908.08345": { "arxivId": "1908.08345", "title": "Text Summarization with Pretrained Encoders" }, "2004.04696": { "arxivId": "2004.04696", "title": "BLEURT: Learning Robust Metrics for Text Generation" }, "2111.09543": { "arxivId": "2111.09543", "title": "DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing" }, "1811.01241": { "arxivId": "1811.01241", "title": "Wizard of Wikipedia: Knowledge-Powered Conversational agents" }, "1905.01969": { "arxivId": "1905.01969", "title": "Poly-encoders: Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring" }, "2011.02593": { "arxivId": "2011.02593", "title": "Detecting Hallucinated Content in Conditional Neural Sequence Generation" }, "2305.16739": { "arxivId": "2305.16739", "title": "AlignScore: Evaluating Factual Consistency with A Unified Alignment Function" }, "2104.08704": { "arxivId": "2104.08704", "title": "A Token-level Reference-free Hallucination Detection Benchmark for Free-form Text Generation" }, "2107.06963": { "arxivId": "2107.06963", "title": "Increasing Faithfulness in Knowledge-Grounded Dialogue with Controllable Features" }, "2110.06341": { "arxivId": "2110.06341", "title": "Learning Compact Metrics for MT" }, "2001.09386": { "arxivId": "2001.09386", "title": "Generating Representative Headlines for News Stories" }, "2301.12307": { "arxivId": "2301.12307", "title": "MQAG: Multiple-choice Question Answering and Generation for Assessing Information Consistency in Summarization" }, "1911.09912": { "arxivId": "1911.09912", "title": "Go From the General to the Particular: Multi-Domain Translation with Domain Transformation Networks" }, "2107.13586": { "arxivId": "2107.13586", "title": "Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing" }, "1608.07187": { "arxivId": "1608.07187", "title": "Semantics derived automatically from language corpora contain human-like biases" }, "1801.07593": { "arxivId": "1801.07593", "title": "Mitigating Unwanted Biases with Adversarial Learning" }, "2005.14050": { "arxivId": "2005.14050", "title": "Language (Technology) is Power: A Critical Survey of \u201cBias\u201d in NLP" }, "2005.04118": { "arxivId": "2005.04118", "title": "Beyond Accuracy: Behavioral Testing of NLP Models with CheckList" }, "2009.11462": { "arxivId": "2009.11462", "title": "RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models" }, "1301.6822": { "arxivId": "1301.6822", "title": "Discrimination in online ad delivery" }, "2004.09456": { "arxivId": "2004.09456", "title": "StereoSet: Measuring stereotypical bias in pretrained language models" }, "2004.09095": { "arxivId": "2004.09095", "title": "The State and Fate of Linguistic Diversity and Inclusion in the NLP World" }, "2010.00133": { "arxivId": "2010.00133", "title": "CrowS-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models" }, "1901.09451": { "arxivId": "1901.09451", "title": "Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting" }, "2009.10795": { "arxivId": "2009.10795", "title": "Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics" }, "2004.07667": { "arxivId": "2004.07667", "title": "Null It Out: Guarding Protected Attributes by Iterative Nullspace Projection" }, "2104.14337": { "arxivId": "2104.14337", "title": "Dynabench: Rethinking Benchmarking in NLP" }, "2103.00453": { "arxivId": "2103.00453", "title": "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP" }, "2101.11718": { "arxivId": "2101.11718", "title": "BOLD: Dataset and Metrics for Measuring Biases in Open-Ended Language Generation" }, "2212.09251": { "arxivId": "2212.09251", "title": "Discovering Language Model Behaviors with Model-Written Evaluations" }, "2309.00770": { "arxivId": "2309.00770", "title": "Bias and Fairness in Large Language Models: A Survey" }, "1809.10610": { "arxivId": "1809.10610", "title": "Counterfactual Fairness in Text Classification through Robustness" }, "2103.11790": { "arxivId": "2103.11790", "title": "Large pre-trained language models contain human-like biases of what is right and wrong to do" }, "2101.00288": { "arxivId": "2101.00288", "title": "Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving Models" }, "2304.05613": { "arxivId": "2304.05613", "title": "ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large Language Models in Multilingual Learning" }, "2006.03955": { "arxivId": "2006.03955", "title": "Detecting Emergent Intersectional Biases: Contextualized Word Embeddings Contain a Distribution of Human-like Biases" }, "2007.08100": { "arxivId": "2007.08100", "title": "Towards Debiasing Sentence Representations" }, "2109.05052": { "arxivId": "2109.05052", "title": "Entity-Based Knowledge Conflicts in Question Answering" }, "2303.12528": { "arxivId": "2303.12528", "title": "MEGA: Multilingual Evaluation of Generative AI" }, "2005.00955": { "arxivId": "2005.00955", "title": "How Can We Accelerate Progress Towards Human-like Linguistic Generalization?" }, "1907.10641": { "arxivId": "1907.10641", "title": "WinoGrande" }, "2305.08283": { "arxivId": "2305.08283", "title": "From Pretraining Data to Language Models to Downstream Tasks: Tracking the Trails of Political Biases Leading to Unfair NLP Models" }, "1908.09369": { "arxivId": "1908.09369", "title": "On Measuring and Mitigating Biased Inferences of Word Embeddings" }, "2106.03521": { "arxivId": "2106.03521", "title": "RedditBias: A Real-World Resource for Bias Evaluation and Debiasing of Conversational Language Models" }, "2302.08500": { "arxivId": "2302.08500", "title": "Auditing large language models: a three-layered approach" }, "2305.12740": { "arxivId": "2305.12740", "title": "Can We Edit Factual Knowledge by In-Context Learning?" }, "2205.12628": { "arxivId": "2205.12628", "title": "Are Large Pre-Trained Language Models Leaking Your Personal Information?" }, "2101.09523": { "arxivId": "2101.09523", "title": "Debiasing Pre-trained Contextualised Embeddings" }, "2205.09209": { "arxivId": "2205.09209", "title": "\u201cI\u2019m sorry to hear that\u201d: Finding New Biases in Language Models with a Holistic Descriptor Dataset" }, "2110.08527": { "arxivId": "2110.08527", "title": "An Empirical Survey of the Effectiveness of Debiasing Techniques for Pre-trained Language Models" }, "2109.03646": { "arxivId": "2109.03646", "title": "Sustainable Modular Debiasing of Language Models" }, "2012.13985": { "arxivId": "2012.13985", "title": "Explaining NLP Models via Minimal Contrastive Editing (MiCE)" }, "2004.10157": { "arxivId": "2004.10157", "title": "Logic-Guided Data Augmentation and Regularization for Consistent Question Answering" }, "2104.09061": { "arxivId": "2104.09061", "title": "Improving Faithfulness in Abstractive Summarization with Contrast Candidate Generation and Selection" }, "2104.08646": { "arxivId": "2104.08646", "title": "Competency Problems: On Finding and Removing Artifacts in Language Data" }, "2104.07705": { "arxivId": "2104.07705", "title": "How to Train BERT with an Academic Budget" }, "2106.14574": { "arxivId": "2106.14574", "title": "Quantifying Social Biases in NLP: A Generalization and Empirical Comparison of Extrinsic Fairness Metrics" }, "2012.04698": { "arxivId": "2012.04698", "title": "Generate Your Counterfactuals: Towards Controlled Counterfactual Generation for Text" }, "2005.00699": { "arxivId": "2005.00699", "title": "Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer" }, "2005.00613": { "arxivId": "2005.00613", "title": "A Controllable Model of Grounded Response Generation" }, "2107.07150": { "arxivId": "2107.07150", "title": "Tailor: Generating and Perturbing Text with Semantic Controls" }, "2010.13816": { "arxivId": "2010.13816", "title": "PowerTransformer: Unsupervised Controllable Revision for Biased Language Correction" }, "2104.07496": { "arxivId": "2104.07496", "title": "Unmasking the Mask - Evaluating Social Biases in Masked Language Models" }, "2010.05647": { "arxivId": "2010.05647", "title": "Improving Compositional Generalization in Semantic Parsing" }, "2205.00619": { "arxivId": "2205.00619", "title": "POLITICS: Pretraining with Same-story Article Comparison for Ideology Prediction and Stance Detection" }, "2110.08222": { "arxivId": "2110.08222", "title": "DialFact: A Benchmark for Fact-Checking in Dialogue" }, "2109.03858": { "arxivId": "2109.03858", "title": "Collecting a Large-Scale Gender Bias Dataset for Coreference Resolution and Machine Translation" }, "2205.12586": { "arxivId": "2205.12586", "title": "Perturbation Augmentation for Fairer NLP" }, "2109.06105": { "arxivId": "2109.06105", "title": "NeuTral Rewriter: A Rule-Based and Neural Approach to Automatic Rewriting into Gender Neutral Alternatives" }, "2010.08580": { "arxivId": "2010.08580", "title": "Linguistically-Informed Transformations (LIT): A Method for Automatically Generating Contrast Sets" }, "2301.07779": { "arxivId": "2301.07779", "title": "Understanding and Detecting Hallucinations in Neural Machine Translation via Model Introspection" }, "2104.07179": { "arxivId": "2104.07179", "title": "Does Putting a Linguist in the Loop Improve NLU Data Collection?" }, "2310.13771": { "arxivId": "2310.13771", "title": "Copyright Violations and Large Language Models" }, "2310.10701": { "arxivId": "2310.10701", "title": "Theory of Mind for Multi-Agent Collaboration via Large Language Models" }, "2103.09591": { "arxivId": "2103.09591", "title": "Automatic Generation of Contrast Sets from Scene Graphs: Probing the Compositional Consistency of GQA" }, "2305.01633": { "arxivId": "2305.01633", "title": "Missing Information, Unresponsive Authors, Experimental Flaws: The Impossibility of Assessing the Reproducibility of Previous Human Evaluations in NLP" }, "2204.05961": { "arxivId": "2204.05961", "title": "Quantified Reproducibility Assessment of NLP Results" }, "2110.07596": { "arxivId": "2110.07596", "title": "Retrieval-guided Counterfactual Generation for QA" }, "2305.13862": { "arxivId": "2305.13862", "title": "A Trip Towards Fairness: Bias and De-Biasing in Large Language Models" }, "2201.07754": { "arxivId": "2201.07754", "title": "Grep-BiasIR: A Dataset for Investigating Gender Representation Bias in Information Retrieval Results" }, "2307.01595": { "arxivId": "2307.01595", "title": "Prompt Tuning Pushes Farther, Contrastive Learning Pulls Closer: A Two-Stage Approach to Mitigate Social Biases" }, "2306.15087": { "arxivId": "2306.15087", "title": "WinoQueer: A Community-in-the-Loop Benchmark for Anti-LGBTQ+ Bias in Large Language Models" }, "2107.13935": { "arxivId": "2107.13935", "title": "Break, Perturb, Build: Automatic Perturbation of Reasoning Paths Through Question Decomposition" }, "2302.12578": { "arxivId": "2302.12578", "title": "Fairness in Language Models Beyond English: Gaps and Challenges" }, "2211.05414": { "arxivId": "2211.05414", "title": "ADEPT: A DEbiasing PrompT Framework" }, "2210.04873": { "arxivId": "2210.04873", "title": "CORE: A Retrieve-then-Edit Framework for Counterfactual Data Generation" }, "2310.15326": { "arxivId": "2310.15326", "title": "Specialist or Generalist? Instruction Tuning for Specific NLP Tasks" }, "2305.11262": { "arxivId": "2305.11262", "title": "CHBias: Bias Evaluation and Mitigation of Chinese Conversational Language Models" }, "2104.08735": { "arxivId": "2104.08735", "title": "Learning with Instance Bundles for Reading Comprehension" } }