Upload 2 files
Browse files- simnict_download.py +585 -0
- simnict_generator.py +268 -0
simnict_download.py
ADDED
|
@@ -0,0 +1,585 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
SimNICT Dataset Batch Downloader
|
| 5 |
+
Download complete SimNICT datasets from Internet Archive
|
| 6 |
+
|
| 7 |
+
IMPORTANT: This downloader provides access to 8 out of 10 original SimNICT datasets.
|
| 8 |
+
AutoPET and HECKTOR22 are excluded from public release due to licensing restrictions.
|
| 9 |
+
|
| 10 |
+
Usage:
|
| 11 |
+
python download_simnict.py --datasets AMOS COVID_19_NY_SBU --output_dir ./data
|
| 12 |
+
python download_simnict.py --all --output_dir ./data
|
| 13 |
+
python download_simnict.py --list # Show available datasets
|
| 14 |
+
|
| 15 |
+
Author: TAMP Research Group
|
| 16 |
+
Version: 1.0
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import os
|
| 20 |
+
import sys
|
| 21 |
+
import argparse
|
| 22 |
+
import time
|
| 23 |
+
from pathlib import Path
|
| 24 |
+
from typing import List, Dict, Optional
|
| 25 |
+
import logging
|
| 26 |
+
|
| 27 |
+
try:
|
| 28 |
+
import internetarchive as ia
|
| 29 |
+
except ImportError:
|
| 30 |
+
print("❌ Error: internetarchive library not found")
|
| 31 |
+
print("Please install it using: pip install internetarchive")
|
| 32 |
+
sys.exit(1)
|
| 33 |
+
|
| 34 |
+
# =============================================================================
|
| 35 |
+
# Dataset Configuration
|
| 36 |
+
# =============================================================================
|
| 37 |
+
|
| 38 |
+
SIMNICT_DATASETS = {
|
| 39 |
+
"AMOS": {
|
| 40 |
+
"identifier": "simnict-amos",
|
| 41 |
+
"description": "Abdominal multi-organ segmentation dataset",
|
| 42 |
+
"volumes": 500,
|
| 43 |
+
"files": 504,
|
| 44 |
+
"size_gb": "~22 GB"
|
| 45 |
+
},
|
| 46 |
+
"COVID_19_NY_SBU": {
|
| 47 |
+
"identifier": "simnict-covid-19-ny-sbu",
|
| 48 |
+
"description": "COVID-19 NY-SBU chest CT dataset",
|
| 49 |
+
"volumes": 459,
|
| 50 |
+
"files": 463,
|
| 51 |
+
"size_gb": "~30 GB"
|
| 52 |
+
},
|
| 53 |
+
"CT_Images_COVID19": {
|
| 54 |
+
"identifier": "simnict-ct-images-in-covid-19",
|
| 55 |
+
"description": "CT Images in COVID-19 dataset",
|
| 56 |
+
"volumes": 771,
|
| 57 |
+
"files": 775,
|
| 58 |
+
"size_gb": "~13 GB"
|
| 59 |
+
},
|
| 60 |
+
"CT_COLONOGRAPHY": {
|
| 61 |
+
"identifier": "simnict-ct-colonography",
|
| 62 |
+
"description": "CT colonography screening dataset",
|
| 63 |
+
"volumes": 1730,
|
| 64 |
+
"files": 1734,
|
| 65 |
+
"size_gb": "~271 GB"
|
| 66 |
+
},
|
| 67 |
+
"LNDb": {
|
| 68 |
+
"identifier": "simnict-lndb",
|
| 69 |
+
"description": "Lung nodule database",
|
| 70 |
+
"volumes": 294,
|
| 71 |
+
"files": 298,
|
| 72 |
+
"size_gb": "~34 GB"
|
| 73 |
+
},
|
| 74 |
+
"LUNA": {
|
| 75 |
+
"identifier": "simnict-luna",
|
| 76 |
+
"description": "Lung nodule analysis dataset",
|
| 77 |
+
"volumes": 888,
|
| 78 |
+
"files": 892,
|
| 79 |
+
"size_gb": "~63 GB"
|
| 80 |
+
},
|
| 81 |
+
"MELA": {
|
| 82 |
+
"identifier": "simnict-mela",
|
| 83 |
+
"description": "Melanoma detection dataset",
|
| 84 |
+
"volumes": 1100,
|
| 85 |
+
"files": 1104,
|
| 86 |
+
"size_gb": "~147 GB"
|
| 87 |
+
},
|
| 88 |
+
"STOIC": {
|
| 89 |
+
"identifier": "simnict-stoic",
|
| 90 |
+
"description": "COVID-19 AI challenge dataset",
|
| 91 |
+
"volumes": 2000,
|
| 92 |
+
"files": 2004,
|
| 93 |
+
"size_gb": "~243 GB"
|
| 94 |
+
}
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
# =============================================================================
|
| 98 |
+
# Logging Configuration
|
| 99 |
+
# =============================================================================
|
| 100 |
+
|
| 101 |
+
logging.basicConfig(
|
| 102 |
+
level=logging.INFO,
|
| 103 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 104 |
+
handlers=[
|
| 105 |
+
logging.FileHandler('simnict_download.log'),
|
| 106 |
+
logging.StreamHandler()
|
| 107 |
+
]
|
| 108 |
+
)
|
| 109 |
+
logger = logging.getLogger(__name__)
|
| 110 |
+
|
| 111 |
+
# =============================================================================
|
| 112 |
+
# SimNICT Downloader Class
|
| 113 |
+
# =============================================================================
|
| 114 |
+
|
| 115 |
+
class SimNICTDownloader:
|
| 116 |
+
def __init__(self, output_dir: str = "./simnict_data",
|
| 117 |
+
max_retries: int = 3, chunk_size: int = 1024*1024):
|
| 118 |
+
"""
|
| 119 |
+
Initialize SimNICT downloader
|
| 120 |
+
|
| 121 |
+
Args:
|
| 122 |
+
output_dir: Directory to save downloaded datasets
|
| 123 |
+
max_retries: Maximum retry attempts for failed downloads
|
| 124 |
+
chunk_size: Download chunk size in bytes (default 1MB)
|
| 125 |
+
"""
|
| 126 |
+
self.output_dir = Path(output_dir)
|
| 127 |
+
self.max_retries = max_retries
|
| 128 |
+
self.chunk_size = chunk_size
|
| 129 |
+
|
| 130 |
+
# Create output directory
|
| 131 |
+
self.output_dir.mkdir(parents=True, exist_ok=True)
|
| 132 |
+
logger.info(f"📁 Output directory: {self.output_dir.absolute()}")
|
| 133 |
+
|
| 134 |
+
def list_available_datasets(self) -> None:
|
| 135 |
+
"""Display all available SimNICT datasets"""
|
| 136 |
+
print("\n" + "="*80)
|
| 137 |
+
print("📋 Available SimNICT Datasets (8 out of 10 original datasets)")
|
| 138 |
+
print("="*80)
|
| 139 |
+
print("ℹ️ Note: AutoPET and HECKTOR22 excluded due to licensing restrictions")
|
| 140 |
+
print("="*80)
|
| 141 |
+
|
| 142 |
+
total_size = 0
|
| 143 |
+
total_volumes = 0
|
| 144 |
+
|
| 145 |
+
for name, info in SIMNICT_DATASETS.items():
|
| 146 |
+
print(f"\n🔹 {name}")
|
| 147 |
+
print(f" 📝 Description: {info['description']}")
|
| 148 |
+
print(f" 📊 Volumes: {info['volumes']:,}")
|
| 149 |
+
print(f" 📄 Files: {info['files']:,}")
|
| 150 |
+
print(f" 💾 Size: {info['size_gb']}")
|
| 151 |
+
print(f" 🏷️ ID: {info['identifier']}")
|
| 152 |
+
print(f" 🔗 URL: https://archive.org/details/{info['identifier']}")
|
| 153 |
+
|
| 154 |
+
total_volumes += info['volumes']
|
| 155 |
+
# Extract numeric size for total calculation
|
| 156 |
+
size_str = info['size_gb'].replace('~', '').replace(' GB', '')
|
| 157 |
+
try:
|
| 158 |
+
total_size += float(size_str)
|
| 159 |
+
except:
|
| 160 |
+
pass
|
| 161 |
+
|
| 162 |
+
print(f"\n📈 Total Statistics:")
|
| 163 |
+
print(f" 🗂️ Datasets: {len(SIMNICT_DATASETS)}")
|
| 164 |
+
print(f" 📊 Total Volumes: {total_volumes:,}")
|
| 165 |
+
print(f" 💾 Total Size: ~{total_size:.0f} GB")
|
| 166 |
+
print("="*80)
|
| 167 |
+
|
| 168 |
+
def check_dataset_exists(self, identifier: str) -> bool:
|
| 169 |
+
"""Check if dataset exists on Internet Archive"""
|
| 170 |
+
try:
|
| 171 |
+
item = ia.get_item(identifier)
|
| 172 |
+
return item.exists
|
| 173 |
+
except Exception as e:
|
| 174 |
+
logger.error(f"Error checking dataset {identifier}: {e}")
|
| 175 |
+
return False
|
| 176 |
+
|
| 177 |
+
def get_dataset_files(self, identifier: str) -> List[str]:
|
| 178 |
+
"""Get list of files in a dataset"""
|
| 179 |
+
try:
|
| 180 |
+
item = ia.get_item(identifier)
|
| 181 |
+
if not item.exists:
|
| 182 |
+
return []
|
| 183 |
+
|
| 184 |
+
files = []
|
| 185 |
+
for file_obj in item.files:
|
| 186 |
+
if isinstance(file_obj, dict) and 'name' in file_obj:
|
| 187 |
+
# Only include .nii.gz files (skip metadata)
|
| 188 |
+
filename = file_obj['name']
|
| 189 |
+
if filename.endswith('.nii.gz'):
|
| 190 |
+
files.append(filename)
|
| 191 |
+
|
| 192 |
+
return sorted(files)
|
| 193 |
+
except Exception as e:
|
| 194 |
+
logger.error(f"Error getting files for {identifier}: {e}")
|
| 195 |
+
return []
|
| 196 |
+
|
| 197 |
+
def download_dataset(self, dataset_name: str,
|
| 198 |
+
resume: bool = True,
|
| 199 |
+
verify_checksum: bool = True) -> bool:
|
| 200 |
+
"""
|
| 201 |
+
Download a specific SimNICT dataset
|
| 202 |
+
|
| 203 |
+
Args:
|
| 204 |
+
dataset_name: Name of dataset to download
|
| 205 |
+
resume: Whether to resume partial downloads
|
| 206 |
+
verify_checksum: Whether to verify file checksums
|
| 207 |
+
|
| 208 |
+
Returns:
|
| 209 |
+
True if download successful, False otherwise
|
| 210 |
+
"""
|
| 211 |
+
if dataset_name not in SIMNICT_DATASETS:
|
| 212 |
+
logger.error(f"❌ Unknown dataset: {dataset_name}")
|
| 213 |
+
logger.info(f"Available datasets: {list(SIMNICT_DATASETS.keys())}")
|
| 214 |
+
return False
|
| 215 |
+
|
| 216 |
+
dataset_info = SIMNICT_DATASETS[dataset_name]
|
| 217 |
+
identifier = dataset_info['identifier']
|
| 218 |
+
|
| 219 |
+
logger.info(f"\n{'='*60}")
|
| 220 |
+
logger.info(f"📤 Starting download: {dataset_name}")
|
| 221 |
+
logger.info(f"🏷️ Identifier: {identifier}")
|
| 222 |
+
logger.info(f"📊 Expected volumes: {dataset_info['volumes']}")
|
| 223 |
+
logger.info(f"💾 Estimated size: {dataset_info['size_gb']}")
|
| 224 |
+
logger.info(f"{'='*60}")
|
| 225 |
+
|
| 226 |
+
# Check if dataset exists
|
| 227 |
+
if not self.check_dataset_exists(identifier):
|
| 228 |
+
logger.error(f"❌ Dataset not found on Internet Archive: {identifier}")
|
| 229 |
+
return False
|
| 230 |
+
|
| 231 |
+
# Create dataset directory
|
| 232 |
+
dataset_dir = self.output_dir / dataset_name
|
| 233 |
+
dataset_dir.mkdir(exist_ok=True)
|
| 234 |
+
|
| 235 |
+
# Get files to download
|
| 236 |
+
files_to_download = self.get_dataset_files(identifier)
|
| 237 |
+
if not files_to_download:
|
| 238 |
+
logger.error(f"❌ No files found for dataset: {dataset_name}")
|
| 239 |
+
return False
|
| 240 |
+
|
| 241 |
+
logger.info(f"📋 Found {len(files_to_download)} files to download")
|
| 242 |
+
|
| 243 |
+
# Check existing files if resuming
|
| 244 |
+
existing_files = set()
|
| 245 |
+
if resume:
|
| 246 |
+
for file_path in dataset_dir.iterdir():
|
| 247 |
+
if file_path.is_file() and file_path.suffix == '.gz':
|
| 248 |
+
existing_files.add(file_path.name)
|
| 249 |
+
|
| 250 |
+
if existing_files:
|
| 251 |
+
logger.info(f"📂 Found {len(existing_files)} existing files (resume mode)")
|
| 252 |
+
|
| 253 |
+
# Download files
|
| 254 |
+
successful_downloads = 0
|
| 255 |
+
failed_downloads = 0
|
| 256 |
+
skipped_files = 0
|
| 257 |
+
|
| 258 |
+
for i, filename in enumerate(files_to_download, 1):
|
| 259 |
+
file_path = dataset_dir / filename
|
| 260 |
+
|
| 261 |
+
# Skip if file exists and resuming
|
| 262 |
+
if resume and filename in existing_files:
|
| 263 |
+
logger.info(f"⏭️ Skipping existing file [{i}/{len(files_to_download)}]: {filename}")
|
| 264 |
+
skipped_files += 1
|
| 265 |
+
continue
|
| 266 |
+
|
| 267 |
+
logger.info(f"📥 Downloading [{i}/{len(files_to_download)}]: {filename}")
|
| 268 |
+
|
| 269 |
+
success = self._download_file_with_retry(
|
| 270 |
+
identifier, filename, file_path, verify_checksum
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
if success:
|
| 274 |
+
successful_downloads += 1
|
| 275 |
+
logger.info(f"✅ Downloaded: {filename}")
|
| 276 |
+
else:
|
| 277 |
+
failed_downloads += 1
|
| 278 |
+
logger.error(f"❌ Failed: {filename}")
|
| 279 |
+
|
| 280 |
+
# Brief pause between downloads
|
| 281 |
+
time.sleep(0.5)
|
| 282 |
+
|
| 283 |
+
# Summary
|
| 284 |
+
logger.info(f"\n📊 Download Summary for {dataset_name}:")
|
| 285 |
+
logger.info(f" ✅ Successful: {successful_downloads}")
|
| 286 |
+
logger.info(f" ⏭️ Skipped: {skipped_files}")
|
| 287 |
+
logger.info(f" ❌ Failed: {failed_downloads}")
|
| 288 |
+
logger.info(f" 📁 Location: {dataset_dir.absolute()}")
|
| 289 |
+
|
| 290 |
+
return failed_downloads == 0
|
| 291 |
+
|
| 292 |
+
def _download_file_with_retry(self, identifier: str, filename: str,
|
| 293 |
+
file_path: Path, verify_checksum: bool) -> bool:
|
| 294 |
+
"""Download single file with retry logic"""
|
| 295 |
+
for attempt in range(self.max_retries):
|
| 296 |
+
try:
|
| 297 |
+
# Use internetarchive library to download
|
| 298 |
+
item = ia.get_item(identifier)
|
| 299 |
+
|
| 300 |
+
# Find the file object
|
| 301 |
+
file_obj = None
|
| 302 |
+
for f in item.files:
|
| 303 |
+
if isinstance(f, dict) and f.get('name') == filename:
|
| 304 |
+
file_obj = f
|
| 305 |
+
break
|
| 306 |
+
|
| 307 |
+
if not file_obj:
|
| 308 |
+
logger.error(f"File not found in item: {filename}")
|
| 309 |
+
return False
|
| 310 |
+
|
| 311 |
+
# Download the file
|
| 312 |
+
success = item.download(
|
| 313 |
+
files=[filename],
|
| 314 |
+
destdir=file_path.parent,
|
| 315 |
+
verify=verify_checksum,
|
| 316 |
+
verbose=False,
|
| 317 |
+
retries=1 # Handle retries at our level
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
if success and file_path.exists():
|
| 321 |
+
return True
|
| 322 |
+
else:
|
| 323 |
+
raise Exception("Download failed or file not created")
|
| 324 |
+
|
| 325 |
+
except Exception as e:
|
| 326 |
+
logger.warning(f"⚠️ Attempt {attempt + 1}/{self.max_retries} failed for {filename}: {e}")
|
| 327 |
+
|
| 328 |
+
if attempt < self.max_retries - 1:
|
| 329 |
+
wait_time = (attempt + 1) * 2 # Exponential backoff
|
| 330 |
+
logger.info(f"🔄 Retrying in {wait_time} seconds...")
|
| 331 |
+
time.sleep(wait_time)
|
| 332 |
+
else:
|
| 333 |
+
logger.error(f"💔 All {self.max_retries} attempts failed for {filename}")
|
| 334 |
+
return False
|
| 335 |
+
|
| 336 |
+
return False
|
| 337 |
+
|
| 338 |
+
def download_multiple_datasets(self, dataset_names: List[str],
|
| 339 |
+
resume: bool = True) -> Dict[str, bool]:
|
| 340 |
+
"""
|
| 341 |
+
Download multiple SimNICT datasets
|
| 342 |
+
|
| 343 |
+
Args:
|
| 344 |
+
dataset_names: List of dataset names to download
|
| 345 |
+
resume: Whether to resume partial downloads
|
| 346 |
+
|
| 347 |
+
Returns:
|
| 348 |
+
Dictionary mapping dataset names to success status
|
| 349 |
+
"""
|
| 350 |
+
if not dataset_names:
|
| 351 |
+
logger.error("❌ No datasets specified")
|
| 352 |
+
return {}
|
| 353 |
+
|
| 354 |
+
logger.info(f"\n🚀 Starting batch download of {len(dataset_names)} datasets")
|
| 355 |
+
logger.info(f"📋 Datasets: {', '.join(dataset_names)}")
|
| 356 |
+
|
| 357 |
+
results = {}
|
| 358 |
+
successful = 0
|
| 359 |
+
|
| 360 |
+
for i, dataset_name in enumerate(dataset_names, 1):
|
| 361 |
+
logger.info(f"\n{'🔄' * 20} Dataset {i}/{len(dataset_names)} {'🔄' * 20}")
|
| 362 |
+
|
| 363 |
+
success = self.download_dataset(dataset_name, resume=resume)
|
| 364 |
+
results[dataset_name] = success
|
| 365 |
+
|
| 366 |
+
if success:
|
| 367 |
+
successful += 1
|
| 368 |
+
logger.info(f"🎉 Successfully downloaded: {dataset_name}")
|
| 369 |
+
else:
|
| 370 |
+
logger.error(f"💔 Failed to download: {dataset_name}")
|
| 371 |
+
|
| 372 |
+
# Final summary
|
| 373 |
+
logger.info(f"\n{'=' * 80}")
|
| 374 |
+
logger.info(f"🏁 Batch Download Complete")
|
| 375 |
+
logger.info(f"{'=' * 80}")
|
| 376 |
+
logger.info(f"✅ Successful: {successful}/{len(dataset_names)}")
|
| 377 |
+
logger.info(f"❌ Failed: {len(dataset_names) - successful}")
|
| 378 |
+
|
| 379 |
+
for dataset_name, success in results.items():
|
| 380 |
+
status = "✅" if success else "❌"
|
| 381 |
+
logger.info(f" {status} {dataset_name}")
|
| 382 |
+
|
| 383 |
+
return results
|
| 384 |
+
|
| 385 |
+
def validate_downloads(self, dataset_names: List[str]) -> Dict[str, Dict]:
|
| 386 |
+
"""
|
| 387 |
+
Validate downloaded datasets
|
| 388 |
+
|
| 389 |
+
Args:
|
| 390 |
+
dataset_names: List of dataset names to validate
|
| 391 |
+
|
| 392 |
+
Returns:
|
| 393 |
+
Validation results for each dataset
|
| 394 |
+
"""
|
| 395 |
+
logger.info(f"\n🔍 Validating {len(dataset_names)} datasets...")
|
| 396 |
+
|
| 397 |
+
results = {}
|
| 398 |
+
|
| 399 |
+
for dataset_name in dataset_names:
|
| 400 |
+
if dataset_name not in SIMNICT_DATASETS:
|
| 401 |
+
continue
|
| 402 |
+
|
| 403 |
+
dataset_dir = self.output_dir / dataset_name
|
| 404 |
+
expected_info = SIMNICT_DATASETS[dataset_name]
|
| 405 |
+
|
| 406 |
+
if not dataset_dir.exists():
|
| 407 |
+
results[dataset_name] = {
|
| 408 |
+
"status": "missing",
|
| 409 |
+
"message": "Dataset directory not found"
|
| 410 |
+
}
|
| 411 |
+
continue
|
| 412 |
+
|
| 413 |
+
# Count downloaded files
|
| 414 |
+
nii_files = list(dataset_dir.glob("*.nii.gz"))
|
| 415 |
+
file_count = len(nii_files)
|
| 416 |
+
|
| 417 |
+
expected_files = expected_info['files']
|
| 418 |
+
completion_rate = (file_count / expected_files) * 100
|
| 419 |
+
|
| 420 |
+
if file_count == expected_files:
|
| 421 |
+
status = "complete"
|
| 422 |
+
message = f"All {file_count} files downloaded successfully"
|
| 423 |
+
elif file_count > 0:
|
| 424 |
+
status = "partial"
|
| 425 |
+
message = f"Partial download: {file_count}/{expected_files} files ({completion_rate:.1f}%)"
|
| 426 |
+
else:
|
| 427 |
+
status = "empty"
|
| 428 |
+
message = "No files found"
|
| 429 |
+
|
| 430 |
+
results[dataset_name] = {
|
| 431 |
+
"status": status,
|
| 432 |
+
"files_found": file_count,
|
| 433 |
+
"files_expected": expected_files,
|
| 434 |
+
"completion_rate": completion_rate,
|
| 435 |
+
"message": message
|
| 436 |
+
}
|
| 437 |
+
|
| 438 |
+
logger.info(f"📊 {dataset_name}: {message}")
|
| 439 |
+
|
| 440 |
+
return results
|
| 441 |
+
|
| 442 |
+
# =============================================================================
|
| 443 |
+
# Command Line Interface
|
| 444 |
+
# =============================================================================
|
| 445 |
+
|
| 446 |
+
def main():
|
| 447 |
+
parser = argparse.ArgumentParser(
|
| 448 |
+
description="Download SimNICT datasets from Internet Archive",
|
| 449 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 450 |
+
epilog="""
|
| 451 |
+
Examples:
|
| 452 |
+
# List available datasets
|
| 453 |
+
python download_simnict.py --list
|
| 454 |
+
|
| 455 |
+
# Download specific datasets
|
| 456 |
+
python download_simnict.py --datasets AMOS COVID_19_NY_SBU --output_dir ./data
|
| 457 |
+
|
| 458 |
+
# Download all datasets
|
| 459 |
+
python download_simnict.py --all --output_dir ./data
|
| 460 |
+
|
| 461 |
+
# Resume interrupted downloads
|
| 462 |
+
python download_simnict.py --datasets STOIC --resume --output_dir ./data
|
| 463 |
+
|
| 464 |
+
# Validate existing downloads
|
| 465 |
+
python download_simnict.py --validate AMOS LUNA --output_dir ./data
|
| 466 |
+
"""
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
parser.add_argument(
|
| 470 |
+
"--datasets", nargs="+", metavar="DATASET",
|
| 471 |
+
help="List of datasets to download (e.g., AMOS LUNA STOIC)"
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
parser.add_argument(
|
| 475 |
+
"--all", action="store_true",
|
| 476 |
+
help="Download all available SimNICT datasets"
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
parser.add_argument(
|
| 480 |
+
"--list", action="store_true",
|
| 481 |
+
help="List available datasets and exit"
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
parser.add_argument(
|
| 485 |
+
"--validate", nargs="*", metavar="DATASET",
|
| 486 |
+
help="Validate downloaded datasets"
|
| 487 |
+
)
|
| 488 |
+
|
| 489 |
+
parser.add_argument(
|
| 490 |
+
"--output_dir", default="./simnict_data",
|
| 491 |
+
help="Output directory for downloads (default: ./simnict_data)"
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
parser.add_argument(
|
| 495 |
+
"--resume", action="store_true",
|
| 496 |
+
help="Resume interrupted downloads (skip existing files)"
|
| 497 |
+
)
|
| 498 |
+
|
| 499 |
+
parser.add_argument(
|
| 500 |
+
"--no-checksum", action="store_true",
|
| 501 |
+
help="Skip checksum verification (faster but less safe)"
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
parser.add_argument(
|
| 505 |
+
"--max-retries", type=int, default=3,
|
| 506 |
+
help="Maximum retry attempts for failed downloads (default: 3)"
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
args = parser.parse_args()
|
| 510 |
+
|
| 511 |
+
# Handle list command
|
| 512 |
+
if args.list:
|
| 513 |
+
downloader = SimNICTDownloader()
|
| 514 |
+
downloader.list_available_datasets()
|
| 515 |
+
return
|
| 516 |
+
|
| 517 |
+
# Handle validation
|
| 518 |
+
if args.validate is not None:
|
| 519 |
+
datasets_to_validate = args.validate if args.validate else list(SIMNICT_DATASETS.keys())
|
| 520 |
+
downloader = SimNICTDownloader(args.output_dir)
|
| 521 |
+
results = downloader.validate_downloads(datasets_to_validate)
|
| 522 |
+
return
|
| 523 |
+
|
| 524 |
+
# Determine datasets to download
|
| 525 |
+
if args.all:
|
| 526 |
+
datasets = list(SIMNICT_DATASETS.keys())
|
| 527 |
+
elif args.datasets:
|
| 528 |
+
datasets = args.datasets
|
| 529 |
+
else:
|
| 530 |
+
parser.error("Must specify --datasets, --all, --list, or --validate")
|
| 531 |
+
|
| 532 |
+
# Validate dataset names
|
| 533 |
+
invalid_datasets = [d for d in datasets if d not in SIMNICT_DATASETS]
|
| 534 |
+
if invalid_datasets:
|
| 535 |
+
logger.error(f"❌ Invalid dataset names: {invalid_datasets}")
|
| 536 |
+
logger.info(f"Available datasets: {list(SIMNICT_DATASETS.keys())}")
|
| 537 |
+
return
|
| 538 |
+
|
| 539 |
+
# Initialize downloader
|
| 540 |
+
downloader = SimNICTDownloader(
|
| 541 |
+
output_dir=args.output_dir,
|
| 542 |
+
max_retries=args.max_retries
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
# Show download plan
|
| 546 |
+
logger.info(f"\n📋 Download Plan:")
|
| 547 |
+
total_size = 0
|
| 548 |
+
for dataset in datasets:
|
| 549 |
+
info = SIMNICT_DATASETS[dataset]
|
| 550 |
+
logger.info(f" 🔹 {dataset}: {info['size_gb']} ({info['volumes']} volumes)")
|
| 551 |
+
# Extract size for total calculation
|
| 552 |
+
try:
|
| 553 |
+
size_num = float(info['size_gb'].replace('~', '').replace(' GB', ''))
|
| 554 |
+
total_size += size_num
|
| 555 |
+
except:
|
| 556 |
+
pass
|
| 557 |
+
|
| 558 |
+
logger.info(f" 💾 Total estimated size: ~{total_size:.0f} GB")
|
| 559 |
+
|
| 560 |
+
# Confirm download
|
| 561 |
+
try:
|
| 562 |
+
confirm = input(f"\nProceed with download? (y/N): ").strip().lower()
|
| 563 |
+
if confirm != 'y':
|
| 564 |
+
logger.info("❌ Download cancelled by user")
|
| 565 |
+
return
|
| 566 |
+
except KeyboardInterrupt:
|
| 567 |
+
logger.info("\n❌ Download cancelled by user")
|
| 568 |
+
return
|
| 569 |
+
|
| 570 |
+
# Start downloads
|
| 571 |
+
start_time = time.time()
|
| 572 |
+
results = downloader.download_multiple_datasets(datasets, resume=args.resume)
|
| 573 |
+
end_time = time.time()
|
| 574 |
+
|
| 575 |
+
# Final report
|
| 576 |
+
elapsed = end_time - start_time
|
| 577 |
+
logger.info(f"\n⏱️ Total time: {elapsed:.1f} seconds ({elapsed/60:.1f} minutes)")
|
| 578 |
+
|
| 579 |
+
# Validate downloads
|
| 580 |
+
if any(results.values()):
|
| 581 |
+
logger.info("\n🔍 Validating downloads...")
|
| 582 |
+
validation_results = downloader.validate_downloads(list(results.keys()))
|
| 583 |
+
|
| 584 |
+
if __name__ == "__main__":
|
| 585 |
+
main()
|
simnict_generator.py
ADDED
|
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding = utf-8 -*-
|
| 2 |
+
|
| 3 |
+
"""
|
| 4 |
+
SimNICT Dataset Generator
|
| 5 |
+
Generates Non-Ideal measurement CT (NICT) simulations from preprocessed ICT data
|
| 6 |
+
|
| 7 |
+
This script creates three types of NICT simulations:
|
| 8 |
+
1. Sparse-View CT (SVCT): Limited projection views (15-360 views)
|
| 9 |
+
2. Limited-Angle CT (LACT): Restricted angular range (75°-270°)
|
| 10 |
+
3. Low-Dose CT (LDCT): Reduced photon dose (5%-75% of normal dose)
|
| 11 |
+
|
| 12 |
+
Usage:
|
| 13 |
+
python simnict_generator.py
|
| 14 |
+
|
| 15 |
+
Dependencies: numpy, torch, nibabel, odl, astra-toolbox, opencv-python, pillow
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
from __future__ import absolute_import, print_function
|
| 19 |
+
|
| 20 |
+
import numpy as np
|
| 21 |
+
import time
|
| 22 |
+
import os
|
| 23 |
+
import nibabel as nib
|
| 24 |
+
import odl
|
| 25 |
+
import random
|
| 26 |
+
import astra
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# Dataset configuration
|
| 30 |
+
DATASETS = ['AMOS', 'COVID_19_NY_SBU', 'CT Images in COVID-19', 'CT_COLONOGRAPHY', 'LNDb', 'LUNA', 'MELA', 'STOIC']
|
| 31 |
+
|
| 32 |
+
# Path configuration
|
| 33 |
+
INPUT_PATH = 'M:/' # Original ICT data path
|
| 34 |
+
OUTPUT_SVCT = 'K:/SpV/' # Sparse-view CT output path
|
| 35 |
+
OUTPUT_LACT = 'K:/LmV/' # Limited-angle CT output path
|
| 36 |
+
OUTPUT_LDCT = 'K:/LD/' # Low-dose CT output path
|
| 37 |
+
|
| 38 |
+
# Simulation parameter ranges
|
| 39 |
+
SVCT_VIEW_RANGE = (15, 360) # Number of projection views
|
| 40 |
+
LACT_ANGLE_RANGE = (75, 270) # Angular range in degrees
|
| 41 |
+
LDCT_DOSE_RANGE = (5, 75) # Dose percentage
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def process_dataset(input_path, dataset_name):
|
| 45 |
+
"""
|
| 46 |
+
Process a complete dataset to generate NICT simulations
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
input_path (str): Path to input ICT data
|
| 50 |
+
dataset_name (str): Name of the dataset to process
|
| 51 |
+
"""
|
| 52 |
+
ict_path = os.path.join(input_path, dataset_name, "int16/")
|
| 53 |
+
|
| 54 |
+
if not os.path.exists(ict_path):
|
| 55 |
+
print(f"Warning: Path {ict_path} does not exist, skipping {dataset_name}")
|
| 56 |
+
return
|
| 57 |
+
|
| 58 |
+
# Create output directories
|
| 59 |
+
for output_path in [OUTPUT_SVCT, OUTPUT_LACT, OUTPUT_LDCT]:
|
| 60 |
+
os.makedirs(os.path.join(output_path, dataset_name, "int16/"), exist_ok=True)
|
| 61 |
+
|
| 62 |
+
files = os.listdir(ict_path)
|
| 63 |
+
num_files = len(files)
|
| 64 |
+
print(f"Processing {dataset_name}: {num_files} files")
|
| 65 |
+
|
| 66 |
+
for i, filename in enumerate(files):
|
| 67 |
+
print(f"Processing {dataset_name} - File {i+1}/{num_files}: {filename}")
|
| 68 |
+
|
| 69 |
+
# Load ICT volume
|
| 70 |
+
ict_file_path = os.path.join(ict_path, filename)
|
| 71 |
+
image_obj = nib.load(ict_file_path)
|
| 72 |
+
ict_volume = image_obj.get_fdata() + 1024 # Convert to [0, 4096] range
|
| 73 |
+
ict_volume[ict_volume < 0] = 0
|
| 74 |
+
|
| 75 |
+
L, W, S = ict_volume.shape
|
| 76 |
+
|
| 77 |
+
# Initialize output volumes
|
| 78 |
+
svct_volume = np.zeros((L, W, S), dtype=np.int16)
|
| 79 |
+
lact_volume = np.zeros((L, W, S), dtype=np.int16)
|
| 80 |
+
ldct_volume = np.zeros((L, W, S), dtype=np.int16)
|
| 81 |
+
|
| 82 |
+
# Process each slice
|
| 83 |
+
for slice_idx in range(S):
|
| 84 |
+
ict_slice = ict_volume[:, :, slice_idx]
|
| 85 |
+
|
| 86 |
+
# Generate SVCT with random view number
|
| 87 |
+
svct_views = random.randint(*SVCT_VIEW_RANGE)
|
| 88 |
+
svct_slice = create_sparse_view_ct(ict_slice, L, W, svct_views)
|
| 89 |
+
svct_volume[:, :, slice_idx] = svct_slice
|
| 90 |
+
|
| 91 |
+
# Generate LACT with random angular range
|
| 92 |
+
lact_angle = random.randint(*LACT_ANGLE_RANGE)
|
| 93 |
+
lact_slice = create_limited_angle_ct(ict_slice, L, W, lact_angle)
|
| 94 |
+
lact_volume[:, :, slice_idx] = lact_slice
|
| 95 |
+
|
| 96 |
+
# Generate LDCT with random dose level
|
| 97 |
+
ldct_dose = random.randint(*LDCT_DOSE_RANGE)
|
| 98 |
+
ldct_slice = create_low_dose_ct(ict_slice - 1024, L, W, ldct_dose) # Convert back to [-1024, 3072]
|
| 99 |
+
ldct_volume[:, :, slice_idx] = ldct_slice
|
| 100 |
+
|
| 101 |
+
# Save NICT volumes
|
| 102 |
+
save_nict_volume(svct_volume, OUTPUT_SVCT, dataset_name, filename, volume_type="SVCT")
|
| 103 |
+
save_nict_volume(lact_volume, OUTPUT_LACT, dataset_name, filename, volume_type="LACT")
|
| 104 |
+
save_nict_volume(ldct_volume, OUTPUT_LDCT, dataset_name, filename, volume_type="LDCT")
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def save_nict_volume(volume, output_path, dataset_name, filename, volume_type):
|
| 108 |
+
"""Save NICT volume to NIfTI format"""
|
| 109 |
+
if volume_type in ["SVCT", "LACT"]:
|
| 110 |
+
# Convert from [0, 4096] to [-1024, 3072] range
|
| 111 |
+
volume_output = volume - 1024
|
| 112 |
+
volume_output[volume_output < -1024] = -1024
|
| 113 |
+
else: # LDCT
|
| 114 |
+
# Already in [-1024, 3072] range
|
| 115 |
+
volume_output = volume
|
| 116 |
+
volume_output[volume_output < -1024] = -1024
|
| 117 |
+
|
| 118 |
+
nifti_image = nib.Nifti1Image(volume_output, np.eye(4))
|
| 119 |
+
output_file = os.path.join(output_path, dataset_name, "int16/", filename)
|
| 120 |
+
nib.save(nifti_image, output_file)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def create_sparse_view_ct(ict_slice, height, width, num_views):
|
| 124 |
+
"""
|
| 125 |
+
Generate Sparse-View CT using ODL
|
| 126 |
+
|
| 127 |
+
Args:
|
| 128 |
+
ict_slice: Input ICT slice [0, 4096]
|
| 129 |
+
height, width: Image dimensions
|
| 130 |
+
num_views: Number of projection views
|
| 131 |
+
Returns:
|
| 132 |
+
Reconstructed sparse-view CT slice
|
| 133 |
+
"""
|
| 134 |
+
# Create reconstruction space
|
| 135 |
+
reco_space = odl.uniform_discr(
|
| 136 |
+
min_pt=[-height/4, -width/4],
|
| 137 |
+
max_pt=[height/4, width/4],
|
| 138 |
+
shape=[height, width],
|
| 139 |
+
dtype='float32'
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
# Define geometry with limited views
|
| 143 |
+
angle_partition = odl.uniform_partition(0, 2 * np.pi, num_views)
|
| 144 |
+
detector_partition = odl.uniform_partition(-360, 360, 1024)
|
| 145 |
+
geometry = odl.tomo.FanBeamGeometry(
|
| 146 |
+
angle_partition, detector_partition,
|
| 147 |
+
src_radius=1270, det_radius=870
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# Create ray transform and reconstruct
|
| 151 |
+
ray_trafo = odl.tomo.RayTransform(reco_space, geometry)
|
| 152 |
+
projection = ray_trafo(ict_slice.astype('float32'))
|
| 153 |
+
fbp = odl.tomo.fbp_op(ray_trafo)
|
| 154 |
+
reconstruction = fbp(projection)
|
| 155 |
+
|
| 156 |
+
return reconstruction
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def create_limited_angle_ct(ict_slice, height, width, angle_range):
|
| 160 |
+
"""
|
| 161 |
+
Generate Limited-Angle CT using ODL
|
| 162 |
+
|
| 163 |
+
Args:
|
| 164 |
+
ict_slice: Input ICT slice [0, 4096]
|
| 165 |
+
height, width: Image dimensions
|
| 166 |
+
angle_range: Angular range in degrees
|
| 167 |
+
Returns:
|
| 168 |
+
Reconstructed limited-angle CT slice
|
| 169 |
+
"""
|
| 170 |
+
# Create reconstruction space
|
| 171 |
+
reco_space = odl.uniform_discr(
|
| 172 |
+
min_pt=[-height/4, -width/4],
|
| 173 |
+
max_pt=[height/4, width/4],
|
| 174 |
+
shape=[height, width],
|
| 175 |
+
dtype='float32'
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# Define geometry with limited angular range
|
| 179 |
+
angle_fraction = angle_range / 360
|
| 180 |
+
num_angles = int(720 * angle_fraction)
|
| 181 |
+
angle_partition = odl.uniform_partition(0, 2 * np.pi * angle_fraction, num_angles)
|
| 182 |
+
detector_partition = odl.uniform_partition(-360, 360, 1024)
|
| 183 |
+
geometry = odl.tomo.FanBeamGeometry(
|
| 184 |
+
angle_partition, detector_partition,
|
| 185 |
+
src_radius=1270, det_radius=870
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
# Create ray transform and reconstruct
|
| 189 |
+
ray_trafo = odl.tomo.RayTransform(reco_space, geometry)
|
| 190 |
+
projection = ray_trafo(ict_slice.astype('float32'))
|
| 191 |
+
fbp = odl.tomo.fbp_op(ray_trafo)
|
| 192 |
+
reconstruction = fbp(projection)
|
| 193 |
+
|
| 194 |
+
return reconstruction
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def create_low_dose_ct(ict_slice, height, width, dose_percentage):
|
| 198 |
+
"""
|
| 199 |
+
Generate Low-Dose CT using ASTRA with Poisson noise simulation
|
| 200 |
+
|
| 201 |
+
Args:
|
| 202 |
+
ict_slice: Input ICT slice [-1024, 3072]
|
| 203 |
+
height, width: Image dimensions
|
| 204 |
+
dose_percentage: Dose level as percentage of normal dose
|
| 205 |
+
Returns:
|
| 206 |
+
Reconstructed low-dose CT slice
|
| 207 |
+
"""
|
| 208 |
+
dose_fraction = dose_percentage / 100.0
|
| 209 |
+
|
| 210 |
+
# Convert to attenuation coefficients
|
| 211 |
+
u = 0.0192 # Linear attenuation coefficient
|
| 212 |
+
attenuation_map = ict_slice * u / 1000.0 + u
|
| 213 |
+
|
| 214 |
+
# ASTRA geometry setup
|
| 215 |
+
vol_geom = astra.create_vol_geom([height, width])
|
| 216 |
+
angles = np.linspace(np.pi, -np.pi, 720)
|
| 217 |
+
proj_geom = astra.create_proj_geom(
|
| 218 |
+
'fanflat', 1.685839319229126, 1024, angles,
|
| 219 |
+
600.4500331878662, 485.1499423980713
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# Create projector and forward project
|
| 223 |
+
proj_id = astra.create_projector('cuda', proj_geom, vol_geom)
|
| 224 |
+
operator = astra.OpTomo(proj_id)
|
| 225 |
+
|
| 226 |
+
# Forward projection
|
| 227 |
+
sinogram = operator * np.mat(attenuation_map) / 2
|
| 228 |
+
|
| 229 |
+
# Add Poisson noise based on dose level
|
| 230 |
+
noise = np.random.normal(0, 1, 720 * 1024)
|
| 231 |
+
noise_scaling = np.sqrt((1 - dose_fraction) / dose_fraction * (np.exp(sinogram) / 1e6))
|
| 232 |
+
noisy_sinogram = sinogram + noise * noise_scaling
|
| 233 |
+
|
| 234 |
+
# Reconstruct with FBP
|
| 235 |
+
noisy_sinogram_2d = np.reshape(noisy_sinogram, [720, -1])
|
| 236 |
+
reconstruction = operator.reconstruct('FBP_CUDA', noisy_sinogram_2d)
|
| 237 |
+
|
| 238 |
+
# Convert back to HU values
|
| 239 |
+
reconstruction = reconstruction.reshape((height, width))
|
| 240 |
+
return (reconstruction * 2 - u) / u * 1000
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def main():
|
| 244 |
+
"""Main processing function"""
|
| 245 |
+
print('SimNICT Dataset Generator Started')
|
| 246 |
+
start_time = time.time()
|
| 247 |
+
|
| 248 |
+
# Process each dataset
|
| 249 |
+
for dataset_name in DATASETS:
|
| 250 |
+
print(f"\n{'='*50}")
|
| 251 |
+
print(f"Processing Dataset: {dataset_name}")
|
| 252 |
+
print(f"{'='*50}")
|
| 253 |
+
|
| 254 |
+
try:
|
| 255 |
+
process_dataset(INPUT_PATH, dataset_name)
|
| 256 |
+
duration = time.time() - start_time
|
| 257 |
+
print(f"Completed {dataset_name} in {duration:.1f} seconds")
|
| 258 |
+
except Exception as e:
|
| 259 |
+
print(f"Error processing {dataset_name}: {str(e)}")
|
| 260 |
+
continue
|
| 261 |
+
|
| 262 |
+
total_duration = time.time() - start_time
|
| 263 |
+
print(f"\nSimNICT Generation Complete - Total time: {total_duration/3600:.2f} hours")
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
if __name__ == "__main__":
|
| 267 |
+
main()
|
| 268 |
+
|