--- license: mit task_categories: - object-detection - text-classification - zero-shot-classification language: - en - ar size_categories: - 10K | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | |----------|----------|----------|----------|----------| | | | | | | *Examples of annotated receipt images showcasing the variety of formats, languages, and complex text layouts* ## ๐ŸŽฏ Supported Tasks ### 1. ๐ŸŽฏ **Key Information Detection** Extract essential receipt information including: - Merchant names - Transaction dates - Receipt numbers - Item lists and descriptions - Total amounts ### 2. ๐Ÿ” **OCR (Optical Character Recognition)** Box-level text annotations for: - Multilingual text recognition - Complex layout understanding - Noisy image processing ### 3. ๐Ÿ“ **Information Extraction** Detailed item-level analysis: - Item names and descriptions - Prices and quantities - Categories and classifications - Brands and packaging information ### 4. โ“ **Receipt Question Answering** Comprehensive QA capabilities covering: - Receipt metadata queries - Item-specific questions - Transaction summary questions - Payment and tax information ## ๐Ÿ“ฅ Download Links ### ๐ŸŽฏ Key Information Detection - **Training Set**: [Download (12.6K images)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/Receipt/train.zip?download=true) - **Validation Set**: [Download (3.7K images)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/Receipt/val.zip?download=true) - **Test Set**: [Download (3.7K images)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/Receipt/test.zip?download=true) ### ๐Ÿ” OCR Dataset - **Training Set**: [Download (21K images)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/OCR/train.zip?download=true) - **Validation Set**: [Download (4.5K images)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/OCR/val.zip?download=true) - **Test Set**: [Download (4.5K images)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/OCR/test.zip?download=true) ### ๐Ÿ“ Item Information Extraction - **Training Set**: [Download (7K items)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/IE/train.csv?download=true) - **Validation Set**: [Download (1.5K items)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/IE/val.csv?download=true) - **Test Set**: [Download (1.5K items)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/IE/test.csv?download=true) ### โ“ Receipt Question Answering - **Test Set**: [Download (1,265 receipts with 50.6K QA pairs)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/QA/test.zip?download=true) > โš ๏ธ **Note**: All receipt datasets have been updated to include PII-redacted versions for privacy protection. ## ๐Ÿ† Baseline Results ### Object Detection Performance | Model | Backbone | Precision | Recall | mAP50 | mAP50-95 | |-------|----------|-----------|--------|-------|----------| | **YOLOv7** | - | **76.0%** | **85.6%** | **79.2%** | 43.7% | | YOLOv8 | - | 74.6% | 81.0% | 76.1% | 45.3% | | YOLOv9 | - | 75.7% | 83.4% | 77.9% | **46.7%** | | DINO | Swin-T | - | - | - | **32.2%** (Avg IoU) | ### OCR Performance | Model | CER โ†“ | WER โ†“ | |-------|-------|-------| | Tesseract | 15.56% | 30.78% | | Attention-Gated CNN-BiGRU | 14.85% | 27.22% | | Our OCR Model | 7.83% | 27.24% | | **Azura OCR** | **6.39%** | **25.97%** | ### Receipt QA Performance | Model | Precision | Recall | Exact Match | Contains | |-------|-----------|--------|-------------|----------| | **GPT-4o** | **37.7%** | **36.4%** | **35.0%** | **29.1%** | | Llama3.2 (11B) | 32.6% | 31.3% | 31.6% | 25.9% | | Phi3.5 | 28.4% | 29.1% | 28.8% | 23.7% | | Internvl2 (8B) | 24.2% | 23.8% | 23.1% | 19.4% | ## ๐Ÿš€ Getting Started ### Quick Start ```python # Install required packages pip install datasets transformers torch # Load the dataset from datasets import load_dataset # Load Receipt QA dataset qa_dataset = load_dataset("abdoelsayed/CORU", "qa") # Load OCR dataset ocr_dataset = load_dataset("abdoelsayed/CORU", "ocr") # Load Information Extraction dataset ie_dataset = load_dataset("abdoelsayed/CORU", "ie") ``` ### Dataset Structure ``` ReceiptSense/ โ”œโ”€โ”€ Receipt/ # Key Information Detection โ”‚ โ”œโ”€โ”€ images/ # Receipt images โ”‚ โ””โ”€โ”€ annotations/ # YOLO/COCO format annotations โ”œโ”€โ”€ OCR/ # OCR Dataset โ”‚ โ”œโ”€โ”€ images/ # Text line images โ”‚ โ””โ”€โ”€ labels/ # Character annotations โ”œโ”€โ”€ IE/ # Information Extraction โ”‚ โ””โ”€โ”€ data.csv # Structured item data โ””โ”€โ”€ QA/ # Receipt Question Anshwering โ”œโ”€โ”€ images/ # Receipt images โ””โ”€โ”€ qa_pairs.json # Question-answer pairs ``` ## ๐Ÿ”ฌ Applications - **๐Ÿ’ณ Expense Management**: Automated expense tracking and categorization - **๐Ÿ“ฆ Inventory Management**: Real-time inventory updates from receipt data - **๐Ÿช Retail Analytics**: Customer behavior and purchasing pattern analysis - **๐Ÿค– Document AI**: Multilingual document understanding systems - **๐Ÿ“ฑ Mobile Apps**: Receipt scanning and digitization applications ## ๐Ÿค Comparison with Existing Datasets | Dataset | Images | Categories | Languages | Item IE | Receipt QA | Year | |---------|--------|------------|-----------|---------|------------|------| | SROIE | 1,000 | 4 | English | โœ“ | โœ— | 2019 | | CORD | 1,000 | 8 | English | โœ“ | โœ— | 2019 | | MC-OCR | 2,436 | 4 | EN + Vietnamese | โœ“ | โœ— | 2021 | | UIT | 2,147 | 4 | EN + Vietnamese | โœ“ | โœ— | 2022 | | **ReceiptSense** | **20,000** | **5** | **Arabic + English** | **โœ“** | **โœ“** | **2024** | ## ๐Ÿ›๏ธ Ethics and Privacy - All receipts collected with explicit user consent through the DISCO application - Comprehensive 4-step PII redaction process implemented - Privacy protocols strictly followed during data collection - Independent verification and cross-checking procedures ## ๐Ÿ‘ฅ Authors **Abdelrahman Abdallahยน**, **Mahmoud Abdallaยฒ**, **Mahmoud SalahEldin Kasemยฒ**, **Mohamed Mahmoudยฒ**, **Ibrahim Abdelhalimยณ**, **Mohamed Elkasabyโด**, **Yasser Elbendaryโด**, **Adam Jatowtยน** ยนUniversity of Innsbruck, Innsbruck, Tyrol, Austria ยฒChungbuk National University, Cheongju, Republic of Korea ยณUniversity of Louisville, Louisville, USA โดDISCO, Cairo, Egypt ## ๐Ÿ“š Citation If you find ReceiptSense useful for your research, please consider citing our paper: ```bibtex @article{abdallah2024receiptsense, title={ReceiptSense: Beyond Traditional OCR - A Dataset for Receipt Understanding}, author={Abdelrahman Abdallah and Mahmoud Abdalla and Mahmoud SalahEldin Kasem and Mohamed Mahmoud and Ibrahim Abdelhalim and Mohamed Elkasaby and Yasser Elbendary and Adam Jatowt}, year={2024}, journal={ACM Conference Proceedings}, note={Comprehensive multilingual receipt understanding dataset} } ``` ## ๐Ÿ“„ License This dataset is released under the MIT License. See [LICENSE](LICENSE) file for details. ## ๐Ÿ”— Links - ๐Ÿ“„ **Paper**: [arXiv:2406.04493](https://arxiv.org/abs/2406.04493) - ๐Ÿค— **HuggingFace**: [abdoelsayed/CORU](https://huggingface.co/datasets/abdoelsayed/CORU) - ๐Ÿ’ผ **DISCO App**: [https://discoapp.ai/](https://discoapp.ai/) - ๐Ÿ“ง **Contact**: [abdelrahman.abdallah@uibk.ac.at](mailto:abdelrahman.abdallah@uibk.ac.at) ---
**๐ŸŒŸ Star this repository if you find it helpful! ๐ŸŒŸ** ![Visitors](https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fgithub.com%2FUpdate-For-Integrated-Business-AI%2FCORU&countColor=%23263759)