File size: 5,221 Bytes
211c50d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "cf6af8de-b9f8-4396-8496-9f1d28dd6156",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Done! Created EASC.csv and EASC.jsonl\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import re\n",
    "import json\n",
    "import pandas as pd\n",
    "\n",
    "ARTICLES_DIR = \"Articles\"\n",
    "MTURK_DIR = \"MTurk\"\n",
    "\n",
    "records_csv = []\n",
    "records_jsonl = []\n",
    "\n",
    "for folder in sorted(os.listdir(ARTICLES_DIR)):\n",
    "    folder_path = os.path.join(ARTICLES_DIR, folder)\n",
    "    if not os.path.isdir(folder_path):\n",
    "        continue\n",
    "\n",
    "    # Extract article_id from folder name \"Article001\"\n",
    "    m = re.match(r\"Article(\\d+)\", folder)\n",
    "    if not m:\n",
    "        print(f\"Skipping folder (no article id): {folder}\")\n",
    "        continue\n",
    "\n",
    "    article_id = int(m.group(1))\n",
    "\n",
    "    # Read article text + topic name (from file name)\n",
    "    article_files = os.listdir(folder_path)\n",
    "    if len(article_files) == 0:\n",
    "        print(f\"No article file in {folder}\")\n",
    "        continue\n",
    "\n",
    "    article_file = article_files[0]   # only one expected\n",
    "    article_file_path = os.path.join(folder_path, article_file)\n",
    "\n",
    "    # Extract topic name from filename \"Science and Tech (8).txt\"\n",
    "    base = os.path.splitext(article_file)[0]\n",
    "    match = re.match(r\"(.+?)\\s*\\(\\d+\\)\", base)\n",
    "    topic_name = match.group(1).strip() if match else \"Unknown\"\n",
    "\n",
    "    # Read article text (strict UTF-8)\n",
    "    with open(article_file_path, \"r\", encoding=\"utf-8\", errors=\"replace\") as f:\n",
    "        article_text = f.read().strip()\n",
    "\n",
    "    # Read MTurk summaries for the same article\n",
    "    summaries_dir = os.path.join(MTURK_DIR, folder)\n",
    "    if not os.path.isdir(summaries_dir):\n",
    "        print(f\"No MTurk summaries for {folder}\")\n",
    "        continue\n",
    "\n",
    "    summary_files = sorted(os.listdir(summaries_dir))\n",
    "    summaries = []\n",
    "\n",
    "    for sfile in summary_files:\n",
    "        s_path = os.path.join(summaries_dir, sfile)\n",
    "        with open(s_path, \"r\", encoding=\"utf-8\", errors=\"replace\") as f:\n",
    "            summaries.append(f.read().strip())\n",
    "\n",
    "    # Ensure exactly 5 summaries (MTurk provides 5)\n",
    "    while len(summaries) < 5:\n",
    "        summaries.append(\"\")\n",
    "\n",
    "    # Trim excess if more than 5 (rare)\n",
    "    summaries = summaries[:5]\n",
    "\n",
    "    # --- CSV ROW ---\n",
    "    records_csv.append({\n",
    "        \"article_id\": article_id,\n",
    "        \"topic_name\": topic_name,\n",
    "        \"article_text\": article_text,\n",
    "        \"summary_A\": summaries[0],\n",
    "        \"summary_B\": summaries[1],\n",
    "        \"summary_C\": summaries[2],\n",
    "        \"summary_D\": summaries[3],\n",
    "        \"summary_E\": summaries[4]\n",
    "    })\n",
    "\n",
    "    # --- JSONL ROW ---\n",
    "    records_jsonl.append({\n",
    "        \"article_id\": article_id,\n",
    "        \"topic_name\": topic_name,\n",
    "        \"article_text\": article_text,\n",
    "        \"summaries\": summaries\n",
    "    })\n",
    "\n",
    "# Save CSV (UTF-8)\n",
    "df = pd.DataFrame(records_csv)\n",
    "df.to_csv(\"EASC.csv\", index=False, encoding=\"utf-8\")\n",
    "\n",
    "# Save JSONL (UTF-8)\n",
    "with open(\"EASC.jsonl\", \"w\", encoding=\"utf-8\") as f:\n",
    "    for row in records_jsonl:\n",
    "        f.write(json.dumps(row, ensure_ascii=False) + \"\\n\")\n",
    "\n",
    "print(\"Done! Created EASC.csv and EASC.jsonl\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "599e5c36-b09f-4dc3-b79e-3e418c67f318",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "from sklearn.model_selection import train_test_split\n",
    "\n",
    "df = pd.read_csv(\"EASC.csv\")\n",
    "\n",
    "train_df, temp_df = train_test_split(df, test_size=0.2, random_state=42)\n",
    "val_df, test_df = train_test_split(temp_df, test_size=0.5, random_state=42)\n",
    "\n",
    "train_df.to_csv(\"EASC_train.csv\", index=False)\n",
    "val_df.to_csv(\"EASC_val.csv\", index=False)\n",
    "test_df.to_csv(\"EASC_test.csv\", index=False)\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.13.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}