Grigori Fursin
commited on
first commit
Browse files- README.md +49 -0
- data.json +0 -0
- data.parquet +3 -0
- processor.py +624 -0
- requirements.txt +3 -0
- semi-raw-mlperf-data.tar.bz2 +3 -0
README.md
CHANGED
|
@@ -1,3 +1,52 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
| 4 |
+
|
| 5 |
+
# Preparing OpenMLPerf dataset
|
| 6 |
+
|
| 7 |
+
To process the semi-raw MLPerf data into the OpenMLPerf dataset, run the following command:
|
| 8 |
+
|
| 9 |
+
```bash
|
| 10 |
+
# Go to the OpenMLPerf-dataset directory
|
| 11 |
+
cd OpenMLPerf-dataset
|
| 12 |
+
|
| 13 |
+
# Create a virtual environment
|
| 14 |
+
python -m venv .venv
|
| 15 |
+
|
| 16 |
+
# Activate the virtual environment
|
| 17 |
+
source .venv/bin/activate
|
| 18 |
+
|
| 19 |
+
# Install the required packages
|
| 20 |
+
pip install -r requirements.txt
|
| 21 |
+
|
| 22 |
+
# Run the processing script
|
| 23 |
+
python process.py
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
The processed dataset will be saved both as `data.json` and `data.parquet` in the `OpenMLPerf-dataset` directory.
|
| 27 |
+
The `data.json` file is a JSON file containing the processed data, while the `data.parquet` file is a Parquet file containing the same data in a more efficient format for storage and processing.
|
| 28 |
+
|
| 29 |
+
# Preprocessing raw MLPerf results using MLCommons CMX
|
| 30 |
+
|
| 31 |
+
We preprocess official raw MLPerf data, such as [inference v5.0](https://github.com/mlcommons/inference_results_v5.0),
|
| 32 |
+
into semi-raw format compatible with the `process.py` script, using the [MLCommons CM/CMX automation framework](https://arxiv.org/abs/2406.16791).
|
| 33 |
+
This is done using through the ["import mlperf results"](https://github.com/mlcommons/ck/tree/master/cmx4mlops/repo/flex.task/import-mlperf-results)
|
| 34 |
+
automation action, which we plan to document in more detail soon.
|
| 35 |
+
|
| 36 |
+
# License and Copyright
|
| 37 |
+
|
| 38 |
+
This project is licensed under the [Apache License 2.0](LICENSE.md).
|
| 39 |
+
|
| 40 |
+
© 2025 FlexAI
|
| 41 |
+
|
| 42 |
+
Portions of the data were adapted from the following MLCommons repositories,
|
| 43 |
+
which are also licensed under the Apache 2.0 license:
|
| 44 |
+
|
| 45 |
+
* [mlcommons@inference_results_v5.0](https://github.com/mlcommons/inference_results_v5.0)
|
| 46 |
+
* [mlcommons@inference_results_v4.1](https://github.com/mlcommons/inference_results_v4.1)
|
| 47 |
+
* [mlcommons@inference_results_v4.0](https://github.com/mlcommons/inference_results_v4.0)
|
| 48 |
+
* [mlcommons@inference_results_v3.1](https://github.com/mlcommons/inference_results_v3.1)
|
| 49 |
+
|
| 50 |
+
# Authors and maintaners
|
| 51 |
+
|
| 52 |
+
[Daniel Altunay](https://www.linkedin.com/in/daltunay) and [Grigori Fursin](https://cKnowledge.org/gfursin) (FCS Labs)
|
data.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:845063b17e66072eb21e17c650f7745b49da8f12eb2e591827c823c041121588
|
| 3 |
+
size 44318
|
processor.py
ADDED
|
@@ -0,0 +1,624 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Data processing module for MLPerf benchmark data."""
|
| 2 |
+
|
| 3 |
+
import glob
|
| 4 |
+
import json
|
| 5 |
+
import logging
|
| 6 |
+
import os
|
| 7 |
+
import re
|
| 8 |
+
from collections import defaultdict
|
| 9 |
+
|
| 10 |
+
import polars as pl
|
| 11 |
+
from datasets import Dataset
|
| 12 |
+
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
FEATURES = {
|
| 16 |
+
"Performance": {
|
| 17 |
+
"metrics.result": "continuous",
|
| 18 |
+
"metrics.result_per_accelerator": "continuous",
|
| 19 |
+
"metrics.accuracy": "continuous",
|
| 20 |
+
},
|
| 21 |
+
"Model": {
|
| 22 |
+
"model.name": "categorical",
|
| 23 |
+
"model.mlperf_name": "categorical",
|
| 24 |
+
"model.architecture": "categorical",
|
| 25 |
+
"model.number_of_parameters": "continuous",
|
| 26 |
+
"model.weight_data_types": "categorical",
|
| 27 |
+
},
|
| 28 |
+
"Accelerator": {
|
| 29 |
+
"system.accelerator.vendor": "categorical",
|
| 30 |
+
"system.accelerator.name": "categorical",
|
| 31 |
+
"system.accelerator.count_per_node": "continuous",
|
| 32 |
+
"system.accelerator.total_count": "continuous",
|
| 33 |
+
"system.accelerator.memory_capacity": "continuous",
|
| 34 |
+
"system.accelerator.memory_config": "text",
|
| 35 |
+
"system.interconnect.accelerator": "categorical",
|
| 36 |
+
},
|
| 37 |
+
"CPU": {
|
| 38 |
+
"system.cpu.vendor": "categorical",
|
| 39 |
+
"system.cpu.model": "categorical",
|
| 40 |
+
"system.cpu.core_count": "continuous",
|
| 41 |
+
"system.cpu.count_per_node": "continuous",
|
| 42 |
+
"system.cpu.frequency": "continuous",
|
| 43 |
+
"system.cpu.caches": "text",
|
| 44 |
+
"system.cpu.vcpu_count": "continuous",
|
| 45 |
+
},
|
| 46 |
+
"System": {
|
| 47 |
+
"system.name": "text",
|
| 48 |
+
"system.type": "categorical",
|
| 49 |
+
"system.cooling": "categorical",
|
| 50 |
+
"system.number_of_nodes": "continuous",
|
| 51 |
+
"system.memory.capacity": "continuous",
|
| 52 |
+
"system.memory.configuration": "text",
|
| 53 |
+
"system.interconnect.accelerator_host": "categorical",
|
| 54 |
+
},
|
| 55 |
+
"Software": {
|
| 56 |
+
"software.framework": "categorical",
|
| 57 |
+
"software.version": "categorical",
|
| 58 |
+
"software.operating_system": "categorical",
|
| 59 |
+
},
|
| 60 |
+
"Submission": {
|
| 61 |
+
"submission.organization": "categorical",
|
| 62 |
+
"submission.division": "categorical",
|
| 63 |
+
"submission.scenario": "categorical",
|
| 64 |
+
"submission.availability": "boolean",
|
| 65 |
+
},
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
MISSING_VALUES = defaultdict(set)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def get_feature_type(feature_name: str) -> str:
|
| 72 |
+
"""Get the type of a feature from the FEATURES dictionary."""
|
| 73 |
+
for group in FEATURES.values():
|
| 74 |
+
if feature_name in group:
|
| 75 |
+
return group[feature_name]
|
| 76 |
+
return "categorical"
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def find_result_files(base_path: str = "semi-raw-mlperf-data") -> list[str]:
|
| 80 |
+
"""Find all cmx-result-summary.json files."""
|
| 81 |
+
return glob.glob(
|
| 82 |
+
os.path.join(base_path, "**/cmx-result-summary.json"), recursive=True
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def load_raw_data(base_path: str = "semi-raw-mlperf-data") -> pl.DataFrame:
|
| 87 |
+
"""Load and merge data from MLPerf result files."""
|
| 88 |
+
result_files = find_result_files(base_path)
|
| 89 |
+
logger.info(f"Found {len(result_files)} result files")
|
| 90 |
+
all_records = []
|
| 91 |
+
|
| 92 |
+
for file_path in result_files:
|
| 93 |
+
with open(file_path, "r") as f:
|
| 94 |
+
all_records.extend(json.loads(f.read()))
|
| 95 |
+
|
| 96 |
+
df = pl.DataFrame(all_records, infer_schema_length=None)
|
| 97 |
+
logger.info(f"Loaded {len(df)} raw benchmark records")
|
| 98 |
+
|
| 99 |
+
rename_map = {
|
| 100 |
+
"Accuracy": "metrics.accuracy",
|
| 101 |
+
"Availability": "submission.availability",
|
| 102 |
+
"Organization": "submission.organization",
|
| 103 |
+
"Division": "submission.division",
|
| 104 |
+
"Scenario": "submission.scenario",
|
| 105 |
+
"Result": "metrics.result",
|
| 106 |
+
"Units": "metrics.units",
|
| 107 |
+
"MlperfModel": "model.mlperf_name",
|
| 108 |
+
"Model": "model.name",
|
| 109 |
+
"weight_data_types": "model.weight_data_types",
|
| 110 |
+
"framework": "software.framework",
|
| 111 |
+
"operating_system": "software.operating_system",
|
| 112 |
+
"SystemName": "system.name",
|
| 113 |
+
"system.system_name": "system.name",
|
| 114 |
+
"SystemType": "system.type",
|
| 115 |
+
"system.system_type": "system.type",
|
| 116 |
+
"accelerator_model_name": "system.accelerator.name",
|
| 117 |
+
"system.accelerator_model_name": "system.accelerator.name",
|
| 118 |
+
"number_of_nodes": "system.number_of_nodes",
|
| 119 |
+
"accelerators_per_node": "system.accelerator.count_per_node",
|
| 120 |
+
"system.accelerators_per_node": "system.accelerator.count_per_node",
|
| 121 |
+
"host_processor_core_count": "system.cpu.core_count",
|
| 122 |
+
"system.host_processor_core_count": "system.cpu.core_count",
|
| 123 |
+
"host_processor_model_name": "system.cpu.model",
|
| 124 |
+
"system.host_processor_model_name": "system.cpu.model",
|
| 125 |
+
"host_processors_per_node": "system.cpu.count_per_node",
|
| 126 |
+
"system.host_processors_per_node": "system.cpu.count_per_node",
|
| 127 |
+
"cooling": "system.cooling",
|
| 128 |
+
"system.cooling": "system.cooling",
|
| 129 |
+
"system.accelerator_host_interconnect": "system.interconnect.accelerator_host",
|
| 130 |
+
"system.accelerator_interconnect": "system.interconnect.accelerator",
|
| 131 |
+
"system.accelerator_memory_capacity": "system.accelerator.memory_capacity",
|
| 132 |
+
"system.accelerator_memory_configuration": "system.accelerator.memory_config",
|
| 133 |
+
"system.host_memory_capacity": "system.memory.capacity",
|
| 134 |
+
"system.host_memory_configuration": "system.memory.configuration",
|
| 135 |
+
"system.host_processor_frequency": "system.cpu.frequency",
|
| 136 |
+
"system.host_processor_caches": "system.cpu.caches",
|
| 137 |
+
"system.host_processor_vcpu_count": "system.cpu.vcpu_count",
|
| 138 |
+
}
|
| 139 |
+
|
| 140 |
+
for old_name, new_name in rename_map.items():
|
| 141 |
+
if old_name in df.columns:
|
| 142 |
+
if new_name in df.columns:
|
| 143 |
+
df = df.drop(new_name)
|
| 144 |
+
df = df.rename({old_name: new_name})
|
| 145 |
+
|
| 146 |
+
columns_to_select = list(set(rename_map.values()))
|
| 147 |
+
return df.select([col for col in columns_to_select if col in df.columns])
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def is_within_tolerance(value1: float, value2: float, tolerance: float = 0.1) -> bool:
|
| 151 |
+
"""Check if two values are within a specified tolerance."""
|
| 152 |
+
if value1 is None or value2 is None:
|
| 153 |
+
return value1 == value2
|
| 154 |
+
|
| 155 |
+
if value1 == 0 or value2 == 0:
|
| 156 |
+
return value1 == value2
|
| 157 |
+
|
| 158 |
+
percentage_diff = abs(value1 - value2) / max(abs(value1), abs(value2))
|
| 159 |
+
return percentage_diff <= tolerance
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def find_similar_configurations(
|
| 163 |
+
df: pl.DataFrame, query_config: dict, continuous_tolerance: float = 0.1
|
| 164 |
+
) -> pl.DataFrame:
|
| 165 |
+
"""Find configurations similar to the query_config."""
|
| 166 |
+
mask = pl.lit(True)
|
| 167 |
+
|
| 168 |
+
for feature, value in query_config.items():
|
| 169 |
+
if value is None:
|
| 170 |
+
continue
|
| 171 |
+
|
| 172 |
+
if get_feature_type(feature) == "continuous":
|
| 173 |
+
lower_bound = value * (1 - continuous_tolerance)
|
| 174 |
+
upper_bound = value * (1 + continuous_tolerance)
|
| 175 |
+
feature_mask = (pl.col(feature) >= lower_bound) & (
|
| 176 |
+
pl.col(feature) <= upper_bound
|
| 177 |
+
)
|
| 178 |
+
else:
|
| 179 |
+
feature_mask = pl.col(feature) == value
|
| 180 |
+
|
| 181 |
+
mask = mask & feature_mask
|
| 182 |
+
|
| 183 |
+
return df.filter(mask)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def convert_memory_to_gb(value: str) -> float | None:
|
| 187 |
+
"""Convert memory string to GB."""
|
| 188 |
+
if value is None:
|
| 189 |
+
return None
|
| 190 |
+
|
| 191 |
+
if "+" in value:
|
| 192 |
+
left, right = value.split("+", 1)
|
| 193 |
+
return (convert_memory_to_gb(left) or 0.0) + (
|
| 194 |
+
convert_memory_to_gb(right) or 0.0
|
| 195 |
+
) or None
|
| 196 |
+
|
| 197 |
+
value = value.replace(" ", "").upper()
|
| 198 |
+
numeric = ""
|
| 199 |
+
for char in value:
|
| 200 |
+
if char.isdigit() or char == ".":
|
| 201 |
+
numeric += char
|
| 202 |
+
else:
|
| 203 |
+
break
|
| 204 |
+
|
| 205 |
+
if not numeric:
|
| 206 |
+
return None
|
| 207 |
+
|
| 208 |
+
number = float(numeric)
|
| 209 |
+
if "TB" in value or "TIB" in value:
|
| 210 |
+
return number * 1024
|
| 211 |
+
elif "GB" in value or "GIB" in value:
|
| 212 |
+
return number
|
| 213 |
+
else:
|
| 214 |
+
return None
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def convert_frequency_to_ghz(value: str) -> float | None:
|
| 218 |
+
"""Convert frequency string to GHz."""
|
| 219 |
+
if not value or value == "undefined":
|
| 220 |
+
MISSING_VALUES["frequency_values"].add(str(value))
|
| 221 |
+
return None
|
| 222 |
+
|
| 223 |
+
value = value.strip().upper()
|
| 224 |
+
if value.isdigit():
|
| 225 |
+
return float(value) / 1000
|
| 226 |
+
|
| 227 |
+
matches = re.findall(r"([\d.]+)\s*(?:GHZ|MHZ)?", value, re.IGNORECASE)
|
| 228 |
+
if not matches:
|
| 229 |
+
MISSING_VALUES["frequency_values"].add(str(value))
|
| 230 |
+
return None
|
| 231 |
+
|
| 232 |
+
frequencies = [float(match) for match in matches]
|
| 233 |
+
max_freq = max(frequencies)
|
| 234 |
+
if "MHZ" in value.upper():
|
| 235 |
+
max_freq /= 1000
|
| 236 |
+
|
| 237 |
+
return max_freq
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def extract_accelerator_vendor(name: str) -> str | None:
|
| 241 |
+
"""Extract vendor from accelerator name."""
|
| 242 |
+
if name is None:
|
| 243 |
+
MISSING_VALUES["accelerator_names"].add(None)
|
| 244 |
+
return None
|
| 245 |
+
|
| 246 |
+
name_upper = name.upper()
|
| 247 |
+
known_vendors = {
|
| 248 |
+
"NVIDIA": ["NVIDIA", "TESLA", "A100", "H100", "T4"],
|
| 249 |
+
"AMD": ["AMD"],
|
| 250 |
+
"Intel": ["INTEL", "HABANA", "GAUDI"],
|
| 251 |
+
"Google": ["TPU", "TRILLIUM", "LPU", "VPU"],
|
| 252 |
+
"Qualcomm": ["QUALCOMM", "ADRENO", "HEXAGON", "CLOUD AI 100", "SNAPDRAGON"],
|
| 253 |
+
"UntetherAI": ["UNTETHERAIR", "SPEEDAI"],
|
| 254 |
+
"Huawei": ["DAVINCI"],
|
| 255 |
+
"Moffett": ["MOFFETT"],
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
for vendor, keywords in known_vendors.items():
|
| 259 |
+
if any(keyword in name_upper for keyword in keywords):
|
| 260 |
+
return vendor
|
| 261 |
+
|
| 262 |
+
MISSING_VALUES["accelerator_vendors"].add(name)
|
| 263 |
+
return None
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def extract_cpu_vendor(name: str) -> str | None:
|
| 267 |
+
"""Extract vendor from CPU model name."""
|
| 268 |
+
if name is None:
|
| 269 |
+
MISSING_VALUES["cpu_names"].add(None)
|
| 270 |
+
return None
|
| 271 |
+
|
| 272 |
+
name_upper = name.upper()
|
| 273 |
+
known_vendors = {
|
| 274 |
+
"AMD": ["AMD", "EPYC"],
|
| 275 |
+
"Intel": ["INTEL", "XEON"],
|
| 276 |
+
"NVIDIA": ["NVIDIA", "GRACE"],
|
| 277 |
+
"ARM": ["ARM", "CORTEX", "NEOVERSE", "ARMV8"],
|
| 278 |
+
"AWS": ["AWS", "GRAVITON"],
|
| 279 |
+
"Apple": ["APPLE", "M1", "M2", "M3"],
|
| 280 |
+
"Qualcomm": ["QUALCOMM", "SNAPDRAGON"],
|
| 281 |
+
}
|
| 282 |
+
|
| 283 |
+
for vendor, keywords in known_vendors.items():
|
| 284 |
+
if any(keyword in name_upper for keyword in keywords):
|
| 285 |
+
return vendor
|
| 286 |
+
|
| 287 |
+
MISSING_VALUES["cpu_vendors"].add(name)
|
| 288 |
+
return None
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
def extract_framework_info(framework_str: str) -> list[tuple[str, str]]:
|
| 292 |
+
"""Extract framework name-version pairs."""
|
| 293 |
+
if not framework_str:
|
| 294 |
+
return []
|
| 295 |
+
|
| 296 |
+
results = []
|
| 297 |
+
for item in framework_str.split(","):
|
| 298 |
+
item = item.strip()
|
| 299 |
+
name_match = re.search(r"(\w+)\s+", item)
|
| 300 |
+
version_match = re.search(r"\s+([\d\.]+)", item)
|
| 301 |
+
|
| 302 |
+
if name_match and version_match:
|
| 303 |
+
name = name_match.group(1).lower()
|
| 304 |
+
version = version_match.group(1)
|
| 305 |
+
results.append((name, version.strip(".")))
|
| 306 |
+
|
| 307 |
+
return results
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
def clean_string_value(value: str) -> str | None:
|
| 311 |
+
"""Clean empty and N/A string values."""
|
| 312 |
+
if value.upper() in ["", "N/A", "DUMMY"]:
|
| 313 |
+
return None
|
| 314 |
+
return value
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
def normalize_interconnect_type(value: str) -> str | None:
|
| 318 |
+
"""Normalize interconnect type strings."""
|
| 319 |
+
if value is None or value.upper() in ["TBD", "TODO", "TODD"]:
|
| 320 |
+
MISSING_VALUES["interconnect_types"].add(str(value))
|
| 321 |
+
return None
|
| 322 |
+
|
| 323 |
+
value_upper = value.upper()
|
| 324 |
+
if "NVLINK" in value_upper:
|
| 325 |
+
if any(gen in value_upper for gen in ["5TH", "5TH-GEN"]):
|
| 326 |
+
return "NVLink-5"
|
| 327 |
+
elif any(gen in value_upper for gen in ["4TH", "4TH-GEN"]):
|
| 328 |
+
return "NVLink-4"
|
| 329 |
+
else:
|
| 330 |
+
return "NVLink"
|
| 331 |
+
|
| 332 |
+
if "PCIE" in value_upper:
|
| 333 |
+
if "GEN5" in value_upper.replace(" ", ""):
|
| 334 |
+
return "PCIe-5"
|
| 335 |
+
else:
|
| 336 |
+
return "PCIe"
|
| 337 |
+
|
| 338 |
+
if "INFINIBAND" in value_upper:
|
| 339 |
+
return "InfiniBand"
|
| 340 |
+
if "XGMI" in value_upper:
|
| 341 |
+
return "XGMI"
|
| 342 |
+
|
| 343 |
+
return value
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
def clean_string_values(
|
| 347 |
+
df: pl.DataFrame, string_columns: list[str] | None = None
|
| 348 |
+
) -> pl.DataFrame:
|
| 349 |
+
"""Clean string values in specified columns."""
|
| 350 |
+
if string_columns is None:
|
| 351 |
+
string_columns = [col for col in df.columns if df[col].dtype == pl.String]
|
| 352 |
+
return df.with_columns(
|
| 353 |
+
[
|
| 354 |
+
pl.col(col).map_elements(clean_string_value, return_dtype=str).alias(col)
|
| 355 |
+
for col in string_columns
|
| 356 |
+
]
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
def filter_submissions(df: pl.DataFrame) -> pl.DataFrame:
|
| 361 |
+
"""Keep only valid token/s submissions."""
|
| 362 |
+
return df.filter(
|
| 363 |
+
(pl.col("metrics.units") == "Tokens/s")
|
| 364 |
+
& (pl.col("metrics.result").is_not_null())
|
| 365 |
+
& (pl.col("metrics.result") != 0)
|
| 366 |
+
& (pl.col("metrics.result").is_finite())
|
| 367 |
+
& (pl.col("system.accelerator.total_count") > 0)
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
def normalize_memory_values(df: pl.DataFrame) -> pl.DataFrame:
|
| 372 |
+
"""Convert memory values to GB."""
|
| 373 |
+
return df.with_columns(
|
| 374 |
+
[
|
| 375 |
+
pl.col("system.accelerator.memory_capacity")
|
| 376 |
+
.map_elements(convert_memory_to_gb, return_dtype=float)
|
| 377 |
+
.alias("system.accelerator.memory_capacity"),
|
| 378 |
+
pl.col("system.memory.capacity")
|
| 379 |
+
.map_elements(convert_memory_to_gb, return_dtype=float)
|
| 380 |
+
.alias("system.memory.capacity"),
|
| 381 |
+
]
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
def add_vendor_columns(df: pl.DataFrame) -> pl.DataFrame:
|
| 386 |
+
"""Add vendor columns based on model names."""
|
| 387 |
+
return df.with_columns(
|
| 388 |
+
[
|
| 389 |
+
pl.col("system.accelerator.name")
|
| 390 |
+
.map_elements(extract_accelerator_vendor, return_dtype=str)
|
| 391 |
+
.alias("system.accelerator.vendor"),
|
| 392 |
+
pl.col("system.cpu.model")
|
| 393 |
+
.map_elements(extract_cpu_vendor, return_dtype=str)
|
| 394 |
+
.alias("system.cpu.vendor"),
|
| 395 |
+
]
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
def normalize_interconnect_values(df: pl.DataFrame) -> pl.DataFrame:
|
| 400 |
+
"""Normalize interconnect values."""
|
| 401 |
+
return df.with_columns(
|
| 402 |
+
[
|
| 403 |
+
pl.col("system.interconnect.accelerator")
|
| 404 |
+
.map_elements(normalize_interconnect_type, return_dtype=str)
|
| 405 |
+
.alias("system.interconnect.accelerator"),
|
| 406 |
+
pl.col("system.interconnect.accelerator_host")
|
| 407 |
+
.map_elements(normalize_interconnect_type, return_dtype=str)
|
| 408 |
+
.alias("system.interconnect.accelerator_host"),
|
| 409 |
+
]
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
def extract_framework_columns(df: pl.DataFrame) -> pl.DataFrame:
|
| 414 |
+
"""Extract framework versions into separate columns."""
|
| 415 |
+
df_with_id = df.with_columns(pl.Series(name="row_id", values=range(len(df))))
|
| 416 |
+
framework_info = []
|
| 417 |
+
|
| 418 |
+
for idx, framework_str in enumerate(df["software.framework"]):
|
| 419 |
+
if framework_str is not None:
|
| 420 |
+
for name, version in extract_framework_info(framework_str):
|
| 421 |
+
framework_info.append({"row_id": idx, "name": name, "version": version})
|
| 422 |
+
|
| 423 |
+
if not framework_info:
|
| 424 |
+
return df
|
| 425 |
+
|
| 426 |
+
df_frameworks = pl.DataFrame(framework_info)
|
| 427 |
+
df_pivoted = df_frameworks.pivot(
|
| 428 |
+
values="version",
|
| 429 |
+
index="row_id",
|
| 430 |
+
on="name",
|
| 431 |
+
aggregate_function="first",
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
rename_dict = {
|
| 435 |
+
col: f"software.framework.{col}"
|
| 436 |
+
for col in df_pivoted.columns
|
| 437 |
+
if col != "row_id"
|
| 438 |
+
}
|
| 439 |
+
df_pivoted = df_pivoted.rename(rename_dict)
|
| 440 |
+
|
| 441 |
+
return df_with_id.join(df_pivoted, on="row_id", how="left").drop("row_id")
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
def cast_columns(df: pl.DataFrame) -> pl.DataFrame:
|
| 445 |
+
"""Cast columns to proper types."""
|
| 446 |
+
column_types = {
|
| 447 |
+
"system.cpu.core_count": pl.Int64,
|
| 448 |
+
"system.accelerator.count_per_node": pl.Int64,
|
| 449 |
+
"system.cpu.count_per_node": pl.Int64,
|
| 450 |
+
"system.number_of_nodes": pl.Int64,
|
| 451 |
+
}
|
| 452 |
+
|
| 453 |
+
df = df.with_columns(
|
| 454 |
+
pl.col("system.cpu.frequency")
|
| 455 |
+
.map_elements(convert_frequency_to_ghz, return_dtype=float)
|
| 456 |
+
.alias("system.cpu.frequency")
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
return df.cast(column_types)
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
def add_model_parameters(df: pl.DataFrame) -> pl.DataFrame:
|
| 463 |
+
"""Add number of parameters column based on model name."""
|
| 464 |
+
model_parameters = {
|
| 465 |
+
"llama2-70b": 70,
|
| 466 |
+
"llama-2-70b": 70,
|
| 467 |
+
"llama3_1-405b": 405,
|
| 468 |
+
"llama3_1-70b": 70,
|
| 469 |
+
"gptj": 6,
|
| 470 |
+
"mixtral-8x7b": 47,
|
| 471 |
+
"DeepSeek-R1-Distill-Llama-8B": 8,
|
| 472 |
+
"Llama-3.3-70B": 70,
|
| 473 |
+
"deepseek-v3": 671,
|
| 474 |
+
}
|
| 475 |
+
|
| 476 |
+
def extract_parameters(model_name: str) -> float | None:
|
| 477 |
+
if not model_name:
|
| 478 |
+
return None
|
| 479 |
+
for base_name, params in model_parameters.items():
|
| 480 |
+
if model_name.lower().startswith(base_name.lower()):
|
| 481 |
+
return float(params)
|
| 482 |
+
return None
|
| 483 |
+
|
| 484 |
+
return df.with_columns(
|
| 485 |
+
pl.col("model.name")
|
| 486 |
+
.map_elements(extract_parameters, return_dtype=float)
|
| 487 |
+
.alias("model.number_of_parameters")
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
def add_model_architecture(df: pl.DataFrame) -> pl.DataFrame:
|
| 492 |
+
"""Add model architecture classification."""
|
| 493 |
+
model_architectures = {
|
| 494 |
+
"llama": "LLM",
|
| 495 |
+
"gpt": "LLM",
|
| 496 |
+
"mixtral": "LLM",
|
| 497 |
+
"deepseek": "LLM",
|
| 498 |
+
"falcon": "LLM",
|
| 499 |
+
"mistral": "LLM",
|
| 500 |
+
}
|
| 501 |
+
|
| 502 |
+
def classify_architecture(model_name: str) -> str | None:
|
| 503 |
+
if not model_name:
|
| 504 |
+
return None
|
| 505 |
+
model_name_lower = model_name.lower()
|
| 506 |
+
for pattern, arch in model_architectures.items():
|
| 507 |
+
if pattern in model_name_lower:
|
| 508 |
+
return arch
|
| 509 |
+
return "Other"
|
| 510 |
+
|
| 511 |
+
return df.with_columns(
|
| 512 |
+
pl.col("model.name")
|
| 513 |
+
.map_elements(classify_architecture, return_dtype=str)
|
| 514 |
+
.alias("model.architecture")
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
def add_total_accelerator_count(df: pl.DataFrame) -> pl.DataFrame:
|
| 519 |
+
"""Compute total number of accelerators."""
|
| 520 |
+
return df.with_columns(
|
| 521 |
+
(
|
| 522 |
+
pl.col("system.number_of_nodes")
|
| 523 |
+
* pl.col("system.accelerator.count_per_node")
|
| 524 |
+
).alias("system.accelerator.total_count")
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
def add_normalized_performance(df: pl.DataFrame) -> pl.DataFrame:
|
| 529 |
+
"""Add performance per accelerator metric."""
|
| 530 |
+
return df.with_columns(
|
| 531 |
+
(pl.col("metrics.result") / pl.col("system.accelerator.total_count")).alias(
|
| 532 |
+
"metrics.result_per_accelerator"
|
| 533 |
+
)
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
def sort_columns_alphabetically(df: pl.DataFrame) -> pl.DataFrame:
|
| 538 |
+
"""Sort columns alphabetically."""
|
| 539 |
+
return df.select(sorted(df.columns))
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
def log_missing_values() -> None:
|
| 543 |
+
"""Log all collected missing values once."""
|
| 544 |
+
for category, values in MISSING_VALUES.items():
|
| 545 |
+
if values:
|
| 546 |
+
logger.warning(
|
| 547 |
+
f"Could not determine {len(values)} unique {category}: {sorted(str(v) for v in values)}"
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
def upload_to_huggingface_hub(
|
| 552 |
+
df: pl.DataFrame, dataset_name: str = "OpenMLPerf", private: bool = True
|
| 553 |
+
) -> None:
|
| 554 |
+
"""Upload the processed dataset to HuggingFace Hub."""
|
| 555 |
+
logger.info(f"Preparing dataset '{dataset_name}' for upload to HuggingFace Hub")
|
| 556 |
+
data_dict = {col: df[col].to_list() for col in df.columns}
|
| 557 |
+
dataset = Dataset.from_dict(data_dict)
|
| 558 |
+
|
| 559 |
+
try:
|
| 560 |
+
dataset.push_to_hub(dataset_name, private=private)
|
| 561 |
+
logger.info(
|
| 562 |
+
f"Successfully uploaded dataset to HuggingFace Hub as '{dataset_name}'"
|
| 563 |
+
)
|
| 564 |
+
except Exception as e:
|
| 565 |
+
logger.error(f"Failed to upload dataset to HuggingFace Hub: {e}")
|
| 566 |
+
|
| 567 |
+
|
| 568 |
+
def process_data(base_path: str = "semi-raw-mlperf-data") -> pl.DataFrame:
|
| 569 |
+
"""Main data processing pipeline."""
|
| 570 |
+
logger.info("Starting data processing pipeline")
|
| 571 |
+
|
| 572 |
+
MISSING_VALUES.clear()
|
| 573 |
+
|
| 574 |
+
df = (
|
| 575 |
+
load_raw_data(base_path)
|
| 576 |
+
.pipe(clean_string_values)
|
| 577 |
+
.pipe(normalize_memory_values)
|
| 578 |
+
.pipe(cast_columns)
|
| 579 |
+
.pipe(add_vendor_columns)
|
| 580 |
+
.pipe(normalize_interconnect_values)
|
| 581 |
+
.pipe(extract_framework_columns)
|
| 582 |
+
.pipe(add_model_parameters)
|
| 583 |
+
.pipe(add_model_architecture)
|
| 584 |
+
.pipe(add_total_accelerator_count)
|
| 585 |
+
.pipe(add_normalized_performance)
|
| 586 |
+
.pipe(sort_columns_alphabetically)
|
| 587 |
+
.pipe(filter_submissions)
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
log_missing_values()
|
| 591 |
+
|
| 592 |
+
logger.info(f"Processed {len(df)} records")
|
| 593 |
+
return df
|
| 594 |
+
|
| 595 |
+
|
| 596 |
+
def export_data(df: pl.DataFrame) -> None:
|
| 597 |
+
"""Export processed data to JSON file."""
|
| 598 |
+
with open("data.json", "w") as f:
|
| 599 |
+
json.dump(df.to_dicts(), f, indent=2)
|
| 600 |
+
logger.info("Exported data to data.json")
|
| 601 |
+
df.write_parquet("data.parquet")
|
| 602 |
+
logger.info("Exported data to data.parquet")
|
| 603 |
+
|
| 604 |
+
|
| 605 |
+
def main(
|
| 606 |
+
base_path: str = "semi-raw-mlperf-data",
|
| 607 |
+
upload_to_hub: bool = False,
|
| 608 |
+
dataset_name: str = "OpenMLPerf",
|
| 609 |
+
push_to_hub: bool = True,
|
| 610 |
+
private: bool = True,
|
| 611 |
+
):
|
| 612 |
+
"""Run the complete data processing pipeline."""
|
| 613 |
+
logging.basicConfig(level=logging.INFO)
|
| 614 |
+
df = process_data(base_path)
|
| 615 |
+
export_data(df)
|
| 616 |
+
|
| 617 |
+
if upload_to_hub:
|
| 618 |
+
upload_to_huggingface_hub(df, dataset_name, private)
|
| 619 |
+
|
| 620 |
+
return df
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
if __name__ == "__main__":
|
| 624 |
+
main(upload_to_hub=False, private=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datasets
|
| 2 |
+
polars
|
| 3 |
+
cmind
|
semi-raw-mlperf-data.tar.bz2
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d5538ec2e98ba482949a4daf722937a1d7790dab57bb74fbe014c9f651b9e5d8
|
| 3 |
+
size 1745626
|