Update README.md
Browse files
README.md
CHANGED
|
@@ -30,3 +30,111 @@ configs:
|
|
| 30 |
- split: ja
|
| 31 |
path: data/ja-*
|
| 32 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
- split: ja
|
| 31 |
path: data/ja-*
|
| 32 |
---
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
|
| 37 |
+
from datasets import load_dataset, Dataset
|
| 38 |
+
from itertools import islice
|
| 39 |
+
from operator import itemgetter
|
| 40 |
+
import re
|
| 41 |
+
|
| 42 |
+
def extract_dump_date(dump_str):
|
| 43 |
+
"""Extract date from dump string like 'CC-MAIN-2024-10'"""
|
| 44 |
+
if not dump_str:
|
| 45 |
+
return '0' # For items without dump field
|
| 46 |
+
match = re.search(r'(\d{4}-\d{2})', dump_str)
|
| 47 |
+
return match.group(1) if match else '0'
|
| 48 |
+
|
| 49 |
+
def load_and_verify_datasets():
|
| 50 |
+
# Load streaming datasets
|
| 51 |
+
datasets = {
|
| 52 |
+
"ko": load_dataset("HuggingFaceFW/fineweb-2", "kor_Hang", split="test", streaming=True),
|
| 53 |
+
"zh": load_dataset("HuggingFaceFW/fineweb-2", "cmn_Hani", split="test", streaming=True),
|
| 54 |
+
"en": load_dataset("HuggingFaceFW/fineweb-edu", "CC-MAIN-2024-10", split="train", streaming=True),
|
| 55 |
+
"ja": load_dataset("HuggingFaceFW/fineweb-2", "jpn_Jpan", split="test", streaming=True),
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
processed_datasets = {}
|
| 59 |
+
|
| 60 |
+
for lang, ds in datasets.items():
|
| 61 |
+
print(f"\nProcessing {lang} dataset...")
|
| 62 |
+
|
| 63 |
+
# Collect items with their dumps
|
| 64 |
+
items_with_dumps = []
|
| 65 |
+
for item in islice(ds, 100000): # Collect first 100K items
|
| 66 |
+
dump = item.get('dump', '')
|
| 67 |
+
items_with_dumps.append((item, dump))
|
| 68 |
+
|
| 69 |
+
# Sort by dump date in descending order (most recent first)
|
| 70 |
+
items_with_dumps.sort(key=lambda x: extract_dump_date(x[1]), reverse=True)
|
| 71 |
+
|
| 72 |
+
# Print dump distribution of sorted data
|
| 73 |
+
print("\nDump distribution (most recent first):")
|
| 74 |
+
dump_counts = {}
|
| 75 |
+
for _, dump in items_with_dumps[:1000]: # Check first 1000 items
|
| 76 |
+
dump_counts[dump] = dump_counts.get(dump, 0) + 1
|
| 77 |
+
for dump, count in sorted(dump_counts.items(), key=lambda x: extract_dump_date(x[0]), reverse=True):
|
| 78 |
+
print(f" {dump}: {count} items")
|
| 79 |
+
|
| 80 |
+
texts_set = set()
|
| 81 |
+
filtered_texts = []
|
| 82 |
+
|
| 83 |
+
# Process sorted items
|
| 84 |
+
for item, dump in items_with_dumps:
|
| 85 |
+
text = item.get('text', item.get('content', '')).strip()
|
| 86 |
+
|
| 87 |
+
# Basic quality filters
|
| 88 |
+
if text and len(text) > 50: # Only keep non-empty texts with reasonable length
|
| 89 |
+
texts_set.add(text)
|
| 90 |
+
if len(texts_set) >= 15000:
|
| 91 |
+
break
|
| 92 |
+
|
| 93 |
+
# Convert set to list and create dataset
|
| 94 |
+
filtered_texts = list(texts_set)
|
| 95 |
+
processed_datasets[lang] = Dataset.from_dict({"text": filtered_texts})
|
| 96 |
+
print(f"\n{lang} dataset final size: {len(processed_datasets[lang])} examples")
|
| 97 |
+
|
| 98 |
+
# Print sample texts with their dumps
|
| 99 |
+
print("\nSample texts from most recent dump:")
|
| 100 |
+
samples_shown = 0
|
| 101 |
+
for item, dump in items_with_dumps:
|
| 102 |
+
if samples_shown >= 2:
|
| 103 |
+
break
|
| 104 |
+
text = item.get('text', item.get('content', '')).strip()
|
| 105 |
+
if text in texts_set:
|
| 106 |
+
print(f"Dump: {dump}")
|
| 107 |
+
print(f"Length: {len(text)}")
|
| 108 |
+
print(f"Text preview: {text[:100]}...")
|
| 109 |
+
print("---")
|
| 110 |
+
samples_shown += 1
|
| 111 |
+
|
| 112 |
+
return processed_datasets
|
| 113 |
+
|
| 114 |
+
def main():
|
| 115 |
+
try:
|
| 116 |
+
datasets = load_and_verify_datasets()
|
| 117 |
+
print("\nDatasets processed with the following sizes:")
|
| 118 |
+
for lang, ds in datasets.items():
|
| 119 |
+
print(f"{lang}: {len(ds)} examples")
|
| 120 |
+
|
| 121 |
+
# Create DatasetDict
|
| 122 |
+
print("\nCreating DatasetDict...")
|
| 123 |
+
dataset_dict = create_dataset_dict(datasets)
|
| 124 |
+
|
| 125 |
+
# Upload to Hugging Face
|
| 126 |
+
# Replace with your values
|
| 127 |
+
REPO_NAME = "yourname/reponame"
|
| 128 |
+
HF_TOKEN = "your_api_key" # Don't share this token!
|
| 129 |
+
|
| 130 |
+
print("\nUploading to Hugging Face Hub...")
|
| 131 |
+
upload_to_huggingface(dataset_dict, REPO_NAME, HF_TOKEN)
|
| 132 |
+
print(f"\nDataset uploaded successfully to {REPO_NAME}")
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
except Exception as e:
|
| 136 |
+
print(f"Error processing datasets: {str(e)}")
|
| 137 |
+
|
| 138 |
+
if __name__ == "__main__":
|
| 139 |
+
main()
|
| 140 |
+
```
|