mwmathis commited on
Commit
dffe983
·
verified ·
1 Parent(s): 5103231

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ # For reference on dataset card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1
3
+ # Doc / guide: https://huggingface.co/docs/hub/datasets-cards
4
+ {}
5
+ ---
6
+
7
+ # Dataset Card for DLC Speed Benchmarking ZIP
8
+
9
+ This supports the dlc-live benchmarking [zip](https://github.com/DeepLabCut/DeepLabCut-live/blob/427c12609307ef685e4193c91026567308820cbe/dlclive/benchmark.py#L40) formally hosted on our Harvard Rowland server.
10
+ All information can be found in our publication:
11
+
12
+ Real-time, low-latency closed-loop feedback using markerless posture tracking
13
+ Gary A Kane, Gonçalo Lopes, Jonny L Saunders, Alexander Mathis, Mackenzie W Mathis
14
+ https://elifesciences.org/articles/61909
15
+
16
+
17
+
18
+ ### Direct Use
19
+
20
+ ```python
21
+ """
22
+ DeepLabCut Toolbox (deeplabcut.org)
23
+ © A. & M. Mathis Labs
24
+
25
+ Licensed under GNU Lesser General Public License v3.0
26
+ """
27
+
28
+ # Script for running the official benchmark from Kane et al, 2020.
29
+ # Please share your results at https://github.com/DeepLabCut/DLC-inferencespeed-benchmark
30
+
31
+ import os, pathlib
32
+ import glob
33
+
34
+ from dlclive import benchmark_videos, download_benchmarking_data
35
+
36
+ datafolder = os.path.join(
37
+ pathlib.Path(__file__).parent.absolute(), "Data-DLC-live-benchmark"
38
+ )
39
+
40
+ if not os.path.isdir(datafolder): # only download if data doesn't exist!
41
+ # Downloading data.... this takes a while (see terminal)
42
+ download_benchmarking_data(datafolder)
43
+
44
+ n_frames = 10000 # change to 10000 for testing on a GPU!
45
+ pixels = [2500, 10000, 40000, 160000, 320000, 640000]
46
+
47
+ dog_models = glob.glob(datafolder + "/dog/*[!avi]")
48
+ dog_video = glob.glob(datafolder + "/dog/*.avi")[0]
49
+ mouse_models = glob.glob(datafolder + "/mouse_lick/*[!avi]")
50
+ mouse_video = glob.glob(datafolder + "/mouse_lick/*.avi")[0]
51
+
52
+ this_dir = os.path.dirname(os.path.realpath(__file__))
53
+ # storing results in /benchmarking/results: (for your PR)
54
+ out_dir = os.path.normpath(this_dir + "/results")
55
+
56
+ if not os.path.isdir(out_dir):
57
+ os.mkdir(out_dir)
58
+
59
+ for m in dog_models:
60
+ benchmark_videos(m, dog_video, output=out_dir, n_frames=n_frames, pixels=pixels)
61
+
62
+ for m in mouse_models:
63
+ benchmark_videos(m, mouse_video, output=out_dir, n_frames=n_frames, pixels=pixels)
64
+ ```