--- # For reference on dataset card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/datasets-cards {} --- # Dataset Card for DLC Speed Benchmarking ZIP This supports the dlc-live benchmarking [zip](https://github.com/DeepLabCut/DeepLabCut-live/blob/427c12609307ef685e4193c91026567308820cbe/dlclive/benchmark.py#L40) formally hosted on our Harvard Rowland server. All information can be found in our publication: Real-time, low-latency closed-loop feedback using markerless posture tracking Gary A Kane, Gonçalo Lopes, Jonny L Saunders, Alexander Mathis, Mackenzie W Mathis https://elifesciences.org/articles/61909 ### Direct Use ```python """ DeepLabCut Toolbox (deeplabcut.org) © A. & M. Mathis Labs Licensed under GNU Lesser General Public License v3.0 """ # Script for running the official benchmark from Kane et al, 2020. # Please share your results at https://github.com/DeepLabCut/DLC-inferencespeed-benchmark import os, pathlib import glob from dlclive import benchmark_videos, download_benchmarking_data datafolder = os.path.join( pathlib.Path(__file__).parent.absolute(), "Data-DLC-live-benchmark" ) if not os.path.isdir(datafolder): # only download if data doesn't exist! # Downloading data.... this takes a while (see terminal) download_benchmarking_data(datafolder) n_frames = 10000 # change to 10000 for testing on a GPU! pixels = [2500, 10000, 40000, 160000, 320000, 640000] dog_models = glob.glob(datafolder + "/dog/*[!avi]") dog_video = glob.glob(datafolder + "/dog/*.avi")[0] mouse_models = glob.glob(datafolder + "/mouse_lick/*[!avi]") mouse_video = glob.glob(datafolder + "/mouse_lick/*.avi")[0] this_dir = os.path.dirname(os.path.realpath(__file__)) # storing results in /benchmarking/results: (for your PR) out_dir = os.path.normpath(this_dir + "/results") if not os.path.isdir(out_dir): os.mkdir(out_dir) for m in dog_models: benchmark_videos(m, dog_video, output=out_dir, n_frames=n_frames, pixels=pixels) for m in mouse_models: benchmark_videos(m, mouse_video, output=out_dir, n_frames=n_frames, pixels=pixels) ```