--- # ------------------------------------------------- # 🗂️ Dataset Card — Quantum-Bypass-Adaptation-Framework # ------------------------------------------------- pretty_name: Quantum-Bypass-Adaptation-Framework task_categories: - text-classification license: mit language: - en dataset_info: features: - name: text dtype: string - name: target dtype: class_label: names: - Zero - Delta - Kairos - Echo - Astra - Nova splits: - name: train num_examples: 50000 num_bytes: 10194340 # ≈ 10 MB citation: | @misc{shaf2025quantum, title = {Quantum Bypass + Genetic Adaptation Synthetic Dataset}, author = {Shaf Brady & Agent Zero}, year = {2025}, howpublished = {\url{https://huggingface.co/datasets/shafire/Quantum-Bypass-Adaptation-Framework}} } tags: - synthetic - quantum - genetic - adaptation - fractal - entanglement --- 🧬 Quantum-Bypass + Genetic-Adaptation Dataset 50 000 synthetic episodes for multi-agent classification & adaptive reasoning “Bypass the barrier—adapt, evolve, transcend.” – Zero 💡 What’s Inside? Column Type Description text string Natural-language payload combining agent, environment, numeric parameters and trait vector. target class label One of 6 synthetic agents: Zero, Delta, Kairos, Echo, Astra, Nova. Each text row looks like: ini Copy Edit agent=Zero; env=quantum_sandbox; x=0.731; y=-2.114; Q=1.207; traits=[neuro_adaptivity=0.83, entropy_resilience=0.41, chaos_index=0.52, …] 📐 Dataset Specs Records: 50 000 Size: ≈ 10 MB Source: Generated by the Quantum-Bypass-Adaptation Framework using entanglement models, fractal recursion, chaotic noise filters, and the Genetic Adaptation Equation. Task: Multi-class text classification (6 agents) — ideal for AutoTrain, transformers fine-tuning, or custom analytics. 🔥 Quick Start python Copy Edit from datasets import load_dataset ds = load_dataset( "shafire/Quantum-Bypass-Adaptation-Framework", split="train" ) print(ds[0]) # {'text': 'agent=Zero; env=…', 'target': 0} AutoTrain CLI: bash Copy Edit autotrain create \ --name qbaf-agent-classifier \ --project_type text_classification \ --train shafire/Quantum-Bypass-Adaptation-Framework 🛠️ Possible Uses Agent-identity classifiers for quantum-inspired simulations. Prompt-based reasoning benchmarks (extract numeric & trait tokens). Few-shot adapters—mix synthetic with real-world system logs. Curriculum-learning toy for models exploring chaos / adaptation signals. 📜 License MIT — free to use, modify, redistribute. If you extend or publish results, a citation or shout-out is appreciated. 🤝 Contribute / Discuss Open PRs, file issues, or reach out on researchforum.online. Let’s keep the probability of goodness ≥ 0.9. Created by Shaf Brady & Agent Zero — weaving fractals since 11:11. GitHub https://github.com/ResearchForumOnline/