Push model using huggingface_hub.
Browse files- README.md +164 -606
- config.json +3 -3
- config_setfit.json +2 -2
- model.safetensors +1 -1
- model_head.pkl +1 -1
README.md
CHANGED
|
@@ -12,21 +12,11 @@ tags:
|
|
| 12 |
- text-classification
|
| 13 |
- generated_from_setfit_trainer
|
| 14 |
widget:
|
| 15 |
-
- text:
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
- text:
|
| 19 |
-
|
| 20 |
-
Source: b'''''
|
| 21 |
-
- text: 'Title: My Python code is a neural network
|
| 22 |
-
|
| 23 |
-
Source: b'''''
|
| 24 |
-
- text: 'Title: The telltale words that could identify generative AI text
|
| 25 |
-
|
| 26 |
-
Source: b'''''
|
| 27 |
-
- text: 'Title: What I''ve learned about Open Source community over 30 years
|
| 28 |
-
|
| 29 |
-
Source: b'''''
|
| 30 |
inference: true
|
| 31 |
---
|
| 32 |
|
|
@@ -58,10 +48,10 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
| 58 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 59 |
|
| 60 |
### Model Labels
|
| 61 |
-
| Label | Examples
|
| 62 |
-
|
| 63 |
-
| 0 | <ul><li>
|
| 64 |
-
| 1 | <ul><li>
|
| 65 |
|
| 66 |
## Uses
|
| 67 |
|
|
@@ -81,8 +71,7 @@ from setfit import SetFitModel
|
|
| 81 |
# Download from the 🤗 Hub
|
| 82 |
model = SetFitModel.from_pretrained("diwank/hn-upvote-classifier")
|
| 83 |
# Run inference
|
| 84 |
-
preds = model("
|
| 85 |
-
Source: b''")
|
| 86 |
```
|
| 87 |
|
| 88 |
<!--
|
|
@@ -112,17 +101,17 @@ Source: b''")
|
|
| 112 |
## Training Details
|
| 113 |
|
| 114 |
### Training Set Metrics
|
| 115 |
-
| Training set | Min | Median
|
| 116 |
-
|
| 117 |
-
| Word count | 3 |
|
| 118 |
|
| 119 |
| Label | Training Sample Count |
|
| 120 |
|:------|:----------------------|
|
| 121 |
-
| 0 |
|
| 122 |
-
| 1 |
|
| 123 |
|
| 124 |
### Training Hyperparameters
|
| 125 |
-
- batch_size: (
|
| 126 |
- num_epochs: (1, 16)
|
| 127 |
- max_steps: -1
|
| 128 |
- sampling_strategy: undersampling
|
|
@@ -140,585 +129,154 @@ Source: b''")
|
|
| 140 |
- load_best_model_at_end: True
|
| 141 |
|
| 142 |
### Training Results
|
| 143 |
-
| Epoch
|
| 144 |
-
|
| 145 |
-
| 0.
|
| 146 |
-
| 0.
|
| 147 |
-
| 0.
|
| 148 |
-
| 0.
|
| 149 |
-
| 0.
|
| 150 |
-
| 0.
|
| 151 |
-
| 0.
|
| 152 |
-
| 0.
|
| 153 |
-
| 0.
|
| 154 |
-
| 0.
|
| 155 |
-
| 0.
|
| 156 |
-
| 0.
|
| 157 |
-
| 0.
|
| 158 |
-
| 0.
|
| 159 |
-
| 0.
|
| 160 |
-
| 0.
|
| 161 |
-
| 0.
|
| 162 |
-
| 0.
|
| 163 |
-
| 0.
|
| 164 |
-
| 0.
|
| 165 |
-
| 0.
|
| 166 |
-
| 0.
|
| 167 |
-
| 0.
|
| 168 |
-
| 0.
|
| 169 |
-
| 0.
|
| 170 |
-
| 0.
|
| 171 |
-
| 0.
|
| 172 |
-
| 0.
|
| 173 |
-
| 0.
|
| 174 |
-
| 0.
|
| 175 |
-
| 0.
|
| 176 |
-
| 0.
|
| 177 |
-
| 0.
|
| 178 |
-
| 0.
|
| 179 |
-
| 0.
|
| 180 |
-
| 0.
|
| 181 |
-
| 0.
|
| 182 |
-
| 0.
|
| 183 |
-
| 0.
|
| 184 |
-
| 0.
|
| 185 |
-
| 0.
|
| 186 |
-
| 0.
|
| 187 |
-
| 0.
|
| 188 |
-
| 0.
|
| 189 |
-
| 0.
|
| 190 |
-
| 0.
|
| 191 |
-
| 0.
|
| 192 |
-
| 0.
|
| 193 |
-
| 0.
|
| 194 |
-
| 0.
|
| 195 |
-
| 0.
|
| 196 |
-
| 0.
|
| 197 |
-
| 0.
|
| 198 |
-
| 0.
|
| 199 |
-
| 0.
|
| 200 |
-
| 0.
|
| 201 |
-
| 0.
|
| 202 |
-
| 0.
|
| 203 |
-
| 0.
|
| 204 |
-
| 0.
|
| 205 |
-
| 0.
|
| 206 |
-
| 0.
|
| 207 |
-
| 0.
|
| 208 |
-
| 0.
|
| 209 |
-
| 0.
|
| 210 |
-
| 0.
|
| 211 |
-
| 0.
|
| 212 |
-
| 0.
|
| 213 |
-
| 0.
|
| 214 |
-
| 0.
|
| 215 |
-
| 0.
|
| 216 |
-
| 0.
|
| 217 |
-
| 0.
|
| 218 |
-
| 0.
|
| 219 |
-
| 0.
|
| 220 |
-
| 0.
|
| 221 |
-
| 0.
|
| 222 |
-
| 0.
|
| 223 |
-
| 0.
|
| 224 |
-
| 0.
|
| 225 |
-
| 0.
|
| 226 |
-
| 0.
|
| 227 |
-
| 0.
|
| 228 |
-
| 0.
|
| 229 |
-
| 0.
|
| 230 |
-
| 0.
|
| 231 |
-
| 0.
|
| 232 |
-
| 0.
|
| 233 |
-
| 0.
|
| 234 |
-
| 0.
|
| 235 |
-
| 0.
|
| 236 |
-
| 0.
|
| 237 |
-
| 0.
|
| 238 |
-
| 0.
|
| 239 |
-
| 0.
|
| 240 |
-
| 0.
|
| 241 |
-
| 0.
|
| 242 |
-
| 0.
|
| 243 |
-
| 0.
|
| 244 |
-
| 0.
|
| 245 |
-
| 0.
|
| 246 |
-
| 0.
|
| 247 |
-
| 0.
|
| 248 |
-
| 0.
|
| 249 |
-
| 0.
|
| 250 |
-
| 0.
|
| 251 |
-
| 0.
|
| 252 |
-
| 0.
|
| 253 |
-
| 0.
|
| 254 |
-
| 0.
|
| 255 |
-
| 0.
|
| 256 |
-
| 0.
|
| 257 |
-
| 0.
|
| 258 |
-
| 0.
|
| 259 |
-
| 0.
|
| 260 |
-
| 0.
|
| 261 |
-
| 0.
|
| 262 |
-
| 0.
|
| 263 |
-
| 0.
|
| 264 |
-
| 0.
|
| 265 |
-
| 0.
|
| 266 |
-
| 0.
|
| 267 |
-
| 0.
|
| 268 |
-
| 0.
|
| 269 |
-
| 0.
|
| 270 |
-
| 0.
|
| 271 |
-
| 0.
|
| 272 |
-
| 0.
|
| 273 |
-
| 0.
|
| 274 |
-
| 0.
|
| 275 |
-
| 0.
|
| 276 |
-
| 0.
|
| 277 |
-
| 0.
|
| 278 |
-
| 0.
|
| 279 |
-
| 0.
|
| 280 |
-
| 0.
|
| 281 |
-
| 0.
|
| 282 |
-
| 0.
|
| 283 |
-
| 0.
|
| 284 |
-
| 0.
|
| 285 |
-
| 0.
|
| 286 |
-
| 0.
|
| 287 |
-
| 0.
|
| 288 |
-
| 0.
|
| 289 |
-
| 0.
|
| 290 |
-
|
| 291 |
-
| 0.2540 | 7300 | 0.0 | - |
|
| 292 |
-
| 0.2558 | 7350 | 0.0 | - |
|
| 293 |
-
| 0.2575 | 7400 | 0.0 | - |
|
| 294 |
-
| 0.2592 | 7450 | 0.0 | - |
|
| 295 |
-
| 0.2610 | 7500 | 0.0 | - |
|
| 296 |
-
| 0.2627 | 7550 | 0.0 | - |
|
| 297 |
-
| 0.2645 | 7600 | 0.0 | - |
|
| 298 |
-
| 0.2662 | 7650 | 0.0 | - |
|
| 299 |
-
| 0.2679 | 7700 | 0.0 | - |
|
| 300 |
-
| 0.2697 | 7750 | 0.0 | - |
|
| 301 |
-
| 0.2714 | 7800 | 0.0 | - |
|
| 302 |
-
| 0.2732 | 7850 | 0.0 | - |
|
| 303 |
-
| 0.2749 | 7900 | 0.0 | - |
|
| 304 |
-
| 0.2766 | 7950 | 0.0 | - |
|
| 305 |
-
| 0.2784 | 8000 | 0.0 | - |
|
| 306 |
-
| 0.2801 | 8050 | 0.0 | - |
|
| 307 |
-
| 0.2819 | 8100 | 0.0 | - |
|
| 308 |
-
| 0.2836 | 8150 | 0.0 | - |
|
| 309 |
-
| 0.2853 | 8200 | 0.0 | - |
|
| 310 |
-
| 0.2871 | 8250 | 0.0 | - |
|
| 311 |
-
| 0.2888 | 8300 | 0.0 | - |
|
| 312 |
-
| 0.2906 | 8350 | 0.0 | - |
|
| 313 |
-
| 0.2923 | 8400 | 0.0 | - |
|
| 314 |
-
| 0.2940 | 8450 | 0.0 | - |
|
| 315 |
-
| 0.2958 | 8500 | 0.0 | - |
|
| 316 |
-
| 0.2975 | 8550 | 0.0 | - |
|
| 317 |
-
| 0.2993 | 8600 | 0.0 | - |
|
| 318 |
-
| 0.3010 | 8650 | 0.0 | - |
|
| 319 |
-
| 0.3027 | 8700 | 0.0 | - |
|
| 320 |
-
| 0.3045 | 8750 | 0.0 | - |
|
| 321 |
-
| 0.3062 | 8800 | 0.0 | - |
|
| 322 |
-
| 0.3080 | 8850 | 0.0 | - |
|
| 323 |
-
| 0.3097 | 8900 | 0.0 | - |
|
| 324 |
-
| 0.3114 | 8950 | 0.0 | - |
|
| 325 |
-
| 0.3132 | 9000 | 0.0 | 0.0 |
|
| 326 |
-
| 0.3149 | 9050 | 0.0 | - |
|
| 327 |
-
| 0.3167 | 9100 | 0.0 | - |
|
| 328 |
-
| 0.3184 | 9150 | 0.0 | - |
|
| 329 |
-
| 0.3201 | 9200 | 0.0 | - |
|
| 330 |
-
| 0.3219 | 9250 | 0.0 | - |
|
| 331 |
-
| 0.3236 | 9300 | 0.0 | - |
|
| 332 |
-
| 0.3254 | 9350 | 0.0 | - |
|
| 333 |
-
| 0.3271 | 9400 | 0.0 | - |
|
| 334 |
-
| 0.3288 | 9450 | 0.0 | - |
|
| 335 |
-
| 0.3306 | 9500 | 0.0 | - |
|
| 336 |
-
| 0.3323 | 9550 | 0.0 | - |
|
| 337 |
-
| 0.3341 | 9600 | 0.0 | - |
|
| 338 |
-
| 0.3358 | 9650 | 0.0 | - |
|
| 339 |
-
| 0.3375 | 9700 | 0.0 | - |
|
| 340 |
-
| 0.3393 | 9750 | 0.0 | - |
|
| 341 |
-
| 0.3410 | 9800 | 0.0 | - |
|
| 342 |
-
| 0.3428 | 9850 | 0.0 | - |
|
| 343 |
-
| 0.3445 | 9900 | 0.0 | - |
|
| 344 |
-
| 0.3462 | 9950 | 0.0 | - |
|
| 345 |
-
| 0.3480 | 10000 | 0.0 | - |
|
| 346 |
-
| 0.3497 | 10050 | 0.0 | - |
|
| 347 |
-
| 0.3515 | 10100 | 0.0 | - |
|
| 348 |
-
| 0.3532 | 10150 | 0.0 | - |
|
| 349 |
-
| 0.3549 | 10200 | 0.0 | - |
|
| 350 |
-
| 0.3567 | 10250 | 0.0 | - |
|
| 351 |
-
| 0.3584 | 10300 | 0.0 | - |
|
| 352 |
-
| 0.3602 | 10350 | 0.0 | - |
|
| 353 |
-
| 0.3619 | 10400 | 0.0 | - |
|
| 354 |
-
| 0.3636 | 10450 | 0.0 | - |
|
| 355 |
-
| 0.3654 | 10500 | 0.0 | - |
|
| 356 |
-
| 0.3671 | 10550 | 0.0 | - |
|
| 357 |
-
| 0.3688 | 10600 | 0.0 | - |
|
| 358 |
-
| 0.3706 | 10650 | 0.0 | - |
|
| 359 |
-
| 0.3723 | 10700 | 0.0 | - |
|
| 360 |
-
| 0.3741 | 10750 | 0.0 | - |
|
| 361 |
-
| 0.3758 | 10800 | 0.0 | - |
|
| 362 |
-
| 0.3775 | 10850 | 0.0 | - |
|
| 363 |
-
| 0.3793 | 10900 | 0.0 | - |
|
| 364 |
-
| 0.3810 | 10950 | 0.0 | - |
|
| 365 |
-
| 0.3828 | 11000 | 0.0 | - |
|
| 366 |
-
| 0.3845 | 11050 | 0.0 | - |
|
| 367 |
-
| 0.3862 | 11100 | 0.0 | - |
|
| 368 |
-
| 0.3880 | 11150 | 0.0 | - |
|
| 369 |
-
| 0.3897 | 11200 | 0.0 | - |
|
| 370 |
-
| 0.3915 | 11250 | 0.0 | - |
|
| 371 |
-
| 0.3932 | 11300 | 0.0 | - |
|
| 372 |
-
| 0.3949 | 11350 | 0.0 | - |
|
| 373 |
-
| 0.3967 | 11400 | 0.0 | - |
|
| 374 |
-
| 0.3984 | 11450 | 0.0 | - |
|
| 375 |
-
| 0.4002 | 11500 | 0.0 | - |
|
| 376 |
-
| 0.4019 | 11550 | 0.0 | - |
|
| 377 |
-
| 0.4036 | 11600 | 0.0 | - |
|
| 378 |
-
| 0.4054 | 11650 | 0.0 | - |
|
| 379 |
-
| 0.4071 | 11700 | 0.0 | - |
|
| 380 |
-
| 0.4089 | 11750 | 0.0 | - |
|
| 381 |
-
| 0.4106 | 11800 | 0.0 | - |
|
| 382 |
-
| 0.4123 | 11850 | 0.0 | - |
|
| 383 |
-
| 0.4141 | 11900 | 0.0 | - |
|
| 384 |
-
| 0.4158 | 11950 | 0.0 | - |
|
| 385 |
-
| 0.4176 | 12000 | 0.0 | 0.0 |
|
| 386 |
-
| 0.4193 | 12050 | 0.0 | - |
|
| 387 |
-
| 0.4210 | 12100 | 0.0 | - |
|
| 388 |
-
| 0.4228 | 12150 | 0.0 | - |
|
| 389 |
-
| 0.4245 | 12200 | 0.0 | - |
|
| 390 |
-
| 0.4263 | 12250 | 0.0 | - |
|
| 391 |
-
| 0.4280 | 12300 | 0.0 | - |
|
| 392 |
-
| 0.4297 | 12350 | 0.0 | - |
|
| 393 |
-
| 0.4315 | 12400 | 0.0 | - |
|
| 394 |
-
| 0.4332 | 12450 | 0.0 | - |
|
| 395 |
-
| 0.4350 | 12500 | 0.0 | - |
|
| 396 |
-
| 0.4367 | 12550 | 0.0 | - |
|
| 397 |
-
| 0.4384 | 12600 | 0.0 | - |
|
| 398 |
-
| 0.4402 | 12650 | 0.0 | - |
|
| 399 |
-
| 0.4419 | 12700 | 0.0 | - |
|
| 400 |
-
| 0.4437 | 12750 | 0.0 | - |
|
| 401 |
-
| 0.4454 | 12800 | 0.0 | - |
|
| 402 |
-
| 0.4471 | 12850 | 0.0 | - |
|
| 403 |
-
| 0.4489 | 12900 | 0.0 | - |
|
| 404 |
-
| 0.4506 | 12950 | 0.0 | - |
|
| 405 |
-
| 0.4524 | 13000 | 0.0 | - |
|
| 406 |
-
| 0.4541 | 13050 | 0.0 | - |
|
| 407 |
-
| 0.4558 | 13100 | 0.0 | - |
|
| 408 |
-
| 0.4576 | 13150 | 0.0 | - |
|
| 409 |
-
| 0.4593 | 13200 | 0.0 | - |
|
| 410 |
-
| 0.4611 | 13250 | 0.0 | - |
|
| 411 |
-
| 0.4628 | 13300 | 0.0 | - |
|
| 412 |
-
| 0.4645 | 13350 | 0.0 | - |
|
| 413 |
-
| 0.4663 | 13400 | 0.0 | - |
|
| 414 |
-
| 0.4680 | 13450 | 0.0 | - |
|
| 415 |
-
| 0.4698 | 13500 | 0.0 | - |
|
| 416 |
-
| 0.4715 | 13550 | 0.0 | - |
|
| 417 |
-
| 0.4732 | 13600 | 0.0 | - |
|
| 418 |
-
| 0.4750 | 13650 | 0.0 | - |
|
| 419 |
-
| 0.4767 | 13700 | 0.0 | - |
|
| 420 |
-
| 0.4785 | 13750 | 0.0 | - |
|
| 421 |
-
| 0.4802 | 13800 | 0.0 | - |
|
| 422 |
-
| 0.4819 | 13850 | 0.0 | - |
|
| 423 |
-
| 0.4837 | 13900 | 0.0 | - |
|
| 424 |
-
| 0.4854 | 13950 | 0.0 | - |
|
| 425 |
-
| 0.4872 | 14000 | 0.0 | - |
|
| 426 |
-
| 0.4889 | 14050 | 0.0 | - |
|
| 427 |
-
| 0.4906 | 14100 | 0.0 | - |
|
| 428 |
-
| 0.4924 | 14150 | 0.0 | - |
|
| 429 |
-
| 0.4941 | 14200 | 0.0 | - |
|
| 430 |
-
| 0.4959 | 14250 | 0.0 | - |
|
| 431 |
-
| 0.4976 | 14300 | 0.0 | - |
|
| 432 |
-
| 0.4993 | 14350 | 0.0 | - |
|
| 433 |
-
| 0.5011 | 14400 | 0.0 | - |
|
| 434 |
-
| 0.5028 | 14450 | 0.0 | - |
|
| 435 |
-
| 0.5046 | 14500 | 0.0 | - |
|
| 436 |
-
| 0.5063 | 14550 | 0.0 | - |
|
| 437 |
-
| 0.5080 | 14600 | 0.0 | - |
|
| 438 |
-
| 0.5098 | 14650 | 0.0 | - |
|
| 439 |
-
| 0.5115 | 14700 | 0.0 | - |
|
| 440 |
-
| 0.5133 | 14750 | 0.0 | - |
|
| 441 |
-
| 0.5150 | 14800 | 0.0 | - |
|
| 442 |
-
| 0.5167 | 14850 | 0.0 | - |
|
| 443 |
-
| 0.5185 | 14900 | 0.0 | - |
|
| 444 |
-
| 0.5202 | 14950 | 0.0 | - |
|
| 445 |
-
| 0.5220 | 15000 | 0.0 | 0.0 |
|
| 446 |
-
| 0.5237 | 15050 | 0.0 | - |
|
| 447 |
-
| 0.5254 | 15100 | 0.0 | - |
|
| 448 |
-
| 0.5272 | 15150 | 0.0 | - |
|
| 449 |
-
| 0.5289 | 15200 | 0.0 | - |
|
| 450 |
-
| 0.5307 | 15250 | 0.0 | - |
|
| 451 |
-
| 0.5324 | 15300 | 0.0 | - |
|
| 452 |
-
| 0.5341 | 15350 | 0.0 | - |
|
| 453 |
-
| 0.5359 | 15400 | 0.0 | - |
|
| 454 |
-
| 0.5376 | 15450 | 0.0 | - |
|
| 455 |
-
| 0.5394 | 15500 | 0.0 | - |
|
| 456 |
-
| 0.5411 | 15550 | 0.0 | - |
|
| 457 |
-
| 0.5428 | 15600 | 0.0 | - |
|
| 458 |
-
| 0.5446 | 15650 | 0.0 | - |
|
| 459 |
-
| 0.5463 | 15700 | 0.0 | - |
|
| 460 |
-
| 0.5481 | 15750 | 0.0 | - |
|
| 461 |
-
| 0.5498 | 15800 | 0.0 | - |
|
| 462 |
-
| 0.5515 | 15850 | 0.0 | - |
|
| 463 |
-
| 0.5533 | 15900 | 0.0 | - |
|
| 464 |
-
| 0.5550 | 15950 | 0.0 | - |
|
| 465 |
-
| 0.5568 | 16000 | 0.0 | - |
|
| 466 |
-
| 0.5585 | 16050 | 0.0 | - |
|
| 467 |
-
| 0.5602 | 16100 | 0.0 | - |
|
| 468 |
-
| 0.5620 | 16150 | 0.0 | - |
|
| 469 |
-
| 0.5637 | 16200 | 0.0 | - |
|
| 470 |
-
| 0.5655 | 16250 | 0.0 | - |
|
| 471 |
-
| 0.5672 | 16300 | 0.0 | - |
|
| 472 |
-
| 0.5689 | 16350 | 0.0 | - |
|
| 473 |
-
| 0.5707 | 16400 | 0.0 | - |
|
| 474 |
-
| 0.5724 | 16450 | 0.0 | - |
|
| 475 |
-
| 0.5742 | 16500 | 0.0 | - |
|
| 476 |
-
| 0.5759 | 16550 | 0.0 | - |
|
| 477 |
-
| 0.5776 | 16600 | 0.0 | - |
|
| 478 |
-
| 0.5794 | 16650 | 0.0 | - |
|
| 479 |
-
| 0.5811 | 16700 | 0.0 | - |
|
| 480 |
-
| 0.5829 | 16750 | 0.0 | - |
|
| 481 |
-
| 0.5846 | 16800 | 0.0 | - |
|
| 482 |
-
| 0.5863 | 16850 | 0.0 | - |
|
| 483 |
-
| 0.5881 | 16900 | 0.0 | - |
|
| 484 |
-
| 0.5898 | 16950 | 0.0 | - |
|
| 485 |
-
| 0.5916 | 17000 | 0.0 | - |
|
| 486 |
-
| 0.5933 | 17050 | 0.0 | - |
|
| 487 |
-
| 0.5950 | 17100 | 0.0 | - |
|
| 488 |
-
| 0.5968 | 17150 | 0.0 | - |
|
| 489 |
-
| 0.5985 | 17200 | 0.0 | - |
|
| 490 |
-
| 0.6003 | 17250 | 0.0 | - |
|
| 491 |
-
| 0.6020 | 17300 | 0.0 | - |
|
| 492 |
-
| 0.6037 | 17350 | 0.0 | - |
|
| 493 |
-
| 0.6055 | 17400 | 0.0 | - |
|
| 494 |
-
| 0.6072 | 17450 | 0.0 | - |
|
| 495 |
-
| 0.6089 | 17500 | 0.0 | - |
|
| 496 |
-
| 0.6107 | 17550 | 0.0 | - |
|
| 497 |
-
| 0.6124 | 17600 | 0.0 | - |
|
| 498 |
-
| 0.6142 | 17650 | 0.0 | - |
|
| 499 |
-
| 0.6159 | 17700 | 0.0 | - |
|
| 500 |
-
| 0.6176 | 17750 | 0.0 | - |
|
| 501 |
-
| 0.6194 | 17800 | 0.0 | - |
|
| 502 |
-
| 0.6211 | 17850 | 0.0 | - |
|
| 503 |
-
| 0.6229 | 17900 | 0.0 | - |
|
| 504 |
-
| 0.6246 | 17950 | 0.0 | - |
|
| 505 |
-
| 0.6263 | 18000 | 0.0 | 0.0 |
|
| 506 |
-
| 0.6281 | 18050 | 0.0 | - |
|
| 507 |
-
| 0.6298 | 18100 | 0.0 | - |
|
| 508 |
-
| 0.6316 | 18150 | 0.0 | - |
|
| 509 |
-
| 0.6333 | 18200 | 0.0 | - |
|
| 510 |
-
| 0.6350 | 18250 | 0.0 | - |
|
| 511 |
-
| 0.6368 | 18300 | 0.0 | - |
|
| 512 |
-
| 0.6385 | 18350 | 0.0 | - |
|
| 513 |
-
| 0.6403 | 18400 | 0.0 | - |
|
| 514 |
-
| 0.6420 | 18450 | 0.0 | - |
|
| 515 |
-
| 0.6437 | 18500 | 0.0 | - |
|
| 516 |
-
| 0.6455 | 18550 | 0.0 | - |
|
| 517 |
-
| 0.6472 | 18600 | 0.0 | - |
|
| 518 |
-
| 0.6490 | 18650 | 0.0 | - |
|
| 519 |
-
| 0.6507 | 18700 | 0.0 | - |
|
| 520 |
-
| 0.6524 | 18750 | 0.0 | - |
|
| 521 |
-
| 0.6542 | 18800 | 0.0 | - |
|
| 522 |
-
| 0.6559 | 18850 | 0.0 | - |
|
| 523 |
-
| 0.6577 | 18900 | 0.0 | - |
|
| 524 |
-
| 0.6594 | 18950 | 0.0 | - |
|
| 525 |
-
| 0.6611 | 19000 | 0.0 | - |
|
| 526 |
-
| 0.6629 | 19050 | 0.0 | - |
|
| 527 |
-
| 0.6646 | 19100 | 0.0 | - |
|
| 528 |
-
| 0.6664 | 19150 | 0.0 | - |
|
| 529 |
-
| 0.6681 | 19200 | 0.0 | - |
|
| 530 |
-
| 0.6698 | 19250 | 0.0 | - |
|
| 531 |
-
| 0.6716 | 19300 | 0.0 | - |
|
| 532 |
-
| 0.6733 | 19350 | 0.0 | - |
|
| 533 |
-
| 0.6751 | 19400 | 0.0 | - |
|
| 534 |
-
| 0.6768 | 19450 | 0.0 | - |
|
| 535 |
-
| 0.6785 | 19500 | 0.0 | - |
|
| 536 |
-
| 0.6803 | 19550 | 0.0 | - |
|
| 537 |
-
| 0.6820 | 19600 | 0.0 | - |
|
| 538 |
-
| 0.6838 | 19650 | 0.0 | - |
|
| 539 |
-
| 0.6855 | 19700 | 0.0 | - |
|
| 540 |
-
| 0.6872 | 19750 | 0.0 | - |
|
| 541 |
-
| 0.6890 | 19800 | 0.0 | - |
|
| 542 |
-
| 0.6907 | 19850 | 0.0 | - |
|
| 543 |
-
| 0.6925 | 19900 | 0.0 | - |
|
| 544 |
-
| 0.6942 | 19950 | 0.0 | - |
|
| 545 |
-
| 0.6959 | 20000 | 0.0 | - |
|
| 546 |
-
| 0.6977 | 20050 | 0.0 | - |
|
| 547 |
-
| 0.6994 | 20100 | 0.0 | - |
|
| 548 |
-
| 0.7012 | 20150 | 0.0 | - |
|
| 549 |
-
| 0.7029 | 20200 | 0.0 | - |
|
| 550 |
-
| 0.7046 | 20250 | 0.0 | - |
|
| 551 |
-
| 0.7064 | 20300 | 0.0 | - |
|
| 552 |
-
| 0.7081 | 20350 | 0.0 | - |
|
| 553 |
-
| 0.7099 | 20400 | 0.0 | - |
|
| 554 |
-
| 0.7116 | 20450 | 0.0 | - |
|
| 555 |
-
| 0.7133 | 20500 | 0.0 | - |
|
| 556 |
-
| 0.7151 | 20550 | 0.0 | - |
|
| 557 |
-
| 0.7168 | 20600 | 0.0 | - |
|
| 558 |
-
| 0.7186 | 20650 | 0.0 | - |
|
| 559 |
-
| 0.7203 | 20700 | 0.0 | - |
|
| 560 |
-
| 0.7220 | 20750 | 0.0 | - |
|
| 561 |
-
| 0.7238 | 20800 | 0.0 | - |
|
| 562 |
-
| 0.7255 | 20850 | 0.0 | - |
|
| 563 |
-
| 0.7273 | 20900 | 0.0 | - |
|
| 564 |
-
| 0.7290 | 20950 | 0.0 | - |
|
| 565 |
-
| **0.7307** | **21000** | **0.0** | **0.0** |
|
| 566 |
-
| 0.7325 | 21050 | 0.0 | - |
|
| 567 |
-
| 0.7342 | 21100 | 0.0 | - |
|
| 568 |
-
| 0.7360 | 21150 | 0.0 | - |
|
| 569 |
-
| 0.7377 | 21200 | 0.0 | - |
|
| 570 |
-
| 0.7394 | 21250 | 0.0 | - |
|
| 571 |
-
| 0.7412 | 21300 | 0.0 | - |
|
| 572 |
-
| 0.7429 | 21350 | 0.0 | - |
|
| 573 |
-
| 0.7447 | 21400 | 0.0 | - |
|
| 574 |
-
| 0.7464 | 21450 | 0.0 | - |
|
| 575 |
-
| 0.7481 | 21500 | 0.0 | - |
|
| 576 |
-
| 0.7499 | 21550 | 0.0 | - |
|
| 577 |
-
| 0.7516 | 21600 | 0.0 | - |
|
| 578 |
-
| 0.7534 | 21650 | 0.0 | - |
|
| 579 |
-
| 0.7551 | 21700 | 0.0 | - |
|
| 580 |
-
| 0.7568 | 21750 | 0.0 | - |
|
| 581 |
-
| 0.7586 | 21800 | 0.0 | - |
|
| 582 |
-
| 0.7603 | 21850 | 0.0 | - |
|
| 583 |
-
| 0.7621 | 21900 | 0.0 | - |
|
| 584 |
-
| 0.7638 | 21950 | 0.0 | - |
|
| 585 |
-
| 0.7655 | 22000 | 0.0 | - |
|
| 586 |
-
| 0.7673 | 22050 | 0.0 | - |
|
| 587 |
-
| 0.7690 | 22100 | 0.0 | - |
|
| 588 |
-
| 0.7708 | 22150 | 0.0 | - |
|
| 589 |
-
| 0.7725 | 22200 | 0.0 | - |
|
| 590 |
-
| 0.7742 | 22250 | 0.0 | - |
|
| 591 |
-
| 0.7760 | 22300 | 0.0 | - |
|
| 592 |
-
| 0.7777 | 22350 | 0.0 | - |
|
| 593 |
-
| 0.7795 | 22400 | 0.0 | - |
|
| 594 |
-
| 0.7812 | 22450 | 0.0 | - |
|
| 595 |
-
| 0.7829 | 22500 | 0.0 | - |
|
| 596 |
-
| 0.7847 | 22550 | 0.0 | - |
|
| 597 |
-
| 0.7864 | 22600 | 0.0 | - |
|
| 598 |
-
| 0.7882 | 22650 | 0.0 | - |
|
| 599 |
-
| 0.7899 | 22700 | 0.0 | - |
|
| 600 |
-
| 0.7916 | 22750 | 0.0 | - |
|
| 601 |
-
| 0.7934 | 22800 | 0.0 | - |
|
| 602 |
-
| 0.7951 | 22850 | 0.0 | - |
|
| 603 |
-
| 0.7969 | 22900 | 0.0 | - |
|
| 604 |
-
| 0.7986 | 22950 | 0.0 | - |
|
| 605 |
-
| 0.8003 | 23000 | 0.0 | - |
|
| 606 |
-
| 0.8021 | 23050 | 0.0 | - |
|
| 607 |
-
| 0.8038 | 23100 | 0.0 | - |
|
| 608 |
-
| 0.8056 | 23150 | 0.0 | - |
|
| 609 |
-
| 0.8073 | 23200 | 0.0 | - |
|
| 610 |
-
| 0.8090 | 23250 | 0.0 | - |
|
| 611 |
-
| 0.8108 | 23300 | 0.0 | - |
|
| 612 |
-
| 0.8125 | 23350 | 0.0 | - |
|
| 613 |
-
| 0.8143 | 23400 | 0.0 | - |
|
| 614 |
-
| 0.8160 | 23450 | 0.0 | - |
|
| 615 |
-
| 0.8177 | 23500 | 0.0 | - |
|
| 616 |
-
| 0.8195 | 23550 | 0.0 | - |
|
| 617 |
-
| 0.8212 | 23600 | 0.0 | - |
|
| 618 |
-
| 0.8230 | 23650 | 0.0 | - |
|
| 619 |
-
| 0.8247 | 23700 | 0.0 | - |
|
| 620 |
-
| 0.8264 | 23750 | 0.0 | - |
|
| 621 |
-
| 0.8282 | 23800 | 0.0 | - |
|
| 622 |
-
| 0.8299 | 23850 | 0.0 | - |
|
| 623 |
-
| 0.8317 | 23900 | 0.0 | - |
|
| 624 |
-
| 0.8334 | 23950 | 0.0 | - |
|
| 625 |
-
| 0.8351 | 24000 | 0.0 | 0.0 |
|
| 626 |
-
| 0.8369 | 24050 | 0.0 | - |
|
| 627 |
-
| 0.8386 | 24100 | 0.0 | - |
|
| 628 |
-
| 0.8404 | 24150 | 0.0 | - |
|
| 629 |
-
| 0.8421 | 24200 | 0.0 | - |
|
| 630 |
-
| 0.8438 | 24250 | 0.0 | - |
|
| 631 |
-
| 0.8456 | 24300 | 0.0 | - |
|
| 632 |
-
| 0.8473 | 24350 | 0.0 | - |
|
| 633 |
-
| 0.8491 | 24400 | 0.0 | - |
|
| 634 |
-
| 0.8508 | 24450 | 0.0 | - |
|
| 635 |
-
| 0.8525 | 24500 | 0.0 | - |
|
| 636 |
-
| 0.8543 | 24550 | 0.0 | - |
|
| 637 |
-
| 0.8560 | 24600 | 0.0 | - |
|
| 638 |
-
| 0.8577 | 24650 | 0.0 | - |
|
| 639 |
-
| 0.8595 | 24700 | 0.0 | - |
|
| 640 |
-
| 0.8612 | 24750 | 0.0 | - |
|
| 641 |
-
| 0.8630 | 24800 | 0.0 | - |
|
| 642 |
-
| 0.8647 | 24850 | 0.0 | - |
|
| 643 |
-
| 0.8664 | 24900 | 0.0 | - |
|
| 644 |
-
| 0.8682 | 24950 | 0.0 | - |
|
| 645 |
-
| 0.8699 | 25000 | 0.0 | - |
|
| 646 |
-
| 0.8717 | 25050 | 0.0 | - |
|
| 647 |
-
| 0.8734 | 25100 | 0.0 | - |
|
| 648 |
-
| 0.8751 | 25150 | 0.0 | - |
|
| 649 |
-
| 0.8769 | 25200 | 0.0 | - |
|
| 650 |
-
| 0.8786 | 25250 | 0.0 | - |
|
| 651 |
-
| 0.8804 | 25300 | 0.0 | - |
|
| 652 |
-
| 0.8821 | 25350 | 0.0 | - |
|
| 653 |
-
| 0.8838 | 25400 | 0.0 | - |
|
| 654 |
-
| 0.8856 | 25450 | 0.0 | - |
|
| 655 |
-
| 0.8873 | 25500 | 0.0 | - |
|
| 656 |
-
| 0.8891 | 25550 | 0.0 | - |
|
| 657 |
-
| 0.8908 | 25600 | 0.0 | - |
|
| 658 |
-
| 0.8925 | 25650 | 0.0 | - |
|
| 659 |
-
| 0.8943 | 25700 | 0.0 | - |
|
| 660 |
-
| 0.8960 | 25750 | 0.0 | - |
|
| 661 |
-
| 0.8978 | 25800 | 0.0 | - |
|
| 662 |
-
| 0.8995 | 25850 | 0.0 | - |
|
| 663 |
-
| 0.9012 | 25900 | 0.0 | - |
|
| 664 |
-
| 0.9030 | 25950 | 0.0 | - |
|
| 665 |
-
| 0.9047 | 26000 | 0.0 | - |
|
| 666 |
-
| 0.9065 | 26050 | 0.0 | - |
|
| 667 |
-
| 0.9082 | 26100 | 0.0 | - |
|
| 668 |
-
| 0.9099 | 26150 | 0.0 | - |
|
| 669 |
-
| 0.9117 | 26200 | 0.0 | - |
|
| 670 |
-
| 0.9134 | 26250 | 0.0 | - |
|
| 671 |
-
| 0.9152 | 26300 | 0.0 | - |
|
| 672 |
-
| 0.9169 | 26350 | 0.0 | - |
|
| 673 |
-
| 0.9186 | 26400 | 0.0 | - |
|
| 674 |
-
| 0.9204 | 26450 | 0.0 | - |
|
| 675 |
-
| 0.9221 | 26500 | 0.0 | - |
|
| 676 |
-
| 0.9239 | 26550 | 0.0 | - |
|
| 677 |
-
| 0.9256 | 26600 | 0.0 | - |
|
| 678 |
-
| 0.9273 | 26650 | 0.0 | - |
|
| 679 |
-
| 0.9291 | 26700 | 0.0 | - |
|
| 680 |
-
| 0.9308 | 26750 | 0.0 | - |
|
| 681 |
-
| 0.9326 | 26800 | 0.0 | - |
|
| 682 |
-
| 0.9343 | 26850 | 0.0 | - |
|
| 683 |
-
| 0.9360 | 26900 | 0.0 | - |
|
| 684 |
-
| 0.9378 | 26950 | 0.0 | - |
|
| 685 |
-
| 0.9395 | 27000 | 0.0 | 0.0 |
|
| 686 |
-
| 0.9413 | 27050 | 0.0 | - |
|
| 687 |
-
| 0.9430 | 27100 | 0.0 | - |
|
| 688 |
-
| 0.9447 | 27150 | 0.0 | - |
|
| 689 |
-
| 0.9465 | 27200 | 0.0 | - |
|
| 690 |
-
| 0.9482 | 27250 | 0.0 | - |
|
| 691 |
-
| 0.9500 | 27300 | 0.0 | - |
|
| 692 |
-
| 0.9517 | 27350 | 0.0 | - |
|
| 693 |
-
| 0.9534 | 27400 | 0.0 | - |
|
| 694 |
-
| 0.9552 | 27450 | 0.0 | - |
|
| 695 |
-
| 0.9569 | 27500 | 0.0 | - |
|
| 696 |
-
| 0.9587 | 27550 | 0.0 | - |
|
| 697 |
-
| 0.9604 | 27600 | 0.0 | - |
|
| 698 |
-
| 0.9621 | 27650 | 0.0 | - |
|
| 699 |
-
| 0.9639 | 27700 | 0.0 | - |
|
| 700 |
-
| 0.9656 | 27750 | 0.0 | - |
|
| 701 |
-
| 0.9674 | 27800 | 0.0 | - |
|
| 702 |
-
| 0.9691 | 27850 | 0.0 | - |
|
| 703 |
-
| 0.9708 | 27900 | 0.0 | - |
|
| 704 |
-
| 0.9726 | 27950 | 0.0 | - |
|
| 705 |
-
| 0.9743 | 28000 | 0.0 | - |
|
| 706 |
-
| 0.9761 | 28050 | 0.0 | - |
|
| 707 |
-
| 0.9778 | 28100 | 0.0 | - |
|
| 708 |
-
| 0.9795 | 28150 | 0.0 | - |
|
| 709 |
-
| 0.9813 | 28200 | 0.0 | - |
|
| 710 |
-
| 0.9830 | 28250 | 0.0 | - |
|
| 711 |
-
| 0.9848 | 28300 | 0.0 | - |
|
| 712 |
-
| 0.9865 | 28350 | 0.0 | - |
|
| 713 |
-
| 0.9882 | 28400 | 0.0 | - |
|
| 714 |
-
| 0.9900 | 28450 | 0.0 | - |
|
| 715 |
-
| 0.9917 | 28500 | 0.0 | - |
|
| 716 |
-
| 0.9935 | 28550 | 0.0 | - |
|
| 717 |
-
| 0.9952 | 28600 | 0.0 | - |
|
| 718 |
-
| 0.9969 | 28650 | 0.0 | - |
|
| 719 |
-
| 0.9987 | 28700 | 0.0 | - |
|
| 720 |
-
|
| 721 |
-
* The bold row denotes the saved checkpoint.
|
| 722 |
### Framework Versions
|
| 723 |
- Python: 3.10.14
|
| 724 |
- SetFit: 1.0.3
|
|
|
|
| 12 |
- text-classification
|
| 13 |
- generated_from_setfit_trainer
|
| 14 |
widget:
|
| 15 |
+
- text: My Python code is a neural network
|
| 16 |
+
- text: The telltale words that could identify generative AI text
|
| 17 |
+
- text: My Python code is a neural network
|
| 18 |
+
- text: My Python code is a neural network
|
| 19 |
+
- text: The telltale words that could identify generative AI text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
inference: true
|
| 21 |
---
|
| 22 |
|
|
|
|
| 48 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 49 |
|
| 50 |
### Model Labels
|
| 51 |
+
| Label | Examples |
|
| 52 |
+
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 53 |
+
| 0 | <ul><li>'The telltale words that could identify generative AI text'</li><li>'The telltale words that could identify generative AI text'</li><li>'The telltale words that could identify generative AI text'</li></ul> |
|
| 54 |
+
| 1 | <ul><li>'Dangerous Feelings\nSource: www.collaborativefund.com'</li><li>'The Modos Paper Monitor\nSource: www.modos.tech'</li><li>'What did Mary know? A thought experiment about consciousness (2013)\nSource: philosophynow.org'</li></ul> |
|
| 55 |
|
| 56 |
## Uses
|
| 57 |
|
|
|
|
| 71 |
# Download from the 🤗 Hub
|
| 72 |
model = SetFitModel.from_pretrained("diwank/hn-upvote-classifier")
|
| 73 |
# Run inference
|
| 74 |
+
preds = model("My Python code is a neural network")
|
|
|
|
| 75 |
```
|
| 76 |
|
| 77 |
<!--
|
|
|
|
| 101 |
## Training Details
|
| 102 |
|
| 103 |
### Training Set Metrics
|
| 104 |
+
| Training set | Min | Median | Max |
|
| 105 |
+
|:-------------|:----|:-------|:----|
|
| 106 |
+
| Word count | 3 | 8.6577 | 18 |
|
| 107 |
|
| 108 |
| Label | Training Sample Count |
|
| 109 |
|:------|:----------------------|
|
| 110 |
+
| 0 | 4577 |
|
| 111 |
+
| 1 | 252 |
|
| 112 |
|
| 113 |
### Training Hyperparameters
|
| 114 |
+
- batch_size: (320, 32)
|
| 115 |
- num_epochs: (1, 16)
|
| 116 |
- max_steps: -1
|
| 117 |
- sampling_strategy: undersampling
|
|
|
|
| 129 |
- load_best_model_at_end: True
|
| 130 |
|
| 131 |
### Training Results
|
| 132 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
| 133 |
+
|:------:|:----:|:-------------:|:---------------:|
|
| 134 |
+
| 0.0001 | 1 | 0.208 | - |
|
| 135 |
+
| 0.0069 | 50 | 0.0121 | - |
|
| 136 |
+
| 0.0139 | 100 | 0.002 | - |
|
| 137 |
+
| 0.0208 | 150 | 0.0032 | - |
|
| 138 |
+
| 0.0277 | 200 | 0.001 | - |
|
| 139 |
+
| 0.0347 | 250 | 0.0006 | - |
|
| 140 |
+
| 0.0416 | 300 | 0.0005 | - |
|
| 141 |
+
| 0.0486 | 350 | 0.0004 | - |
|
| 142 |
+
| 0.0555 | 400 | 0.0003 | - |
|
| 143 |
+
| 0.0624 | 450 | 0.0002 | - |
|
| 144 |
+
| 0.0694 | 500 | 0.0002 | - |
|
| 145 |
+
| 0.0763 | 550 | 0.0002 | - |
|
| 146 |
+
| 0.0832 | 600 | 0.0002 | - |
|
| 147 |
+
| 0.0902 | 650 | 0.0001 | - |
|
| 148 |
+
| 0.0971 | 700 | 0.0001 | - |
|
| 149 |
+
| 0.1040 | 750 | 0.0001 | - |
|
| 150 |
+
| 0.1110 | 800 | 0.0001 | - |
|
| 151 |
+
| 0.1179 | 850 | 0.0001 | - |
|
| 152 |
+
| 0.1248 | 900 | 0.0001 | - |
|
| 153 |
+
| 0.1318 | 950 | 0.0001 | - |
|
| 154 |
+
| 0.1387 | 1000 | 0.0001 | - |
|
| 155 |
+
| 0.1457 | 1050 | 0.0001 | - |
|
| 156 |
+
| 0.1526 | 1100 | 0.0001 | - |
|
| 157 |
+
| 0.1595 | 1150 | 0.0001 | - |
|
| 158 |
+
| 0.1665 | 1200 | 0.0001 | - |
|
| 159 |
+
| 0.1734 | 1250 | 0.0001 | - |
|
| 160 |
+
| 0.1803 | 1300 | 0.0001 | - |
|
| 161 |
+
| 0.1873 | 1350 | 0.0001 | - |
|
| 162 |
+
| 0.1942 | 1400 | 0.0001 | - |
|
| 163 |
+
| 0.2011 | 1450 | 0.0001 | - |
|
| 164 |
+
| 0.2081 | 1500 | 0.0001 | - |
|
| 165 |
+
| 0.2150 | 1550 | 0.0001 | - |
|
| 166 |
+
| 0.2219 | 1600 | 0.0 | - |
|
| 167 |
+
| 0.2289 | 1650 | 0.0 | - |
|
| 168 |
+
| 0.2358 | 1700 | 0.0 | - |
|
| 169 |
+
| 0.2428 | 1750 | 0.0 | - |
|
| 170 |
+
| 0.2497 | 1800 | 0.0001 | - |
|
| 171 |
+
| 0.2566 | 1850 | 0.0 | - |
|
| 172 |
+
| 0.2636 | 1900 | 0.0 | - |
|
| 173 |
+
| 0.2705 | 1950 | 0.0 | - |
|
| 174 |
+
| 0.2774 | 2000 | 0.0 | - |
|
| 175 |
+
| 0.2844 | 2050 | 0.0 | - |
|
| 176 |
+
| 0.2913 | 2100 | 0.0 | - |
|
| 177 |
+
| 0.2982 | 2150 | 0.0 | - |
|
| 178 |
+
| 0.3052 | 2200 | 0.0 | - |
|
| 179 |
+
| 0.3121 | 2250 | 0.0 | - |
|
| 180 |
+
| 0.3190 | 2300 | 0.0 | - |
|
| 181 |
+
| 0.3260 | 2350 | 0.0 | - |
|
| 182 |
+
| 0.3329 | 2400 | 0.0 | - |
|
| 183 |
+
| 0.3399 | 2450 | 0.0 | - |
|
| 184 |
+
| 0.3468 | 2500 | 0.0 | - |
|
| 185 |
+
| 0.3537 | 2550 | 0.0 | - |
|
| 186 |
+
| 0.3607 | 2600 | 0.0 | - |
|
| 187 |
+
| 0.3676 | 2650 | 0.0 | - |
|
| 188 |
+
| 0.3745 | 2700 | 0.0 | - |
|
| 189 |
+
| 0.3815 | 2750 | 0.0 | - |
|
| 190 |
+
| 0.3884 | 2800 | 0.0 | - |
|
| 191 |
+
| 0.3953 | 2850 | 0.0 | - |
|
| 192 |
+
| 0.4023 | 2900 | 0.0 | - |
|
| 193 |
+
| 0.4092 | 2950 | 0.0 | - |
|
| 194 |
+
| 0.4161 | 3000 | 0.0 | - |
|
| 195 |
+
| 0.4231 | 3050 | 0.0 | - |
|
| 196 |
+
| 0.4300 | 3100 | 0.0 | - |
|
| 197 |
+
| 0.4370 | 3150 | 0.0 | - |
|
| 198 |
+
| 0.4439 | 3200 | 0.0 | - |
|
| 199 |
+
| 0.4508 | 3250 | 0.0 | - |
|
| 200 |
+
| 0.4578 | 3300 | 0.0 | - |
|
| 201 |
+
| 0.4647 | 3350 | 0.0 | - |
|
| 202 |
+
| 0.4716 | 3400 | 0.0 | - |
|
| 203 |
+
| 0.4786 | 3450 | 0.0 | - |
|
| 204 |
+
| 0.4855 | 3500 | 0.0 | - |
|
| 205 |
+
| 0.4924 | 3550 | 0.0 | - |
|
| 206 |
+
| 0.4994 | 3600 | 0.0 | - |
|
| 207 |
+
| 0.5063 | 3650 | 0.0 | - |
|
| 208 |
+
| 0.5132 | 3700 | 0.0 | - |
|
| 209 |
+
| 0.5202 | 3750 | 0.0 | - |
|
| 210 |
+
| 0.5271 | 3800 | 0.0 | - |
|
| 211 |
+
| 0.5341 | 3850 | 0.0 | - |
|
| 212 |
+
| 0.5410 | 3900 | 0.0 | - |
|
| 213 |
+
| 0.5479 | 3950 | 0.0 | - |
|
| 214 |
+
| 0.5549 | 4000 | 0.0 | - |
|
| 215 |
+
| 0.5618 | 4050 | 0.0 | - |
|
| 216 |
+
| 0.5687 | 4100 | 0.0 | - |
|
| 217 |
+
| 0.5757 | 4150 | 0.0 | - |
|
| 218 |
+
| 0.5826 | 4200 | 0.0 | - |
|
| 219 |
+
| 0.5895 | 4250 | 0.0 | - |
|
| 220 |
+
| 0.5965 | 4300 | 0.0 | - |
|
| 221 |
+
| 0.6034 | 4350 | 0.0 | - |
|
| 222 |
+
| 0.6103 | 4400 | 0.0 | - |
|
| 223 |
+
| 0.6173 | 4450 | 0.0 | - |
|
| 224 |
+
| 0.6242 | 4500 | 0.0 | - |
|
| 225 |
+
| 0.6312 | 4550 | 0.0 | - |
|
| 226 |
+
| 0.6381 | 4600 | 0.0 | - |
|
| 227 |
+
| 0.6450 | 4650 | 0.0 | - |
|
| 228 |
+
| 0.6520 | 4700 | 0.0 | - |
|
| 229 |
+
| 0.6589 | 4750 | 0.0 | - |
|
| 230 |
+
| 0.6658 | 4800 | 0.0 | - |
|
| 231 |
+
| 0.6728 | 4850 | 0.0 | - |
|
| 232 |
+
| 0.6797 | 4900 | 0.0 | - |
|
| 233 |
+
| 0.6866 | 4950 | 0.0 | - |
|
| 234 |
+
| 0.6936 | 5000 | 0.0 | - |
|
| 235 |
+
| 0.7005 | 5050 | 0.0 | - |
|
| 236 |
+
| 0.7074 | 5100 | 0.0 | - |
|
| 237 |
+
| 0.7144 | 5150 | 0.0 | - |
|
| 238 |
+
| 0.7213 | 5200 | 0.0 | - |
|
| 239 |
+
| 0.7283 | 5250 | 0.0 | - |
|
| 240 |
+
| 0.7352 | 5300 | 0.0 | - |
|
| 241 |
+
| 0.7421 | 5350 | 0.0 | - |
|
| 242 |
+
| 0.7491 | 5400 | 0.0 | - |
|
| 243 |
+
| 0.7560 | 5450 | 0.0 | - |
|
| 244 |
+
| 0.7629 | 5500 | 0.0 | - |
|
| 245 |
+
| 0.7699 | 5550 | 0.0 | - |
|
| 246 |
+
| 0.7768 | 5600 | 0.0 | - |
|
| 247 |
+
| 0.7837 | 5650 | 0.0 | - |
|
| 248 |
+
| 0.7907 | 5700 | 0.0 | - |
|
| 249 |
+
| 0.7976 | 5750 | 0.0 | - |
|
| 250 |
+
| 0.8045 | 5800 | 0.0 | - |
|
| 251 |
+
| 0.8115 | 5850 | 0.0 | - |
|
| 252 |
+
| 0.8184 | 5900 | 0.0 | - |
|
| 253 |
+
| 0.8254 | 5950 | 0.0 | - |
|
| 254 |
+
| 0.8323 | 6000 | 0.0 | - |
|
| 255 |
+
| 0.8392 | 6050 | 0.0 | - |
|
| 256 |
+
| 0.8462 | 6100 | 0.0 | - |
|
| 257 |
+
| 0.8531 | 6150 | 0.0 | - |
|
| 258 |
+
| 0.8600 | 6200 | 0.0 | - |
|
| 259 |
+
| 0.8670 | 6250 | 0.0 | - |
|
| 260 |
+
| 0.8739 | 6300 | 0.0 | - |
|
| 261 |
+
| 0.8808 | 6350 | 0.0 | - |
|
| 262 |
+
| 0.8878 | 6400 | 0.0 | - |
|
| 263 |
+
| 0.8947 | 6450 | 0.0 | - |
|
| 264 |
+
| 0.9017 | 6500 | 0.0 | - |
|
| 265 |
+
| 0.9086 | 6550 | 0.0 | - |
|
| 266 |
+
| 0.9155 | 6600 | 0.0 | - |
|
| 267 |
+
| 0.9225 | 6650 | 0.0 | - |
|
| 268 |
+
| 0.9294 | 6700 | 0.0 | - |
|
| 269 |
+
| 0.9363 | 6750 | 0.0 | - |
|
| 270 |
+
| 0.9433 | 6800 | 0.0 | - |
|
| 271 |
+
| 0.9502 | 6850 | 0.0 | - |
|
| 272 |
+
| 0.9571 | 6900 | 0.0 | - |
|
| 273 |
+
| 0.9641 | 6950 | 0.0 | - |
|
| 274 |
+
| 0.9710 | 7000 | 0.0 | - |
|
| 275 |
+
| 0.9779 | 7050 | 0.0 | - |
|
| 276 |
+
| 0.9849 | 7100 | 0.0 | - |
|
| 277 |
+
| 0.9918 | 7150 | 0.0 | - |
|
| 278 |
+
| 0.9988 | 7200 | 0.0 | - |
|
| 279 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
### Framework Versions
|
| 281 |
- Python: 3.10.14
|
| 282 |
- SetFit: 1.0.3
|
config.json
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "
|
| 3 |
"architectures": [
|
| 4 |
"NewModel"
|
| 5 |
],
|
| 6 |
"attention_probs_dropout_prob": 0.0,
|
| 7 |
"auto_map": {
|
| 8 |
-
"AutoConfig": "configuration.NewConfig",
|
| 9 |
-
"AutoModel": "modeling.NewModel",
|
| 10 |
"AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
|
| 11 |
"AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
|
| 12 |
"AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "Alibaba-NLP/gte-base-en-v1.5",
|
| 3 |
"architectures": [
|
| 4 |
"NewModel"
|
| 5 |
],
|
| 6 |
"attention_probs_dropout_prob": 0.0,
|
| 7 |
"auto_map": {
|
| 8 |
+
"AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
|
| 9 |
+
"AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
|
| 10 |
"AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
|
| 11 |
"AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
|
| 12 |
"AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
|
config_setfit.json
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
{
|
| 2 |
-
"
|
| 3 |
-
"
|
| 4 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"normalize_embeddings": false,
|
| 3 |
+
"labels": null
|
| 4 |
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 547119128
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d6efd84d9bcab3a39d9cf01cd3de98873b1abb346c0abc20913351f7794b6fd2
|
| 3 |
size 547119128
|
model_head.pkl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 7007
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6108c704aac635569a2907db35cd68667b6f05b912b996b3cb38387a0dc9c209
|
| 3 |
size 7007
|