|
|
import cog |
|
|
import tempfile |
|
|
from pathlib import Path |
|
|
import argparse |
|
|
import cv2 |
|
|
import torch |
|
|
from PIL import Image |
|
|
import torch.nn.functional as F |
|
|
from torchvision import transforms |
|
|
from models.models import create_model |
|
|
from options.test_options import TestOptions |
|
|
from util.reverse2original import reverse2wholeimage |
|
|
from util.norm import SpecificNorm |
|
|
from test_wholeimage_swapmulti import _totensor |
|
|
from insightface_func.face_detect_crop_multi import Face_detect_crop as Face_detect_crop_multi |
|
|
from insightface_func.face_detect_crop_single import Face_detect_crop as Face_detect_crop_single |
|
|
|
|
|
|
|
|
class Predictor(cog.Predictor): |
|
|
def setup(self): |
|
|
self.transformer_Arcface = transforms.Compose([ |
|
|
transforms.ToTensor(), |
|
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
|
]) |
|
|
|
|
|
@cog.input("source", type=Path, help="source image") |
|
|
@cog.input("target", type=Path, help="target image") |
|
|
@cog.input("mode", type=str, options=['single', 'all'], default='all', |
|
|
help="swap a single face (the one with highest confidence by face detection) or all faces in the target image") |
|
|
def predict(self, source, target, mode='all'): |
|
|
|
|
|
app = Face_detect_crop_multi(name='antelope', root='./insightface_func/models') |
|
|
|
|
|
if mode == 'single': |
|
|
app = Face_detect_crop_single(name='antelope', root='./insightface_func/models') |
|
|
|
|
|
app.prepare(ctx_id=0, det_thresh=0.6, det_size=(640, 640)) |
|
|
|
|
|
options = TestOptions() |
|
|
options.initialize() |
|
|
opt = options.parser.parse_args(["--Arc_path", 'arcface_model/arcface_checkpoint.tar', "--pic_a_path", str(source), |
|
|
"--pic_b_path", str(target), "--isTrain", False, "--no_simswaplogo"]) |
|
|
|
|
|
str_ids = opt.gpu_ids.split(',') |
|
|
opt.gpu_ids = [] |
|
|
for str_id in str_ids: |
|
|
id = int(str_id) |
|
|
if id >= 0: |
|
|
opt.gpu_ids.append(id) |
|
|
|
|
|
|
|
|
if len(opt.gpu_ids) > 0: |
|
|
torch.cuda.set_device(opt.gpu_ids[0]) |
|
|
|
|
|
torch.nn.Module.dump_patches = True |
|
|
model = create_model(opt) |
|
|
model.eval() |
|
|
|
|
|
crop_size = opt.crop_size |
|
|
spNorm = SpecificNorm() |
|
|
|
|
|
with torch.no_grad(): |
|
|
pic_a = opt.pic_a_path |
|
|
img_a_whole = cv2.imread(pic_a) |
|
|
img_a_align_crop, _ = app.get(img_a_whole, crop_size) |
|
|
img_a_align_crop_pil = Image.fromarray(cv2.cvtColor(img_a_align_crop[0], cv2.COLOR_BGR2RGB)) |
|
|
img_a = self.transformer_Arcface(img_a_align_crop_pil) |
|
|
img_id = img_a.view(-1, img_a.shape[0], img_a.shape[1], img_a.shape[2]) |
|
|
|
|
|
|
|
|
img_id = img_id.cuda() |
|
|
|
|
|
|
|
|
img_id_downsample = F.interpolate(img_id, size=(112,112)) |
|
|
latend_id = model.netArc(img_id_downsample) |
|
|
latend_id = F.normalize(latend_id, p=2, dim=1) |
|
|
|
|
|
|
|
|
|
|
|
pic_b = opt.pic_b_path |
|
|
img_b_whole = cv2.imread(pic_b) |
|
|
img_b_align_crop_list, b_mat_list = app.get(img_b_whole, crop_size) |
|
|
|
|
|
swap_result_list = [] |
|
|
b_align_crop_tenor_list = [] |
|
|
|
|
|
for b_align_crop in img_b_align_crop_list: |
|
|
b_align_crop_tenor = _totensor(cv2.cvtColor(b_align_crop, cv2.COLOR_BGR2RGB))[None, ...].cuda() |
|
|
|
|
|
swap_result = model(None, b_align_crop_tenor, latend_id, None, True)[0] |
|
|
swap_result_list.append(swap_result) |
|
|
b_align_crop_tenor_list.append(b_align_crop_tenor) |
|
|
|
|
|
net = None |
|
|
|
|
|
out_path = Path(tempfile.mkdtemp()) / "output.png" |
|
|
|
|
|
reverse2wholeimage(b_align_crop_tenor_list, swap_result_list, b_mat_list, crop_size, img_b_whole, None, |
|
|
str(out_path), opt.no_simswaplogo, |
|
|
pasring_model=net, use_mask=opt.use_mask, norm=spNorm) |
|
|
return out_path |
|
|
|