File size: 23,718 Bytes
321da93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import CosineAnnealingLR, LinearLR, SequentialLR
import numpy as np
from tqdm import tqdm
import json
import os
import argparse
import time
from torch.cuda.amp import autocast, GradScaler
import wandb  # For logging (optional)

# Import your existing components
from compressor_with_embeddings import Compressor, Decompressor, PrecomputedEmbeddingDataset
from final_flow_model import AMPFlowMatcherCFGConcat, SinusoidalTimeEmbedding
from cfg_dataset import CFGFlowDataset, create_cfg_dataloader

# ---------------- Optimized Configuration for H100 ----------------
ESM_DIM = 1280  # ESM-2 hidden dim (esm2_t33_650M_UR50D)
COMP_RATIO = 16  # compression factor
COMP_DIM = ESM_DIM // COMP_RATIO
MAX_SEQ_LEN = 50  # Actual sequence length from final_sequence_encoder.py

# OPTIMIZED H100 hyperparameters - HIGH THROUGHPUT + STABLE TRAINING
BATCH_SIZE = 512  # PUSH H100 TO LIMITS - using ~70GB memory 
EPOCHS = 2000  # Slightly more epochs with safer LR for same 5-6 hour target
BASE_LR = 8e-4  # SAFE but effective LR - 2x original, not 4x
LR_MIN = 4e-4  # Conservative minimum learning rate
WARMUP_STEPS = 4000  # Gentler warmup to avoid explosion
GPU_ID = 0  # Use GPU 0

# Training optimizations
USE_MIXED_PRECISION = True  # BF16 for H100
GRADIENT_CLIP_NORM = 0.5  # TIGHTER gradient clipping for flow matching stability
WEIGHT_DECAY = 0.01  # Weight decay for regularization
VALIDATION_INTERVAL = 5000  # Validate every 5K steps (more frequent)
CHECKPOINT_INTERVAL = 300  # Save checkpoint every 300 epochs (more frequent)
NUM_WORKERS = 32  # MAXIMIZED data loading workers for H100

# CFG training parameters
CFG_DROPOUT_RATE = 0.15  # 15% of batches as unconditional for CFG

class AMPFlowTrainerSingleGPUFullData:
    """
    Optimized Single GPU training pipeline for AMP generation using ProtFlow methodology.
    Uses ALL available data with H100-optimized settings for overnight training.
    """
    
    def __init__(self, embeddings_path, cfg_data_path, use_wandb=False):
        self.device = torch.device(f'cuda:{GPU_ID}')
        self.embeddings_path = embeddings_path
        self.cfg_data_path = cfg_data_path
        self.use_wandb = use_wandb
        
        # Enable H100 optimizations
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True
        
        print(f"Using GPU {GPU_ID} for optimized H100 training")
        print(f"Mixed precision: {USE_MIXED_PRECISION}")
        print(f"Batch size: {BATCH_SIZE}")
        print(f"Target epochs: {EPOCHS}")
        print(f"Learning rate: {BASE_LR} -> {LR_MIN}")
        
        # Initialize mixed precision training
        if USE_MIXED_PRECISION:
            self.scaler = GradScaler()
            print("βœ“ Mixed precision training enabled (BF16)")
        
        # Initialize wandb if requested
        if self.use_wandb:
            wandb.init(
                project="amp-flow-training",
                config={
                    "batch_size": BATCH_SIZE,
                    "epochs": EPOCHS,
                    "base_lr": BASE_LR,
                    "lr_min": LR_MIN,
                    "warmup_steps": WARMUP_STEPS,
                    "mixed_precision": USE_MIXED_PRECISION,
                    "gradient_clip": GRADIENT_CLIP_NORM,
                    "weight_decay": WEIGHT_DECAY
                }
            )
        
        print(f"Loading ALL AMP embeddings from {embeddings_path}...")
        
        # Load ALL embeddings (use the combined file instead of individual files)
        self._load_all_embeddings()
        
        # Compute normalization statistics
        print("Computing preprocessing statistics...")
        self._compute_preprocessing_stats()
        
        # Initialize models
        self._initialize_models()
        
        # Initialize datasets and dataloaders
        self._initialize_data()
        
        # Initialize optimizer and scheduler
        self._initialize_optimizer()
        
        print("βœ“ Optimized Single GPU training setup complete with FULL DATA!")
    
    def _load_all_embeddings(self):
        """Load ALL peptide embeddings from the combined file."""
        # Try to load the combined embeddings file first
        combined_path = os.path.join(self.embeddings_path, "all_peptide_embeddings.pt")
        
        if os.path.exists(combined_path):
            print(f"Loading combined embeddings from {combined_path}...")
            self.embeddings = torch.load(combined_path, map_location=self.device)
            print(f"βœ“ Loaded ALL embeddings: {self.embeddings.shape}")
        else:
            print("Combined embeddings file not found, loading individual files...")
            # Fallback to individual files
            import glob
            
            embedding_files = glob.glob(os.path.join(self.embeddings_path, "*.pt"))
            embedding_files = [f for f in embedding_files if not f.endswith('metadata.json') and not f.endswith('sequence_ids.json') and not f.endswith('all_peptide_embeddings.pt')]
            
            print(f"Found {len(embedding_files)} individual embedding files")
            
            # Load and stack all embeddings
            embeddings_list = []
            for file_path in embedding_files:
                try:
                    embedding = torch.load(file_path)
                    if embedding.dim() == 2:  # (seq_len, hidden_dim)
                        embeddings_list.append(embedding)
                    else:
                        print(f"Warning: Skipping {file_path} - unexpected shape {embedding.shape}")
                except Exception as e:
                    print(f"Warning: Could not load {file_path}: {e}")
            
            if not embeddings_list:
                raise ValueError("No valid embeddings found!")
            
            self.embeddings = torch.stack(embeddings_list)
            print(f"Loaded {len(self.embeddings)} embeddings from individual files")
    
    def _compute_preprocessing_stats(self):
        """Compute normalization statistics for embeddings."""
        # Flatten all embeddings
        flat_embeddings = self.embeddings.reshape(-1, ESM_DIM)
        
        # Compute statistics
        mean = flat_embeddings.mean(dim=0)
        std = flat_embeddings.std(dim=0)
        min_val = flat_embeddings.min()
        max_val = flat_embeddings.max()
        
        self.stats = {
            'mean': mean,
            'std': std,
            'min': min_val,
            'max': max_val
        }
        
        # Save statistics
        torch.save(self.stats, 'normalization_stats.pt')
        print(f"βœ“ Statistics computed and saved:")
        print(f"  Total embeddings: {len(self.embeddings):,}")
        print(f"  Mean: {mean.mean():.4f} Β± {mean.std():.4f}")
        print(f"  Std: {std.mean():.4f} Β± {std.std():.4f}")
        print(f"  Range: [{min_val:.4f}, {max_val:.4f}]")
    
    def _initialize_models(self):
        """Initialize compressor, decompressor, and flow model."""
        print("Initializing models...")
        
        # Load pre-trained compressor and decompressor
        self.compressor = Compressor().to(self.device)
        self.decompressor = Decompressor().to(self.device)
        
        self.compressor.load_state_dict(torch.load('final_compressor_model.pth', map_location=self.device))
        self.decompressor.load_state_dict(torch.load('final_decompressor_model.pth', map_location=self.device))
        
        # Initialize flow model with CFG
        self.flow_model = AMPFlowMatcherCFGConcat(
            hidden_dim=480,
            compressed_dim=COMP_DIM,
            n_layers=12,
            n_heads=16,
            dim_ff=3072,
            max_seq_len=25,  # MAX_SEQ_LEN // 2 due to pooling
            use_cfg=True
        ).to(self.device)
        
        # Compile model for PyTorch 2.x speedup (if available)
        try:
            self.flow_model = torch.compile(self.flow_model, mode="reduce-overhead")
            print("βœ“ Model compiled with torch.compile for speedup")
        except Exception as e:
            print(f"⚠️  Model compilation failed: {e}")
        
        # Set models to training mode
        self.compressor.train()
        self.decompressor.train()
        self.flow_model.train()
        
        print(f"βœ“ Models initialized:")
        print(f"  Compressor parameters: {sum(p.numel() for p in self.compressor.parameters()):,}")
        print(f"  Decompressor parameters: {sum(p.numel() for p in self.decompressor.parameters()):,}")
        print(f"  Flow model parameters: {sum(p.numel() for p in self.flow_model.parameters()):,}")
    
    def _initialize_data(self):
        """Initialize datasets and dataloaders with FULL data."""
        print("Initializing datasets with FULL data...")
        
        # Create CFG dataset with FULL UniProt data
        self.cfg_dataset = CFGFlowDataset(
            embeddings_path=self.embeddings_path,
            cfg_data_path=self.cfg_data_path,
            use_masked_labels=True,
            max_seq_len=MAX_SEQ_LEN,
            device=self.device
        )
        
        # Create dataloader with optimized settings
        self.dataloader = create_cfg_dataloader(
            self.cfg_dataset,
            batch_size=BATCH_SIZE,
            shuffle=True,
            num_workers=NUM_WORKERS
        )
        
        # Calculate total steps and validation intervals
        self.total_steps = len(self.dataloader) * EPOCHS
        self.validation_steps = VALIDATION_INTERVAL
        
        print(f"βœ“ Dataset initialized with FULL data:")
        print(f"  Total samples: {len(self.cfg_dataset):,}")
        print(f"  Batch size: {BATCH_SIZE}")
        print(f"  Batches per epoch: {len(self.dataloader):,}")
        print(f"  Total training steps: {self.total_steps:,}")
        print(f"  Validation every: {self.validation_steps:,} steps")
    
    def _initialize_optimizer(self):
        """Initialize optimizer and learning rate scheduler."""
        print("Initializing optimizer and scheduler...")
        
        # Optimizer for flow model only (compressor/decompressor are frozen)
        self.optimizer = optim.AdamW(
            self.flow_model.parameters(),
            lr=BASE_LR,
            weight_decay=WEIGHT_DECAY,
            betas=(0.9, 0.98),  # Optimized betas for flow matching
            eps=1e-6  # Lower epsilon for numerical stability
        )
        
        # Learning rate scheduler with proper warmup and cosine annealing
        warmup_scheduler = LinearLR(
            self.optimizer, 
            start_factor=0.1, 
            end_factor=1.0, 
            total_iters=WARMUP_STEPS
        )
        
        main_scheduler = CosineAnnealingLR(
            self.optimizer,
            T_max=self.total_steps - WARMUP_STEPS,
            eta_min=LR_MIN
        )
        
        self.scheduler = SequentialLR(
            self.optimizer,
            schedulers=[warmup_scheduler, main_scheduler],
            milestones=[WARMUP_STEPS]
        )
        
        print(f"βœ“ Optimizer initialized:")
        print(f"  Base LR: {BASE_LR}")
        print(f"  Min LR: {LR_MIN}")
        print(f"  Warmup steps: {WARMUP_STEPS}")
        print(f"  Weight decay: {WEIGHT_DECAY}")
        print(f"  Gradient clip norm: {GRADIENT_CLIP_NORM}")
    
    def _preprocess_batch(self, batch):
        """Preprocess a batch of data for training."""
        # Extract data
        embeddings = batch['embeddings'].to(self.device)  # (B, L, ESM_DIM)
        labels = batch['labels'].to(self.device)  # (B,)
        
        # Normalize embeddings
        m, s = self.stats['mean'].to(self.device), self.stats['std'].to(self.device)
        mn, mx = self.stats['min'].to(self.device), self.stats['max'].to(self.device)
        
        embeddings = (embeddings - m) / (s + 1e-8)
        embeddings = (embeddings - mn) / (mx - mn + 1e-8)
        
        # Compress embeddings
        with torch.no_grad():
            compressed = self.compressor(embeddings)  # (B, L, COMP_DIM)
        
        return compressed, labels
    
    def _compute_validation_metrics(self):
        """Compute validation metrics on a subset of data."""
        self.flow_model.eval()
        val_losses = []
        
        # Use a subset of data for validation
        val_samples = min(1000, len(self.cfg_dataset))
        val_indices = torch.randperm(len(self.cfg_dataset))[:val_samples]
        
        with torch.no_grad():
            for i in range(0, val_samples, BATCH_SIZE):
                batch_indices = val_indices[i:i+BATCH_SIZE]
                batch_data = [self.cfg_dataset[idx] for idx in batch_indices]
                
                # Collate batch
                embeddings = torch.stack([item['embedding'] for item in batch_data])
                labels = torch.stack([item['label'] for item in batch_data])
                
                # Preprocess
                compressed, labels = self._preprocess_batch({
                    'embeddings': embeddings,
                    'labels': labels
                })
                
                B, L, D = compressed.shape
                
                # Sample random time
                t = torch.rand(B, device=self.device)
                
                # Sample random noise
                eps = torch.randn_like(compressed)
                
                # Compute target
                xt = (1 - t.unsqueeze(-1).unsqueeze(-1)) * compressed + t.unsqueeze(-1).unsqueeze(-1) * eps
                
                # Predict vector field
                vt_pred = self.flow_model(xt, t, labels=labels)
                
                # Target vector field
                vt_target = eps - compressed
                
                # Compute loss
                loss = F.mse_loss(vt_pred, vt_target)
                val_losses.append(loss.item())
        
        self.flow_model.train()
        return np.mean(val_losses)
    
    def train_flow_matching(self):
        """Train the flow matching model with FULL data and optimizations."""
        print(f"πŸš€ Starting Optimized Single GPU Flow Matching Training with FULL DATA")
        print(f"GPU: {GPU_ID}")
        print(f"Total iterations: {EPOCHS}")
        print(f"Batch size: {BATCH_SIZE}")
        print(f"Total samples: {len(self.cfg_dataset):,}")
        print(f"Mixed precision: {USE_MIXED_PRECISION}")
        print(f"Estimated time: ~8-10 hours (overnight training with ALL data)")
        print("=" * 60)
        
        # Training loop
        best_loss = float('inf')
        losses = []
        val_losses = []
        global_step = 0
        start_time = time.time()
        
        for epoch in tqdm(range(EPOCHS), desc="Training Flow Model"):
            epoch_losses = []
            epoch_start_time = time.time()
            
            for batch_idx, batch in enumerate(self.dataloader):
                # Preprocess batch
                compressed, labels = self._preprocess_batch(batch)
                B, L, D = compressed.shape
                
                # CFG training: randomly mask some labels for unconditional training
                if torch.rand(1).item() < CFG_DROPOUT_RATE:
                    labels = torch.full_like(labels, fill_value=-1)  # Unconditional
                
                # Sample random time
                t = torch.rand(B, device=self.device)  # (B,)
                
                # Sample random noise
                eps = torch.randn_like(compressed)  # (B, L, D)
                
                # Compute target: x_t = (1-t) * x_0 + t * eps
                xt = (1 - t.unsqueeze(-1).unsqueeze(-1)) * compressed + t.unsqueeze(-1).unsqueeze(-1) * eps
                
                # Forward pass with mixed precision
                if USE_MIXED_PRECISION:
                    with autocast(dtype=torch.bfloat16):
                        vt_pred = self.flow_model(xt, t, labels=labels)  # (B, L, D)
                        vt_target = eps - compressed  # (B, L, D)
                        loss = F.mse_loss(vt_pred, vt_target)
                    
                    # Backward pass with gradient scaling
                    self.optimizer.zero_grad()
                    self.scaler.scale(loss).backward()
                    
                    # Gradient clipping
                    self.scaler.unscale_(self.optimizer)
                    torch.nn.utils.clip_grad_norm_(self.flow_model.parameters(), max_norm=GRADIENT_CLIP_NORM)
                    
                    self.scaler.step(self.optimizer)
                    self.scaler.update()
                else:
                    # Standard training
                    vt_pred = self.flow_model(xt, t, labels=labels)  # (B, L, D)
                    vt_target = eps - compressed  # (B, L, D)
                    loss = F.mse_loss(vt_pred, vt_target)
                    
                    # Backward pass
                    self.optimizer.zero_grad()
                    loss.backward()
                    
                    # Gradient clipping
                    torch.nn.utils.clip_grad_norm_(self.flow_model.parameters(), max_norm=GRADIENT_CLIP_NORM)
                    
                    self.optimizer.step()
                
                # Update learning rate
                self.scheduler.step()
                
                epoch_losses.append(loss.item())
                global_step += 1
                
                # Logging
                if batch_idx % 100 == 0:
                    current_lr = self.scheduler.get_last_lr()[0]
                    elapsed_time = time.time() - start_time
                    steps_per_sec = global_step / elapsed_time
                    eta_hours = (self.total_steps - global_step) / steps_per_sec / 3600
                    
                    print(f"Epoch {epoch:4d} | Step {global_step:6d}/{self.total_steps:6d} | "
                          f"Loss: {loss.item():.6f} | LR: {current_lr:.2e} | "
                          f"Speed: {steps_per_sec:.1f} steps/s | ETA: {eta_hours:.1f}h")
                    
                    # Log to wandb
                    if self.use_wandb:
                        wandb.log({
                            'train/loss': loss.item(),
                            'train/learning_rate': current_lr,
                            'train/steps_per_sec': steps_per_sec,
                            'train/global_step': global_step
                        })
                
                # Validation
                if global_step % self.validation_steps == 0:
                    val_loss = self._compute_validation_metrics()
                    val_losses.append(val_loss)
                    
                    print(f"Validation at step {global_step}: Loss = {val_loss:.6f}")
                    
                    if self.use_wandb:
                        wandb.log({
                            'val/loss': val_loss,
                            'val/global_step': global_step
                        })
                    
                    # Early stopping check
                    if val_loss < best_loss:
                        best_loss = val_loss
                        self._save_checkpoint(epoch, val_loss, global_step, is_final=False, is_best=True)
            
            # Compute epoch statistics
            avg_loss = np.mean(epoch_losses)
            losses.append(avg_loss)
            epoch_time = time.time() - epoch_start_time
            
            print(f"Epoch {epoch:4d} | Avg Loss: {avg_loss:.6f} | "
                  f"LR: {self.scheduler.get_last_lr()[0]:.2e} | "
                  f"Time: {epoch_time:.1f}s | Samples: {len(self.cfg_dataset):,}")
            
            # Save checkpoint
            if (epoch + 1) % CHECKPOINT_INTERVAL == 0:
                self._save_checkpoint(epoch, avg_loss, global_step, is_final=True)
        
        # Save final model
        self._save_checkpoint(EPOCHS - 1, losses[-1], global_step, is_final=True)
        
        total_time = time.time() - start_time
        print("=" * 60)
        print("πŸŽ‰ Optimized Training Complete with FULL DATA!")
        print(f"Best validation loss: {best_loss:.6f}")
        print(f"Total training time: {total_time/3600:.1f} hours")
        print(f"Total samples used: {len(self.cfg_dataset):,}")
        print(f"Final model saved as: amp_flow_model_final_optimized.pth")
        
        return losses, val_losses
    
    def _save_checkpoint(self, step, loss, global_step, is_final=False, is_best=False):
        """Save model checkpoint."""
        # Create output directory if it doesn't exist
        output_dir = '/data2/edwardsun/flow_checkpoints'
        os.makedirs(output_dir, exist_ok=True)
        
        if is_best:
            filename = os.path.join(output_dir, 'amp_flow_model_best_optimized.pth')
        elif is_final:
            filename = os.path.join(output_dir, 'amp_flow_model_final_optimized.pth')
        else:
            filename = os.path.join(output_dir, f'amp_flow_checkpoint_optimized_step_{step:04d}.pth')
        
        checkpoint = {
            'step': step,
            'global_step': global_step,
            'loss': loss,
            'flow_model_state_dict': self.flow_model.state_dict(),
            'optimizer_state_dict': self.optimizer.state_dict(),
            'scheduler_state_dict': self.scheduler.state_dict(),
            'stats': self.stats,
            'total_samples': len(self.cfg_dataset),
            'config': {
                'batch_size': BATCH_SIZE,
                'epochs': EPOCHS,
                'base_lr': BASE_LR,
                'lr_min': LR_MIN,
                'warmup_steps': WARMUP_STEPS,
                'mixed_precision': USE_MIXED_PRECISION,
                'gradient_clip': GRADIENT_CLIP_NORM,
                'weight_decay': WEIGHT_DECAY
            }
        }
        
        torch.save(checkpoint, filename)
        print(f"βœ“ Checkpoint saved: {filename} (loss: {loss:.6f}, step: {global_step})")

def main():
    """Main training function."""
    global BATCH_SIZE, EPOCHS
    
    parser = argparse.ArgumentParser(description='Optimized Single GPU AMP Flow Training with FULL DATA')
    parser.add_argument('--embeddings', default='/data2/edwardsun/flow_project/peptide_embeddings/', 
                       help='Path to peptide embeddings directory')
    parser.add_argument('--cfg_data', default='/data2/edwardsun/flow_project/test_uniprot_processed/uniprot_processed_data.json',
                       help='Path to FULL CFG data file')
    parser.add_argument('--use_wandb', action='store_true', help='Use wandb for logging')
    parser.add_argument('--batch_size', type=int, default=BATCH_SIZE, help='Batch size for training')
    parser.add_argument('--epochs', type=int, default=EPOCHS, help='Number of training epochs')
    
    args = parser.parse_args()
    
    # Update global variables if provided
    if args.batch_size != BATCH_SIZE:
        BATCH_SIZE = args.batch_size
    if args.epochs != EPOCHS:
        EPOCHS = args.epochs
    
    print(f"Starting optimized training with batch_size={BATCH_SIZE}, epochs={EPOCHS}")
    
    # Initialize trainer
    trainer = AMPFlowTrainerSingleGPUFullData(args.embeddings, args.cfg_data, args.use_wandb)
    
    # Start training
    losses, val_losses = trainer.train_flow_matching()
    
    print("Optimized training completed successfully with FULL DATA!")

if __name__ == "__main__":
    main()