File size: 1,690 Bytes
feb33a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig, ControlNetInput
import numpy as np
from PIL import Image


pipe = FluxImagePipeline.from_pretrained(
    torch_dtype=torch.bfloat16,
    device="cuda",
    model_configs=[
        ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="flux1-dev.safetensors", offload_device="cpu", offload_dtype=torch.float8_e4m3fn),
        ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors", offload_device="cpu", offload_dtype=torch.float8_e4m3fn),
        ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/", offload_device="cpu", offload_dtype=torch.float8_e4m3fn),
        ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors", offload_device="cpu", offload_dtype=torch.float8_e4m3fn),
        ModelConfig(model_id="alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", origin_file_pattern="diffusion_pytorch_model.safetensors", offload_device="cpu", offload_dtype=torch.float8_e4m3fn),
    ],
)
pipe.enable_vram_management()

image_1 = pipe(
    prompt="a cat sitting on a chair",
    height=1024, width=1024,
    seed=8, rand_device="cuda",
)
image_1.save("image_1.jpg")

mask = np.zeros((1024, 1024, 3), dtype=np.uint8)
mask[100:350, 350: -300] = 255
mask = Image.fromarray(mask)
mask.save("mask.jpg")

image_2 = pipe(
    prompt="a cat sitting on a chair, wearing sunglasses",
    controlnet_inputs=[ControlNetInput(image=image_1, inpaint_mask=mask, scale=0.9)],
    height=1024, width=1024,
    seed=9, rand_device="cuda",
)
image_2.save("image_2.jpg")