|
|
import torch, os, argparse |
|
|
from safetensors.torch import save_file |
|
|
|
|
|
|
|
|
def load_pl_state_dict(file_path): |
|
|
print(f"loading {file_path}") |
|
|
state_dict = torch.load(file_path, map_location="cpu") |
|
|
trainable_param_names = set(state_dict["trainable_param_names"]) |
|
|
if "module" in state_dict: |
|
|
state_dict = state_dict["module"] |
|
|
if "state_dict" in state_dict: |
|
|
state_dict = state_dict["state_dict"] |
|
|
state_dict_ = {} |
|
|
for name, param in state_dict.items(): |
|
|
if name.startswith("_forward_module."): |
|
|
name = name[len("_forward_module."):] |
|
|
if name.startswith("unet."): |
|
|
name = name[len("unet."):] |
|
|
if name in trainable_param_names: |
|
|
state_dict_[name] = param |
|
|
return state_dict_ |
|
|
|
|
|
|
|
|
def ckpt_to_epochs(ckpt_name): |
|
|
return int(ckpt_name.split("=")[1].split("-")[0]) |
|
|
|
|
|
|
|
|
def parse_args(): |
|
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
|
parser.add_argument( |
|
|
"--output_path", |
|
|
type=str, |
|
|
default="./", |
|
|
help="Path to save the model.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--gamma", |
|
|
type=float, |
|
|
default=0.9, |
|
|
help="Gamma in EMA.", |
|
|
) |
|
|
args = parser.parse_args() |
|
|
return args |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
args = parse_args() |
|
|
folder = args.output_path |
|
|
gamma = args.gamma |
|
|
|
|
|
|
|
|
ckpt_list = sorted([(ckpt_to_epochs(ckpt_name), ckpt_name) for ckpt_name in os.listdir(folder) if os.path.isdir(f"{folder}/{ckpt_name}")]) |
|
|
state_dict_ema = None |
|
|
for epochs, ckpt_name in ckpt_list: |
|
|
state_dict = load_pl_state_dict(f"{folder}/{ckpt_name}/checkpoint/mp_rank_00_model_states.pt") |
|
|
if state_dict_ema is None: |
|
|
state_dict_ema = {name: param.float() for name, param in state_dict.items()} |
|
|
else: |
|
|
for name, param in state_dict.items(): |
|
|
state_dict_ema[name] = state_dict_ema[name] * gamma + param.float() * (1 - gamma) |
|
|
save_path = ckpt_name.replace(".ckpt", "-ema.safetensors") |
|
|
print(f"save to {folder}/{save_path}") |
|
|
save_file(state_dict_ema, f"{folder}/{save_path}") |
|
|
|