| import torch | |
| from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig, ControlNetInput | |
| from diffsynth.controlnets.processors import Annotator | |
| from diffsynth import download_models | |
| download_models(["Annotators:Depth"]) | |
| pipe = FluxImagePipeline.from_pretrained( | |
| torch_dtype=torch.bfloat16, | |
| device="cuda", | |
| model_configs=[ | |
| ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="flux1-dev.safetensors"), | |
| ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors"), | |
| ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/"), | |
| ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors"), | |
| ModelConfig(model_id="InstantX/FLUX.1-dev-Controlnet-Union-alpha", origin_file_pattern="diffusion_pytorch_model.safetensors"), | |
| ], | |
| ) | |
| image_1 = pipe( | |
| prompt="a beautiful Asian girl, full body, red dress, summer", | |
| height=1024, width=1024, | |
| seed=6, rand_device="cuda", | |
| ) | |
| image_1.save("image_1.jpg") | |
| image_canny = Annotator("canny")(image_1) | |
| image_depth = Annotator("depth")(image_1) | |
| image_2 = pipe( | |
| prompt="a beautiful Asian girl, full body, red dress, winter", | |
| controlnet_inputs=[ | |
| ControlNetInput(image=image_canny, scale=0.3, processor_id="canny"), | |
| ControlNetInput(image=image_depth, scale=0.3, processor_id="depth"), | |
| ], | |
| height=1024, width=1024, | |
| seed=7, rand_device="cuda", | |
| ) | |
| image_2.save("image_2.jpg") | |