diff-storyboard / examples /qwen_image /model_training /validate_full /Qwen-Image-Blockwise-ControlNet-Inpaint.py
jiaxi2002's picture
Upload folder using huggingface_hub
feb33a0 verified
import torch
from PIL import Image
from modelscope import dataset_snapshot_download
from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig, ControlNetInput
pipe = QwenImagePipeline.from_pretrained(
torch_dtype=torch.bfloat16,
device="cuda",
model_configs=[
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"),
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"),
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"),
ModelConfig(path="models/train/Qwen-Image-Blockwise-ControlNet-Inpaint_full/epoch-1.safetensors"),
],
tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"),
)
dataset_snapshot_download(
dataset_id="DiffSynth-Studio/example_image_dataset",
local_dir="./data/example_image_dataset",
allow_file_pattern="inpaint/*.jpg"
)
prompt = "a cat with sunglasses"
controlnet_image = Image.open("./data/example_image_dataset/inpaint/image_1.jpg").convert("RGB").resize((1024, 1024))
inpaint_mask = Image.open("./data/example_image_dataset/inpaint/mask.jpg").convert("RGB").resize((1024, 1024))
image = pipe(
prompt, seed=0,
blockwise_controlnet_inputs=[ControlNetInput(image=controlnet_image, inpaint_mask=inpaint_mask)],
height=1024, width=1024,
num_inference_steps=40,
)
image.save("image.jpg")