import torch from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig, ControlNetInput import numpy as np from PIL import Image pipe = FluxImagePipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="flux1-dev.safetensors", offload_device="cpu", offload_dtype=torch.float8_e4m3fn), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors", offload_device="cpu", offload_dtype=torch.float8_e4m3fn), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/", offload_device="cpu", offload_dtype=torch.float8_e4m3fn), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors", offload_device="cpu", offload_dtype=torch.float8_e4m3fn), ModelConfig(model_id="alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", origin_file_pattern="diffusion_pytorch_model.safetensors", offload_device="cpu", offload_dtype=torch.float8_e4m3fn), ], ) pipe.enable_vram_management() image_1 = pipe( prompt="a cat sitting on a chair", height=1024, width=1024, seed=8, rand_device="cuda", ) image_1.save("image_1.jpg") mask = np.zeros((1024, 1024, 3), dtype=np.uint8) mask[100:350, 350: -300] = 255 mask = Image.fromarray(mask) mask.save("mask.jpg") image_2 = pipe( prompt="a cat sitting on a chair, wearing sunglasses", controlnet_inputs=[ControlNetInput(image=image_1, inpaint_mask=mask, scale=0.9)], height=1024, width=1024, seed=9, rand_device="cuda", ) image_2.save("image_2.jpg")