import torch, os, json from diffsynth import load_state_dict from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig, ControlNetInput from diffsynth.trainers.utils import DiffusionTrainingModule, ModelLogger, launch_training_task, flux_parser from diffsynth.models.lora import FluxLoRAConverter from diffsynth.trainers.unified_dataset import UnifiedDataset os.environ["TOKENIZERS_PARALLELISM"] = "false" class FluxTrainingModule(DiffusionTrainingModule): def __init__( self, model_paths=None, model_id_with_origin_paths=None, trainable_models=None, lora_base_model=None, lora_target_modules="a_to_qkv,b_to_qkv,ff_a.0,ff_a.2,ff_b.0,ff_b.2,a_to_out,b_to_out,proj_out,norm.linear,norm1_a.linear,norm1_b.linear,to_qkv_mlp", lora_rank=32, lora_checkpoint=None, use_gradient_checkpointing=True, use_gradient_checkpointing_offload=False, extra_inputs=None, ): super().__init__() # Load models model_configs = self.parse_model_configs(model_paths, model_id_with_origin_paths, enable_fp8_training=False) self.pipe = FluxImagePipeline.from_pretrained(torch_dtype=torch.bfloat16, device="cpu", model_configs=model_configs) # Training mode self.switch_pipe_to_training_mode( self.pipe, trainable_models, lora_base_model, lora_target_modules, lora_rank, lora_checkpoint=lora_checkpoint, enable_fp8_training=False, ) # Store other configs self.use_gradient_checkpointing = use_gradient_checkpointing self.use_gradient_checkpointing_offload = use_gradient_checkpointing_offload self.extra_inputs = extra_inputs.split(",") if extra_inputs is not None else [] def forward_preprocess(self, data): # CFG-sensitive parameters inputs_posi = {"prompt": data["prompt"]} inputs_nega = {"negative_prompt": ""} resized_data = data["image"].resize((1024,1024)) # CFG-unsensitive parameters inputs_shared = { # Assume you are using this pipeline for inference, # please fill in the input parameters. "input_image": resized_data, "height": resized_data.size[1], "width": resized_data.size[0], # Please do not modify the following parameters # unless you clearly know what this will cause. "cfg_scale": 1, "embedded_guidance": 1, "t5_sequence_length": 512, "tiled": False, "rand_device": self.pipe.device, "use_gradient_checkpointing": self.use_gradient_checkpointing, "use_gradient_checkpointing_offload": self.use_gradient_checkpointing_offload, } # Extra inputs controlnet_input = {} for extra_input in self.extra_inputs: if extra_input.startswith("controlnet_"): controlnet_input[extra_input.replace("controlnet_", "")] = data[extra_input] else: inputs_shared[extra_input] = data[extra_input] if len(controlnet_input) > 0: inputs_shared["controlnet_inputs"] = [ControlNetInput(**controlnet_input)] # Pipeline units will automatically process the input parameters. for unit in self.pipe.units: inputs_shared, inputs_posi, inputs_nega = self.pipe.unit_runner(unit, self.pipe, inputs_shared, inputs_posi, inputs_nega) return {**inputs_shared, **inputs_posi} def forward(self, data, inputs=None): if inputs is None: inputs = self.forward_preprocess(data) models = {name: getattr(self.pipe, name) for name in self.pipe.in_iteration_models} loss = self.pipe.training_loss(**models, **inputs) return loss if __name__ == "__main__": parser = flux_parser() args = parser.parse_args() dataset = UnifiedDataset( base_path=args.dataset_base_path, metadata_path=args.dataset_metadata_path, repeat=args.dataset_repeat, data_file_keys=args.data_file_keys.split(","), main_data_operator=UnifiedDataset.default_image_operator( base_path=args.dataset_base_path, max_pixels=args.max_pixels, height=args.height, width=args.width, height_division_factor=16, width_division_factor=16, ), default_caption=args.default_caption ) model = FluxTrainingModule( model_paths=args.model_paths, model_id_with_origin_paths=args.model_id_with_origin_paths, trainable_models=args.trainable_models, lora_base_model=args.lora_base_model, lora_target_modules=args.lora_target_modules, lora_rank=args.lora_rank, lora_checkpoint=args.lora_checkpoint, use_gradient_checkpointing=args.use_gradient_checkpointing, use_gradient_checkpointing_offload=args.use_gradient_checkpointing_offload, extra_inputs=args.extra_inputs, ) model_logger = ModelLogger( args.output_path, remove_prefix_in_ckpt=args.remove_prefix_in_ckpt, state_dict_converter=FluxLoRAConverter.align_to_opensource_format if args.align_to_opensource_format else lambda x:x, ) launch_training_task(dataset, model, model_logger, args=args)